#include #include #include #include #include #include #include #include #include #include #include #include "NcaProcess.h" #include "PfsProcess.h" #include "RomfsProcess.h" #include "NpdmProcess.h" NcaProcess::NcaProcess() : mFile(), mCliOutputMode(_BIT(OUTPUT_BASIC)), mVerify(false), mListFs(false) { for (size_t i = 0; i < nn::hac::nca::kPartitionNum; i++) { mPartitionPath[i].doExtract = false; } } void NcaProcess::process() { // import header importHeader(); // determine keys generateNcaBodyEncryptionKeys(); // import/generate fs header data generatePartitionConfiguration(); // validate signatures if (mVerify) validateNcaSignatures(); // display header if (_HAS_BIT(mCliOutputMode, OUTPUT_BASIC)) displayHeader(); // process partition processPartitions(); } void NcaProcess::setInputFile(const fnd::SharedPtr& file) { mFile = file; } void NcaProcess::setKeyCfg(const KeyConfiguration& keycfg) { mKeyCfg = keycfg; } void NcaProcess::setCliOutputMode(CliOutputMode type) { mCliOutputMode = type; } void NcaProcess::setVerifyMode(bool verify) { mVerify = verify; } void NcaProcess::setPartition0ExtractPath(const std::string& path) { mPartitionPath[0].path = path; mPartitionPath[0].doExtract = true; } void NcaProcess::setPartition1ExtractPath(const std::string& path) { mPartitionPath[1].path = path; mPartitionPath[1].doExtract = true; } void NcaProcess::setPartition2ExtractPath(const std::string& path) { mPartitionPath[2].path = path; mPartitionPath[2].doExtract = true; } void NcaProcess::setPartition3ExtractPath(const std::string& path) { mPartitionPath[3].path = path; mPartitionPath[3].doExtract = true; } void NcaProcess::setListFs(bool list_fs) { mListFs = list_fs; } void NcaProcess::importHeader() { if (*mFile == nullptr) { throw fnd::Exception(kModuleName, "No file reader set."); } // read header block (*mFile)->read((byte_t*)&mHdrBlock, 0, sizeof(nn::hac::sNcaHeaderBlock)); // decrypt header block fnd::aes::sAesXts128Key header_key; mKeyCfg.getNcaHeaderKey(header_key); nn::hac::NcaUtils::decryptNcaHeader((byte_t*)&mHdrBlock, (byte_t*)&mHdrBlock, header_key); // generate header hash fnd::sha::Sha256((byte_t*)&mHdrBlock.header, sizeof(nn::hac::sNcaHeader), mHdrHash.bytes); // proccess main header mHdr.fromBytes((byte_t*)&mHdrBlock.header, sizeof(nn::hac::sNcaHeader)); } void NcaProcess::generateNcaBodyEncryptionKeys() { // create zeros key fnd::aes::sAes128Key zero_aesctr_key; memset(zero_aesctr_key.key, 0, sizeof(zero_aesctr_key)); // get key data from header byte_t masterkey_rev = nn::hac::NcaUtils::getMasterKeyRevisionFromKeyGeneration(mHdr.getKeyGeneration()); byte_t keak_index = mHdr.getKaekIndex(); // process key area sKeys::sKeyAreaKey kak; fnd::aes::sAes128Key key_area_enc_key; for (size_t i = 0; i < nn::hac::nca::kAesKeyNum; i++) { if (mHdr.getEncAesKeys()[i] != zero_aesctr_key) { kak.index = (byte_t)i; kak.enc = mHdr.getEncAesKeys()[i]; // key[0-3] if (i < 4 && mKeyCfg.getNcaKeyAreaEncryptionKey(masterkey_rev, keak_index, key_area_enc_key) == true) { kak.decrypted = true; nn::hac::AesKeygen::generateKey(kak.dec.key, kak.enc.key, key_area_enc_key.key); } // key[4] else if (i == 4 && mKeyCfg.getNcaKeyAreaEncryptionKeyHw(masterkey_rev, keak_index, key_area_enc_key) == true) { kak.decrypted = true; nn::hac::AesKeygen::generateKey(kak.dec.key, kak.enc.key, key_area_enc_key.key); } else { kak.decrypted = false; } mContentKey.kak_list.addElement(kak); } } // set flag to indicate that the keys are not available mContentKey.aes_ctr.isSet = false; // if this has a rights id, the key needs to be sourced from a ticket if (mHdr.hasRightsId() == true) { fnd::aes::sAes128Key tmp_key; if (mKeyCfg.getNcaExternalContentKey(mHdr.getRightsId(), tmp_key) == true) { mContentKey.aes_ctr = tmp_key; } else if (mKeyCfg.getNcaExternalContentKey(kDummyRightsIdForUserTitleKey, tmp_key) == true) { fnd::aes::sAes128Key common_key; if (mKeyCfg.getETicketCommonKey(masterkey_rev, common_key) == true) { nn::hac::AesKeygen::generateKey(tmp_key.key, tmp_key.key, common_key.key); } mContentKey.aes_ctr = tmp_key; } } // otherwise decrypt key area else { fnd::aes::sAes128Key kak_aes_ctr = zero_aesctr_key; for (size_t i = 0; i < mContentKey.kak_list.size(); i++) { if (mContentKey.kak_list[i].index == nn::hac::nca::KEY_AESCTR && mContentKey.kak_list[i].decrypted) { kak_aes_ctr = mContentKey.kak_list[i].dec; } } if (kak_aes_ctr != zero_aesctr_key) { mContentKey.aes_ctr = kak_aes_ctr; } } // if the keys weren't generated, check if the keys were supplied by the user if (mContentKey.aes_ctr.isSet == false) { if (mKeyCfg.getNcaExternalContentKey(kDummyRightsIdForUserBodyKey, mContentKey.aes_ctr.var) == true) mContentKey.aes_ctr.isSet = true; } if (_HAS_BIT(mCliOutputMode, OUTPUT_KEY_DATA)) { if (mContentKey.aes_ctr.isSet) { std::cout << "[NCA Content Key]" << std::endl; std::cout << " AES-CTR Key: " << fnd::SimpleTextOutput::arrayToString(mContentKey.aes_ctr.var.key, sizeof(mContentKey.aes_ctr.var), true, ":") << std::endl; } } } void NcaProcess::generatePartitionConfiguration() { std::stringstream error; for (size_t i = 0; i < mHdr.getPartitions().size(); i++) { // get reference to relevant structures const nn::hac::NcaHeader::sPartition& partition = mHdr.getPartitions()[i]; nn::hac::sNcaFsHeader& fs_header = mHdrBlock.fs_header[partition.index]; // output structure sPartitionInfo& info = mPartitions[partition.index]; // validate header hash fnd::sha::sSha256Hash calc_hash; fnd::sha::Sha256((const byte_t*)&mHdrBlock.fs_header[partition.index], sizeof(nn::hac::sNcaFsHeader), calc_hash.bytes); if (calc_hash.compare(partition.hash) == false) { error.clear(); error << "NCA FS Header [" << partition.index << "] Hash: FAIL \n"; throw fnd::Exception(kModuleName, error.str()); } if (fs_header.version.get() != nn::hac::nca::kDefaultFsHeaderVersion) { error.clear(); error << "NCA FS Header [" << partition.index << "] Version(" << fs_header.version.get() << "): UNSUPPORTED"; throw fnd::Exception(kModuleName, error.str()); } // setup AES-CTR nn::hac::NcaUtils::getNcaPartitionAesCtr(&fs_header, info.aes_ctr.iv); // save partition config info.reader = nullptr; info.offset = partition.offset; info.size = partition.size; info.format_type = (nn::hac::nca::FormatType)fs_header.format_type; info.hash_type = (nn::hac::nca::HashType)fs_header.hash_type; info.enc_type = (nn::hac::nca::EncryptionType)fs_header.encryption_type; if (info.hash_type == nn::hac::nca::HASH_HIERARCHICAL_SHA256) { // info.hash_tree_meta.importData(fs_header.hash_superblock, nn::hac::nca::kFsHeaderHashSuperblockLen, LayeredIntegrityMetadata::HASH_TYPE_SHA256); nn::hac::HierarchicalSha256Header hdr; fnd::List