#include #include #include #include #include #include #include #include enum RomSize { ROM_SIZE_1GB = 0xFA, ROM_SIZE_2GB = 0xF8, ROM_SIZE_4GB = 0xF0, ROM_SIZE_8GB = 0xE0, ROM_SIZE_16GB = 0xE1, ROM_SIZE_32GB = 0xE2 }; enum XciHeaderFlags { XCI_FLAG_AUTOBOOT, XCI_FLAG_HISTORY_ERASE }; enum CardClockRate { CLOCK_RATE_25 = 10551312, CLOCK_RATE_50 = 10551313, }; static const size_t kXciPageSize = 0x200; static const size_t kXciHeaderEncOffset = 0x90; static const size_t kXciHeaderEncSize = 0x70; #pragma pack (push, 1) struct sXciHeader { char signature[4]; // 0x00 // "HEAD" le_uint32_t rom_area_start_page; // 0x04 le_uint32_t backup_area_start_page; // 0x08 byte_t key_flag; // 0x0C // bit0-3 = KekIndex, bit4-7 = TitleKeyDecIndex byte_t rom_size; // 0x0D // this is an enum byte_t card_header_version; // 0x0E // CardHeaderVersion byte_t flags; // 0x0F le_uint64_t package_id; // 0x10 // stylised as 0x{0:x2}{1:x2}{2:x2}{3:x2}_{4:x2}{5:x2}{6:x2}{7:x2} le_uint32_t valid_data_end_page; // 0x18 byte_t reserved_01[4]; // 0x1C byte_t encryption_iv[16]; // 0x20 le_uint64_t partition_fs_header_address; // 0x30 le_uint64_t partition_fs_header_size; // 0x38 byte_t partition_fs_header_hash[0x20]; // 0x40 byte_t initial_data_hash[0x20]; // 0x60 le_uint32_t sel_sec; // 0x80 le_uint32_t sel_t1_key; // 0x84 // SelT1Key le_uint32_t sel_key; // 0x88 // SelKey le_uint32_t lim_area; // 0x8C // START ENCRYPTION le_uint32_t fw_version[2]; // 0x90 // [0]=minor, [1]=major le_uint32_t acc_ctrl_1; // 0x98 le_uint32_t wait_1_time_read; // 0x9C // Wait1TimeRead le_uint32_t wait_2_time_read; // 0xA0 // Wait2TimeRead le_uint32_t wait_1_time_write; // 0xA4 // Wait1TimeWrite le_uint32_t wait_2_time_write; // 0xA8 // Wait2TimeWrite le_uint32_t fw_mode; // 0xAC le_uint32_t cup_version; // 0xB0 byte_t reserved_03[0x4]; // 0xB4 byte_t upp_hash[8]; // 0xB8 // stylised as 0x{0:x2}{1:x2}{2:x2}{3:x2}_{4:x2}{5:x2}{6:x2}{7:x2} le_uint64_t cup_id; // 0xC0 // cup programID? byte_t reserved_04[0x38]; // END ENCRYPTION }; struct sInitialData { byte_t key_source[16]; // { package_id[8], zeros[8]} byte_t title_key_enc[16]; byte_t ccm_mac[16]; byte_t ccm_nonce[12]; }; // sizeof() = 512 (1 page) struct sKeyDataArea { sInitialData initial_data; // AES128-CCM encrypted {titlekey[16]} byte_t encrypted_00[0x200*6]; // AES128-CTR encrypted {titlekey[16]} byte_t encrypted_00_aesctr_data[0x100]; // RSA2048-OAEP-SHA256 encrypted AES-CTR data used for encrypted_00 {key[16],iv[16]} byte_t reserved_01[0x100]; }; // sizeof() = 512*8 (8 pages) #pragma pack (pop) struct sXciKeyData { crypto::aes::sAes128Key xci_header_encryption_key; crypto::aes::sAes128Key initial_data_key; crypto::rsa::sRsa2048Key xci_header_signer_key; crypto::rsa::sRsa2048Key card_key_area_oeap_key; }; /* void