diff --git a/tests/OpenTK.Tests/Assertions.fs b/tests/OpenTK.Tests/Assertions.fs index a322b4cd..8b7a292c 100644 --- a/tests/OpenTK.Tests/Assertions.fs +++ b/tests/OpenTK.Tests/Assertions.fs @@ -7,25 +7,25 @@ open System open OpenTK [] -module private AssertHelpers = +module private AssertHelpers = [] let private BitAccuracy = 6 - + let approxEq a b = MathHelper.ApproximatelyEqual(a,b,BitAccuracy) /// We use a full type here instead of a module, as the overloading semantics are more suitable for our desired goal. [] -type internal Assert = - - static member ApproximatelyEqual(a : Vector2,b : Vector2) = +type internal Assert = + + static member ApproximatelyEqual(a : Vector2,b : Vector2) = if not <| approxEq a.X b.X && approxEq a.Y b.Y then raise <| new Xunit.Sdk.EqualException(a,b) - - static member ApproximatelyEqual(a : Vector3,b : Vector3) = + + static member ApproximatelyEqual(a : Vector3,b : Vector3) = if not <| approxEq a.X b.X && approxEq a.Y b.Y && approxEq a.Z b.Z then raise <| new Xunit.Sdk.EqualException(a,b) - - static member ApproximatelyEqual(a : Vector4,b : Vector4) = - if not <| approxEq a.X b.X && approxEq a.Y b.Y && approxEq a.Z b.Z && approxEq a.W b.W then + + static member ApproximatelyEqual(a : Vector4,b : Vector4) = + if not <| approxEq a.X b.X && approxEq a.Y b.Y && approxEq a.Z b.Z && approxEq a.W b.W then raise <| new Xunit.Sdk.EqualException(a,b) - - static member ApproximatelyEqual(a : float32,b : float32) = + + static member ApproximatelyEqual(a : float32,b : float32) = if not <| approxEq a b then raise <| new Xunit.Sdk.EqualException(a,b) diff --git a/tests/OpenTK.Tests/Generators.fs b/tests/OpenTK.Tests/Generators.fs index a57424f8..e7496c44 100644 --- a/tests/OpenTK.Tests/Generators.fs +++ b/tests/OpenTK.Tests/Generators.fs @@ -7,62 +7,62 @@ open System open OpenTK [] -module private Generators = +module private Generators = let private isValidFloat f = not (Single.IsNaN f || Single.IsInfinity f || Single.IsInfinity (f * f) || f = Single.MinValue || f = Single.MaxValue ) let private isValidDouble d = not (Double.IsNaN d || Double.IsInfinity d || Double.IsInfinity (d * d)|| d = Double.MinValue || d = Double.MaxValue) let singleArb = Arb.Default.Float32() |> Arb.toGen |> Gen.filter isValidFloat let single = singleArb |> Arb.fromGen - - let double = + + let double = Arb.Default.Float() |> Arb.toGen |> Gen.filter isValidDouble |> Arb.fromGen - - let vec2 = + + let vec2 = singleArb |> Gen.two |> Gen.map Vector2 |> Arb.fromGen - - let vec3 = + + let vec3 = singleArb |> Gen.three |> Gen.map Vector3 |> Arb.fromGen - - let vec4 = + + let vec4 = singleArb |> Gen.four |> Gen.map Vector4 |> Arb.fromGen - - let quat = + + let quat = singleArb |> Gen.four |> Gen.map Quaternion |> Arb.fromGen - - let mat2 = + + let mat2 = singleArb |> Gen.four |> Gen.map Matrix2 |> Arb.fromGen - - let mat3 = + + let mat3 = vec3 |> Arb.toGen |> Gen.three |> Gen.map Matrix3 |> Arb.fromGen - - let mat4 = + + let mat4 = vec4 |> Arb.toGen |> Gen.four |> Gen.map Matrix4 |> Arb.fromGen -type OpenTKGen = +type OpenTKGen = static member Single() = single static member float32() = single static member Double() = double diff --git a/tests/OpenTK.Tests/MathHelperTests.fs b/tests/OpenTK.Tests/MathHelperTests.fs index 7c37a25f..e1270176 100644 --- a/tests/OpenTK.Tests/MathHelperTests.fs +++ b/tests/OpenTK.Tests/MathHelperTests.fs @@ -7,48 +7,48 @@ open System open OpenTK [ |])>] -module MathHelper = +module MathHelper = /// This test ensures that approximately equal can never get it 'wrong' about the values. [] - let ``ApproximatelyEqual is never incorrect`` (a : float32,b : float32,bits : int32) = + let ``ApproximatelyEqual is never incorrect`` (a : float32,b : float32,bits : int32) = let clamped = max 0 (min bits 24) let areApproxEqual = MathHelper.ApproximatelyEqual(a,b,clamped) let areExactlyEqual = a = b let isWrong = areExactlyEqual && not areApproxEqual Assert.False(isWrong) - + [] - let ``ApproximatelyEqual can return true if some values are not exactly equal`` (a : float32,b : float32,bits : int32) = + let ``ApproximatelyEqual can return true if some values are not exactly equal`` (a : float32,b : float32,bits : int32) = let clamped = max 0 (min bits 24) let areApproxEqual = MathHelper.ApproximatelyEqual(a,b,clamped) let areExactlyEqual = a = b let isWrong = areExactlyEqual && not areApproxEqual let p = new PropertyAttribute() Assert.False(isWrong) - + [] - let ``ApproximatelyEqual correctly approximates equality``() = + let ``ApproximatelyEqual correctly approximates equality``() = let a = 0.000000001f let b = 0.0000000010000001f Assert.NotEqual(a,b) [ 1..24 ] |> List.iter (fun i -> Assert.True(MathHelper.ApproximatelyEqual(a,b,i))) - + [] - let ``ApproximatelyEqual reports very different values as non-equal even with high bit count``() = + let ``ApproximatelyEqual reports very different values as non-equal even with high bit count``() = let a = 2.0f let b = 1.0f Assert.NotEqual(a,b) Assert.False(MathHelper.ApproximatelyEqual(a,b,10)) - + [] - let ``ApproximatelyEqual works with single zero value``() = + let ``ApproximatelyEqual works with single zero value``() = let a = 1.0f let b = 0.0f Assert.NotEqual(a,b) Assert.False(MathHelper.ApproximatelyEqual(a,b,0)) - + [] - let ``ApproximatelyEqual works with both zero values``() = + let ``ApproximatelyEqual works with both zero values``() = let a = 0.0f let b = 0.0f Assert.Equal(a,b) diff --git a/tests/OpenTK.Tests/Matrix4Tests.fs b/tests/OpenTK.Tests/Matrix4Tests.fs index 5a589d64..52b5d6b1 100644 --- a/tests/OpenTK.Tests/Matrix4Tests.fs +++ b/tests/OpenTK.Tests/Matrix4Tests.fs @@ -6,14 +6,14 @@ open FsCheck.Xunit open System open OpenTK -module Matrix4 = +module Matrix4 = [ |])>] - module Constructors = + module Constructors = // [] - let ``Sixteen value constructor sets all components to the correct values`` (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) = + let ``Sixteen value constructor sets all components to the correct values`` (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) = let A = Matrix4(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) - + Assert.Equal(a, A.M11) Assert.Equal(b, A.M12) Assert.Equal(c, A.M13) @@ -33,12 +33,12 @@ module Matrix4 = Assert.Equal(n, A.M42) Assert.Equal(o, A.M43) Assert.Equal(p, A.M44) - + [] - let ``Matrix3 partial constructor sets all components to the correct values`` (a, b, c, d, e, f, g, h, i) = + let ``Matrix3 partial constructor sets all components to the correct values`` (a, b, c, d, e, f, g, h, i) = let B = Matrix3(a, b, c, d, e, f, g, h, i) let A = Matrix4(B) - + Assert.Equal(a, A.M11) Assert.Equal(b, A.M12) Assert.Equal(c, A.M13) @@ -58,16 +58,16 @@ module Matrix4 = Assert.Equal((float32)0, A.M42) Assert.Equal((float32)0, A.M43) Assert.Equal((float32)1, A.M44) - + [] - let ``Four-vector4 constructor sets all components to the correct values`` (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) = + let ``Four-vector4 constructor sets all components to the correct values`` (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) = let v1 = Vector4(a, b, c, d) let v2 = Vector4(e, f, g, h) let v3 = Vector4(i, j, k, l) let v4 = Vector4(m, n, o, p) - + let A = Matrix4(v1, v2, v3, v4) - + Assert.Equal(a, A.M11) Assert.Equal(b, A.M12) Assert.Equal(c, A.M13) @@ -87,52 +87,52 @@ module Matrix4 = Assert.Equal(n, A.M42) Assert.Equal(o, A.M43) Assert.Equal(p, A.M44) - + [ |])>] - module Equality = + module Equality = // [] let ``Two matrices with identical values are equal`` (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) = let A = Matrix4(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) let B = Matrix4(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) let equality = A = B - + Assert.True(equality) - + [] let ``A matrix is not equal to an object which is not a matrix`` (a : Matrix4, b : Vector3) = Assert.False(a.Equals(b)) [ |])>] - module Multiplication = + module Multiplication = // [] let ``Matrix multiplication is done by row/column multiplication and summation`` (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) = let A = Matrix4(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) let B = Matrix4(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) - + let R11 = a*a + b*e + c*i + d*m let R12 = a*b + b*f + c*j + d*n let R13 = a*c + b*g + c*k + d*o