hash_layers; fnd::LayeredIntegrityMetadata::sLayer data_layer; fnd::List master_hash_list; // import raw data hdr.fromBytes(fs_header.hash_superblock, nn::hac::nca::kFsHeaderHashSuperblockLen); for (size_t i = 0; i < hdr.getLayerInfo().size(); i++) { fnd::LayeredIntegrityMetadata::sLayer layer; layer.offset = hdr.getLayerInfo()[i].offset; layer.size = hdr.getLayerInfo()[i].size; layer.block_size = hdr.getHashBlockSize(); if (i + 1 == hdr.getLayerInfo().size()) { data_layer = layer; } else { hash_layers.addElement(layer); } } master_hash_list.addElement(hdr.getMasterHash()); // write data into metadata info.layered_intergrity_metadata.setAlignHashToBlock(false); info.layered_intergrity_metadata.setHashLayerInfo(hash_layers); info.layered_intergrity_metadata.setDataLayerInfo(data_layer); info.layered_intergrity_metadata.setMasterHashList(master_hash_list); } else if (info.hash_type == nn::hac::nca::HASH_HIERARCHICAL_INTERGRITY) { // info.hash_tree_meta.importData(fs_header.hash_superblock, nn::hac::nca::kFsHeaderHashSuperblockLen, LayeredIntegrityMetadata::HASH_TYPE_INTEGRITY); nn::hac::HierarchicalIntegrityHeader hdr; fnd::List hash_layers; fnd::LayeredIntegrityMetadata::sLayer data_layer; fnd::List master_hash_list; hdr.fromBytes(fs_header.hash_superblock, nn::hac::nca::kFsHeaderHashSuperblockLen); for (size_t i = 0; i < hdr.getLayerInfo().size(); i++) { fnd::LayeredIntegrityMetadata::sLayer layer; layer.offset = hdr.getLayerInfo()[i].offset; layer.size = hdr.getLayerInfo()[i].size; layer.block_size = _BIT(hdr.getLayerInfo()[i].block_size); if (i + 1 == hdr.getLayerInfo().size()) { data_layer = layer; } else { hash_layers.addElement(layer); } } // write data into metadata info.layered_intergrity_metadata.setAlignHashToBlock(true); info.layered_intergrity_metadata.setHashLayerInfo(hash_layers); info.layered_intergrity_metadata.setDataLayerInfo(data_layer); info.layered_intergrity_metadata.setMasterHashList(hdr.getMasterHashList()); } // create reader try { // filter out unrecognised format types switch (info.format_type) { case (nn::hac::nca::FORMAT_PFS0): case (nn::hac::nca::FORMAT_ROMFS): break; default: error.clear(); error << "FormatType(" << info.format_type << "): UNKNOWN"; throw fnd::Exception(kModuleName, error.str()); } // create reader based on encryption type0 if (info.enc_type == nn::hac::nca::CRYPT_NONE) { info.reader = new fnd::OffsetAdjustedIFile(mFile, info.offset, info.size); } else if (info.enc_type == nn::hac::nca::CRYPT_AESCTR) { if (mContentKey.aes_ctr.isSet == false) throw fnd::Exception(kModuleName, "AES-CTR Key was not determined"); info.reader = new fnd::OffsetAdjustedIFile(new fnd::AesCtrWrappedIFile(mFile, mContentKey.aes_ctr.var, info.aes_ctr), info.offset, info.size); } else if (info.enc_type == nn::hac::nca::CRYPT_AESXTS || info.enc_type == nn::hac::nca::CRYPT_AESCTREX) { error.clear(); error << "EncryptionType(" << getEncryptionTypeStr(info.enc_type) << "): UNSUPPORTED"; throw fnd::Exception(kModuleName, error.str()); } else { error.clear(); error << "EncryptionType(" << info.enc_type << "): UNKNOWN"; throw fnd::Exception(kModuleName, error.str()); } // filter out unrecognised hash types, and hash based readers if (info.hash_type == nn::hac::nca::HASH_HIERARCHICAL_SHA256 || info.hash_type == nn::hac::nca::HASH_HIERARCHICAL_INTERGRITY) { info.reader = new fnd::LayeredIntegrityWrappedIFile(info.reader, info.layered_intergrity_metadata); } else if (info.hash_type != nn::hac::nca::HASH_NONE) { error.clear(); error << "HashType(" << info.hash_type << "): UNKNOWN"; throw fnd::Exception(kModuleName, error.str()); } } catch (const fnd::Exception& e) { info.fail_reason = std::string(e.error()); } } } void NcaProcess::validateNcaSignatures() { // validate signature[0] fnd::rsa::sRsa2048Key sign0_key; mKeyCfg.getNcaHeader0SignKey(sign0_key); if (fnd::rsa::pss::rsaVerify(sign0_key, fnd::sha::HASH_SHA256, mHdrHash.bytes, mHdrBlock.signature_main) != 0) { std::cout << "[WARNING] NCA Header Main Signature: FAIL" << std::endl; } // validate signature[1] if (mHdr.getContentType() == nn::hac::nca::TYPE_PROGRAM) { if (mPartitions[nn::hac::nca::PARTITION_CODE].format_type == nn::hac::nca::FORMAT_PFS0) { if (*mPartitions[nn::hac::nca::PARTITION_CODE].reader != nullptr) { PfsProcess exefs; exefs.setInputFile(mPartitions[nn::hac::nca::PARTITION_CODE].reader); exefs.setCliOutputMode(0); exefs.process(); // open main.npdm if (exefs.getPfsHeader().getFileList().hasElement(kNpdmExefsPath) == true) { const nn::hac::PfsHeader::sFile& file = exefs.getPfsHeader().getFileList().getElement(kNpdmExefsPath); NpdmProcess npdm; npdm.setInputFile(new fnd::OffsetAdjustedIFile(mPartitions[nn::hac::nca::PARTITION_CODE].reader, file.offset, file.size)); npdm.setCliOutputMode(0); npdm.process(); if (fnd::rsa::pss::rsaVerify(npdm.getNpdmBinary().getAcid().getNcaHeaderSignature2Key(), fnd::sha::HASH_SHA256, mHdrHash.bytes, mHdrBlock.signature_acid) != 0) { std::cout << "[WARNING] NCA Header ACID Signature: FAIL" << std::endl; } } else { std::cout << "[WARNING] NCA Header ACID Signature: FAIL (\"" << kNpdmExefsPath << "\" not present in ExeFs)" << std::endl; } } else { std::cout << "[WARNING] NCA Header ACID Signature: FAIL (ExeFs unreadable)" << std::endl; } } else { std::cout << "[WARNING] NCA Header ACID Signature: FAIL (No ExeFs partition)" << std::endl; } } } void NcaProcess::displayHeader() { std::cout << "[NCA Header]" << std::endl; std::cout << " Format Type: " << getFormatVersionStr(mHdr.getFormatVersion()) << std::endl; std::cout << " Dist. Type: " << getDistributionTypeStr(mHdr.getDistributionType()) << std::endl; std::cout << " Content Type: " << getContentTypeStr(mHdr.getContentType()) << std::endl; std::cout << " Key Generation: " << std::dec << (uint32_t)mHdr.getKeyGeneration() << std::endl; std::cout << " Kaek Index: " << getKaekIndexStr((nn::hac::nca::KeyAreaEncryptionKeyIndex)mHdr.getKaekIndex()) << " (" << std::dec << (uint32_t)mHdr.getKaekIndex() << ")" << std::endl; std::cout << " Size: 0x" << std::hex << mHdr.getContentSize() << std::endl; std::cout << " ProgID: 0x" << std::hex << std::setw(16) << std::setfill('0') << mHdr.getProgramId() << std::endl; std::cout << " Content Index: " << std::dec << mHdr.getContentIndex() << std::endl; #define _SPLIT_VER(ver) std::dec << (uint32_t)((ver>>24) & 0xff) << "." << (uint32_t)((ver>>16) & 0xff) << "." << (uint32_t)((ver>>8) & 0xff) std::cout << " SdkAddon Ver.: v" << std::dec << mHdr.getSdkAddonVersion() << " (" << _SPLIT_VER(mHdr.getSdkAddonVersion()) << ")" << std::endl; #undef _SPLIT_VER if (mHdr.hasRightsId()) { std::cout << " RightsId: " << fnd::SimpleTextOutput::arrayToString(mHdr.getRightsId(), nn::hac::nca::kRightsIdLen, true, "") << std::endl; } if (mContentKey.kak_list.size() > 0 && _HAS_BIT(mCliOutputMode, OUTPUT_KEY_DATA)) { std::cout << " Key Area:" << std::endl; std::cout << " <--------------------------------------------------------------------------------------------------------->" << std::endl; std::cout << " | IDX | ENCRYPTED KEY | DECRYPTED KEY |" << std::endl; std::cout << " |-----|-------------------------------------------------|-------------------------------------------------|" << std::endl; for (size_t i = 0; i < mContentKey.kak_list.size(); i++) { std::cout << " | " << std::dec << std::setw(3) << std::setfill(' ') << (uint32_t)mContentKey.kak_list[i].index << " | "; std::cout << fnd::SimpleTextOutput::arrayToString(mContentKey.kak_list[i].enc.key, 16, true, ":") << " | "; if (mContentKey.kak_list[i].decrypted) std::cout << fnd::SimpleTextOutput::arrayToString(mContentKey.kak_list[i].dec.key, 16, true, ":"); else std::cout << " "; std::cout << " |" << std::endl; } std::cout << " <--------------------------------------------------------------------------------------------------------->" << std::endl; } if (_HAS_BIT(mCliOutputMode, OUTPUT_LAYOUT)) { std::cout << " Partitions:" << std::endl; for (size_t i = 0; i < mHdr.getPartitions().size(); i++) { size_t index = mHdr.getPartitions()[i].index; sPartitionInfo& info = mPartitions[index]; std::cout << " " << std::dec << index << ":" << std::endl; std::cout << " Offset: 0x" << std::hex << (uint64_t)info.offset << std::endl; std::cout << " Size: 0x" << std::hex << (uint64_t)info.size << std::endl; std::cout << " Format Type: " << getFormatTypeStr(info.format_type) << std::endl; std::cout << " Hash Type: " << getHashTypeStr(info.hash_type) << std::endl; std::cout << " Enc. Type: " << getEncryptionTypeStr(info.enc_type) << std::endl; if (info.enc_type == nn::hac::nca::CRYPT_AESCTR) { fnd::aes::sAesIvCtr ctr; fnd::aes::AesIncrementCounter(info.aes_ctr.iv, info.offset>>4, ctr.iv); std::cout << " AesCtr Counter:" << std::endl; std::cout << " " << fnd::SimpleTextOutput::arrayToString(ctr.iv, sizeof(fnd::aes::sAesIvCtr), true, ":") << std::endl; } if (info.hash_type == nn::hac::nca::HASH_HIERARCHICAL_INTERGRITY) { fnd::LayeredIntegrityMetadata& hash_hdr = info.layered_intergrity_metadata; std::cout << " HierarchicalIntegrity Header:" << std::endl; for (size_t j = 0; j < hash_hdr.getHashLayerInfo().size(); j++) { std::cout << " Hash Layer " << std::dec << j << ":" << std::endl; std::cout << " Offset: 0x" << std::hex << (uint64_t)hash_hdr.getHashLayerInfo()[j].offset << std::endl; std::cout << " Size: 0x" << std::hex << (uint64_t)hash_hdr.getHashLayerInfo()[j].size << std::endl; std::cout << " BlockSize: 0x" << std::hex << (uint32_t)hash_hdr.getHashLayerInfo()[j].block_size << std::endl; } std::cout << " Data Layer:" << std::endl; std::cout << " Offset: 0x" << std::hex << (uint64_t)hash_hdr.getDataLayer().offset << std::endl; std::cout << " Size: 0x" << std::hex << (uint64_t)hash_hdr.getDataLayer().size << std::endl; std::cout << " BlockSize: 0x" << std::hex << (uint32_t)hash_hdr.getDataLayer().block_size << std::endl; for (size_t j = 0; j < hash_hdr.getMasterHashList().size(); j++) { std::cout << " Master Hash " << std::dec << j << ":" << std::endl; std::cout << " " << fnd::SimpleTextOutput::arrayToString(hash_hdr.getMasterHashList()[j].bytes, 0x10, true, ":") << std::endl; std::cout << " " << fnd::SimpleTextOutput::arrayToString(hash_hdr.getMasterHashList()[j].bytes+0x10, 0x10, true, ":") << std::endl; } } else if (info.hash_type == nn::hac::nca::HASH_HIERARCHICAL_SHA256) { fnd::LayeredIntegrityMetadata& hash_hdr = info.layered_intergrity_metadata; std::cout << " HierarchicalSha256 Header:" << std::endl; std::cout << " Master Hash:" << std::endl; std::cout << " " << fnd::SimpleTextOutput::arrayToString(hash_hdr.getMasterHashList()[0].bytes, 0x10, true, ":") << std::endl; std::cout << " " << fnd::SimpleTextOutput::arrayToString(hash_hdr.getMasterHashList()[0].bytes+0x10, 0x10, true, ":") << std::endl; std::cout << " HashBlockSize: 0x" << std::hex << (uint32_t)hash_hdr.getDataLayer().block_size << std::endl; std::cout << " Hash Layer:" << std::endl; std::cout << " Offset: 0x" << std::hex << (uint64_t)hash_hdr.getHashLayerInfo()[0].offset << std::endl; std::cout << " Size: 0x" << std::hex << (uint64_t)hash_hdr.getHashLayerInfo()[0].size << std::endl; std::cout << " Data Layer:" << std::endl; std::cout << " Offset: 0x" << std::hex << (uint64_t)hash_hdr.getDataLayer().offset << std::endl; std::cout << " Size: 0x" << std::hex << (uint64_t)hash_hdr.getDataLayer().size << std::endl; } } } } void NcaProcess::processPartitions() { for (size_t i = 0; i < mHdr.getPartitions().size(); i++) { size_t index = mHdr.getPartitions()[i].index; struct sPartitionInfo& partition = mPartitions[index]; // if the reader is null, skip if (*partition.reader == nullptr) { std::cout << "[WARNING] NCA Partition " << std::dec << index << " not readable."; if (partition.fail_reason.empty() == false) { std::cout << " (" << partition.fail_reason << ")"; } std::cout << std::endl; continue; } if (partition.format_type == nn::hac::nca::FORMAT_PFS0) { PfsProcess pfs; pfs.setInputFile(partition.reader); pfs.setCliOutputMode(mCliOutputMode); pfs.setListFs(mListFs); if (mHdr.getContentType() == nn::hac::nca::TYPE_PROGRAM) { pfs.setMountPointName(std::string(getContentTypeForMountStr(mHdr.getContentType())) + ":/" + std::string(getProgramPartitionNameStr(index))); } else { pfs.setMountPointName(std::string(getContentTypeForMountStr(mHdr.getContentType())) + ":/"); } if (mPartitionPath[index].doExtract) pfs.setExtractPath(mPartitionPath[index].path); pfs.process(); } else if (partition.format_type == nn::hac::nca::FORMAT_ROMFS) { RomfsProcess romfs; romfs.setInputFile(partition.reader); romfs.setCliOutputMode(mCliOutputMode); romfs.setListFs(mListFs); if (mHdr.getContentType() == nn::hac::nca::TYPE_PROGRAM) { romfs.setMountPointName(std::string(getContentTypeForMountStr(mHdr.getContentType())) + ":/" + std::string(getProgramPartitionNameStr(index))); } else { romfs.setMountPointName(std::string(getContentTypeForMountStr(mHdr.getContentType())) + ":/"); } if (mPartitionPath[index].doExtract) romfs.setExtractPath(mPartitionPath[index].path); romfs.process(); } } } const char* NcaProcess::getFormatVersionStr(nn::hac::NcaHeader::FormatVersion format_ver) const { const char* str = nullptr; switch (format_ver) { case (nn::hac::NcaHeader::NCA2_FORMAT): str = "NCA2"; break; case (nn::hac::NcaHeader::NCA3_FORMAT): str = "NCA3"; break; default: str = "Unknown"; break; } return str; } const