getTitleKeyFromInitialData(const byte_t* initialData, crypto::aes::sAes128Key& titleKey) { const sInitialData* data = (const sInitialData*)initialData; crypto::aes::sAes128Key ccmKey; crypto::aes::AesEcbDecrypt(data->key_source, 16, key_data.initial_data_key.key, ccmKey.key); //crypto::aes::AesCcmDecrypt(data->title_key_enc, 16, ccmKey.key, data->ccm_nonce, data->ccm_mac, titleKey.key); } */ inline uint64_t blockToAddr(uint32_t block) { return ((uint64_t)block) << 9; } inline const char* getBoolStr(bool isTrue) { return isTrue? "TRUE" : "FALSE"; } inline const char* getRomSizeStr(byte_t rom_size) { const char* str = "unknown"; switch (rom_size) { case (ROM_SIZE_1GB) : str = "1GB"; break; case (ROM_SIZE_2GB) : str = "2GB"; break; case (ROM_SIZE_4GB) : str = "4GB"; break; case (ROM_SIZE_8GB) : str = "8GB"; break; case (ROM_SIZE_16GB) : str = "16GB"; break; case (ROM_SIZE_32GB) : str = "32GB"; break; } return str; } inline const char* getCardClockRate(uint32_t acc_ctrl_1) { const char* str = "unknown"; switch (acc_ctrl_1) { case (CLOCK_RATE_25) : str = "20 MHz"; break; case (CLOCK_RATE_50) : str = "50 MHz"; break; } return str; } void dumpHxdStyleSector(byte_t* out, size_t len) { // iterate over 0x10 blocks for (size_t i = 0; i < (len / crypto::aes::kAesBlockSize); i++) { // for block i print each byte for (size_t j = 0; j < crypto::aes::kAesBlockSize; j++) { printf("%02X ", out[i*crypto::aes::kAesBlockSize + j]); } printf(" "); for (size_t j = 0; j < crypto::aes::kAesBlockSize; j++) { printf("%c", isalnum(out[i*crypto::aes::kAesBlockSize + j]) ? out[i*crypto::aes::kAesBlockSize + j] : '.'); } printf("\n"); } /* for (size_t i = 0; i < len % crypto::aes::kAesBlockSize; i++) { printf("%02X ", out[(len / crypto::aes::kAesBlockSize)*crypto::aes::kAesBlockSize + i]); } for (size_t i = 0; i < crypto::aes::kAesBlockSize - (len % crypto::aes::kAesBlockSize); i++) { printf(" "); } for (size_t i = 0; i < len % crypto::aes::kAesBlockSize; i++) { printf("%c", out[(len / crypto::aes::kAesBlockSize)*crypto::aes::kAesBlockSize + i]); } */ } void printXciHeader(const sXciHeader& hdr, bool is_decrypted) { be_uint64_t *aes_iv, *hash; printf("[XCI HEADER]\n"); printf(" Magic: HEAD\n"); printf(" RomAreaStartPage: 0x%0x (0x%" PRIx64 ")\n", hdr.rom_area_start_page.get(), blockToAddr(hdr.rom_area_start_page.get())); printf(" BackupAreaStartPage: 0x%0x\n", hdr.backup_area_start_page.get()); printf(" KeyFlag: 0x%x\n", hdr.key_flag); printf(" KekIndex: %d\n", hdr.key_flag & 7); printf(" TitleKeyDecIndex: %d\n", (hdr.key_flag >> 4) & 7); printf(" RomSize: 0x%x (%s)\n", hdr.rom_size, getRomSizeStr(hdr.rom_size)); printf(" CardHeaderVersion: %d\n", hdr.card_header_version); printf(" Flags: 0x%x\n", hdr.flags); printf(" AutoBoot: %s\n", getBoolStr(_HAS_BIT(hdr.flags, XCI_FLAG_AUTOBOOT))); printf(" HistoryErase: %s\n", getBoolStr(_HAS_BIT(hdr.flags, XCI_FLAG_HISTORY_ERASE))); printf(" PackageId: 0x%" PRIx64 "\n", hdr.package_id.get()); printf(" ValidDataEndPage: 0x%x (0x%" PRIx64 ")\n", hdr.valid_data_end_page.get(), blockToAddr(hdr.valid_data_end_page.get())); aes_iv = (be_uint64_t*)hdr.encryption_iv; printf(" AesIv: %016" PRIX64 "%016" PRIX64"\n", aes_iv[0].get(), aes_iv[1].get()); printf(" PartitionFs:\n"); printf(" Offset: 0x%" PRIx64 "\n", hdr.partition_fs_header_address.get()); printf(" Size: 0x%" PRIx64 "\n", hdr.partition_fs_header_size.get()); hash = (be_uint64_t*)hdr.partition_fs_header_hash; printf(" Hash: %016" PRIX64 "%016" PRIX64 "%016" PRIX64 "%016" PRIX64"\n", hash[0].get(),hash[1].get(),hash[2].get(),hash[3].get()); printf(" InitialData:\n"); hash = (be_uint64_t*)hdr.initial_data_hash; printf(" Hash: %016" PRIX64 "%016" PRIX64 "%016" PRIX64 "%016" PRIX64"\n", hash[0].get(),hash[1].get(),hash[2].get(),hash[3].get()); printf(" SelSec: 0x%x\n", hdr.sel_sec.get()); printf(" SelT1Key: 0x%x\n", hdr.sel_t1_key.get()); printf(" SelKey: 0x%x\n", hdr.sel_key.get()); printf(" LimArea: 0x%x\n", hdr.lim_area.get()); if (is_decrypted == true) { printf(" FwVersion: v%d.%d\n", hdr.fw_version[1].get(), hdr.fw_version[0].get()); printf(" AccCtrl1: 0x%x\n", hdr.acc_ctrl_1.get()); printf(" CardClockRate: %s\n", getCardClockRate(hdr.acc_ctrl_1.get())); printf(" Wait1TimeRead: 0x%x\n", hdr.wait_1_time_read.get()); printf(" Wait2TimeRead: 0x%x\n", hdr.wait_2_time_read.get()); printf(" Wait1TimeWrite: 0x%x\n", hdr.wait_1_time_write.get()); printf(" Wait2TimeWrite: 0x%x\n", hdr.wait_2_time_write.get()); printf(" FwMode: 0x%x\n", hdr.fw_mode.get()); printf(" CupVersion: %d\n", hdr.cup_version.get()); hash = (be_uint64_t*)hdr.upp_hash; printf(" UppHash: %016" PRIX64 "\n", hash[0].get()); printf(" CupId: %016" PRIx64 "\n", hdr.cup_id.get()); } } void decryptXciHeader(const byte_t* src, byte_t* dst) { const byte_t* src_iv = ((const sXciHeader*)src)->encryption_iv; byte_t iv[crypto::aes::kAesBlockSize]; for (int i = 0; i < crypto::aes::kAesBlockSize; i++) { iv[i] = src_iv[15 - i]; } // copy plain memcpy(dst, src, kXciHeaderEncOffset); // decrypt encrypted crypto::aes::AesCbcDecrypt(src + kXciHeaderEncOffset, kXciHeaderEncSize, crypto::aes::nx::prod::xci_header_key, iv, dst + kXciHeaderEncOffset); } int main(int argc, char** argv) { if (argc < 2) { printf("usage: %s \n", argv[0]); return 1; } FILE* fp = fopen(argv[1], "rb"); if (fp == nullptr) { printf("Failed to open file.\n"); return 1; } fnd::MemoryBlob xciFile; xciFile.alloc(0x200); fread(xciFile.getBytes(), 0x200, 1, fp); fclose(fp); sXciHeader hdr; decryptXciHeader(xciFile.getBytes() + 0x100, (byte_t*)&hdr); printXciHeader(hdr, true); return 0; }