char* NcaProcess::getDistributionTypeStr(nn::hac::nca::DistributionType dist_type) const { const char* str = nullptr; switch (dist_type) { case (nn::hac::nca::DIST_DOWNLOAD): str = "Download"; break; case (nn::hac::nca::DIST_GAME_CARD): str = "Game Card"; break; default: str = "Unknown"; break; } return str; } const char* NcaProcess::getContentTypeStr(nn::hac::nca::ContentType cont_type) const { const char* str = nullptr; switch (cont_type) { case (nn::hac::nca::TYPE_PROGRAM): str = "Program"; break; case (nn::hac::nca::TYPE_META): str = "Meta"; break; case (nn::hac::nca::TYPE_CONTROL): str = "Control"; break; case (nn::hac::nca::TYPE_MANUAL): str = "Manual"; break; case (nn::hac::nca::TYPE_DATA): str = "Data"; break; case (nn::hac::nca::TYPE_PUBLIC_DATA): str = "PublicData"; break; default: str = "Unknown"; break; } return str; } const char* NcaProcess::getEncryptionTypeStr(nn::hac::nca::EncryptionType enc_type) const { const char* str = nullptr; switch (enc_type) { case (nn::hac::nca::CRYPT_AUTO): str = "Auto"; break; case (nn::hac::nca::CRYPT_NONE): str = "None"; break; case (nn::hac::nca::CRYPT_AESXTS): str = "AesXts"; break; case (nn::hac::nca::CRYPT_AESCTR): str = "AesCtr"; break; case (nn::hac::nca::CRYPT_AESCTREX): str = "AesCtrEx"; break; default: str = "Unknown"; break; } return str; } const char* NcaProcess::getHashTypeStr(nn::hac::nca::HashType hash_type) const { const char* str = nullptr; switch (hash_type) { case (nn::hac::nca::HASH_AUTO): str = "Auto"; break; case (nn::hac::nca::HASH_NONE): str = "None"; break; case (nn::hac::nca::HASH_HIERARCHICAL_SHA256): str = "HierarchicalSha256"; break; case (nn::hac::nca::HASH_HIERARCHICAL_INTERGRITY): str = "HierarchicalIntegrity"; break; default: str = "Unknown"; break; } return str; } const char* NcaProcess::getFormatTypeStr(nn::hac::nca::FormatType format_type) const { const char* str = nullptr; switch (format_type) { case (nn::hac::nca::FORMAT_ROMFS): str = "RomFs"; break; case (nn::hac::nca::FORMAT_PFS0): str = "PartitionFs"; break; default: str = "Unknown"; break; } return str; } const char* NcaProcess::getKaekIndexStr(nn::hac::nca::KeyAreaEncryptionKeyIndex keak_index) const { const char* str = nullptr; switch (keak_index) { case (nn::hac::nca::KAEK_IDX_APPLICATION): str = "Application"; break; case (nn::hac::nca::KAEK_IDX_OCEAN): str = "Ocean"; break; case (nn::hac::nca::KAEK_IDX_SYSTEM): str = "System"; break; default: str = "Unknown"; break; } return str; } const char* NcaProcess::getContentTypeForMountStr(nn::hac::nca::ContentType cont_type) const { const char* str = nullptr; switch (cont_type) { case (nn::hac::nca::TYPE_PROGRAM): str = "program"; break; case (nn::hac::nca::TYPE_META): str = "meta"; break; case (nn::hac::nca::TYPE_CONTROL): str = "control"; break; case (nn::hac::nca::TYPE_MANUAL): str = "manual"; break; case (nn::hac::nca::TYPE_DATA): str = "data"; break; case (nn::hac::nca::TYPE_PUBLIC_DATA): str = "publicData"; break; default: str = ""; break; } return str; } const char* NcaProcess::getProgramPartitionNameStr(size_t i) const { const char* str = nullptr; switch (i) { case (nn::hac::nca::PARTITION_CODE): str = "code"; break; case (nn::hac::nca::PARTITION_DATA): str = "data"; break; case (nn::hac::nca::PARTITION_LOGO): str = "logo"; break; default: str = ""; break; } return str; }