let R14 = a*d + b*h + c*l + d*p - + let R21 = e*a + f*e + g*i + h*m let R22 = e*b + f*f + g*j + h*n let R23 = e*c + f*g + g*k + h*o let R24 = e*d + f*h + g*l + h*p - + let R31 = i*a + j*e + k*i + l*m let R32 = i*b + j*f + k*j + l*n let R33 = i*c + j*g + k*k + l*o let R34 = i*d + j*h + k*l + l*p - + let R41 = m*a + n*e + o*i + p*m let R42 = m*b + n*f + o*j + p*n let R43 = m*c + n*g + o*k + p*o let R44 = m*d + n*h + o*l + p*p - + let AB = A*B - + Assert.Equal(R11, AB.M11) Assert.Equal(R12, AB.M12) Assert.Equal(R13, AB.M13) @@ -152,66 +152,66 @@ module Matrix4 = Assert.Equal(R42, AB.M42) Assert.Equal(R43, AB.M43) Assert.Equal(R44, AB.M44) - + [] let ``Matrix multiplication by scalar is the same as row multiplication by scalar`` (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, scalar : float32) = let A = Matrix4(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) - + let R1 = Vector4(a, b, c, d) * scalar let R2 = Vector4(e, f, g, h) * scalar let R3 = Vector4(i, j, k, l) * scalar let R4 = Vector4(m, n, o, p) * scalar - + let AScaled = A * scalar - + Assert.Equal(R1, AScaled.Row0) Assert.Equal(R2, AScaled.Row1) Assert.Equal(R3, AScaled.Row2) Assert.Equal(R4, AScaled.Row3) - + [] let ``Static method matrix multiplication by scalar is the same as row multiplication by scalar`` (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, scalar : float32) = let A = Matrix4(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) - + let R1 = Vector4(a, b, c, d) * scalar let R2 = Vector4(e, f, g, h) * scalar let R3 = Vector4(i, j, k, l) * scalar let R4 = Vector4(m, n, o, p) * scalar - + let AScaled = Matrix4.Mult(A, scalar) - + Assert.Equal(R1, AScaled.Row0) Assert.Equal(R2, AScaled.Row1) Assert.Equal(R3, AScaled.Row2) Assert.Equal(R4, AScaled.Row3) - + [] let ``Static method matrix multiplication by reference by scalar is the same as row multiplication by scalar`` (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, scalar : float32) = let A = Matrix4(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) - + let R1 = Vector4(a, b, c, d) * scalar let R2 = Vector4(e, f, g, h) * scalar let R3 = Vector4(i, j, k, l) * scalar let R4 = Vector4(m, n, o, p) * scalar - + let AScaled = Matrix4.Mult(ref A, scalar) - + Assert.Equal(R1, AScaled.Row0) Assert.Equal(R2, AScaled.Row1) Assert.Equal(R3, AScaled.Row2) Assert.Equal(R4, AScaled.Row3) - - + + [ |])>] - module Addition = + module Addition = // [] let ``Matrix addition adds corresponding components`` (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) = let A = Matrix4(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) let B = Matrix4(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) - + let sum = A + B - + Assert.Equal(a + a, sum.M11) Assert.Equal(b + b, sum.M12) Assert.Equal(c + c, sum.M13) @@ -231,17 +231,17 @@ module Matrix4 = Assert.Equal(n + n, sum.M42) Assert.Equal(o + o, sum.M43) Assert.Equal(p + p, sum.M44) - + [ |])>] - module Subtraction = + module Subtraction = // [] let ``Matrix subtraction subtracts corresponding components`` (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) = let A = Matrix4(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) let B = Matrix4(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) - + let sub = A - B - + Assert.Equal(a - a, sub.M11) Assert.Equal(b - b, sub.M12) Assert.Equal(c - c, sub.M13) @@ -261,34 +261,34 @@ module Matrix4 = Assert.Equal(n - n, sub.M42) Assert.Equal(o - o, sub.M43) Assert.Equal(p - p, sub.M44) - + [ |])>] - module Indexing = + module Indexing = // [] let ``Matrix set indexing sets correct components`` (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) = let mutable A = Matrix4() - + A.[0, 0] <- a A.[0, 1] <- b A.[0, 2] <- c A.[0, 3] <- d - + A.[1, 0] <- e A.[1, 1] <- f A.[1, 2] <- g A.[1, 3] <- h - + A.[2, 0] <- i A.[2, 1] <- j A.[2, 2] <- k A.[2, 3] <- l - + A.[3, 0] <- m A.[3, 1] <- n A.[3, 2] <- o A.[3, 3] <- p - + Assert.Equal(a, A.M11) Assert.Equal(b, A.M12) Assert.Equal(c, A.M13) @@ -308,11 +308,11 @@ module Matrix4 = Assert.Equal(n, A.M42) Assert.Equal(o, A.M43) Assert.Equal(p, A.M44) - + [] let ``Matrix get indexing accesses the correct components`` (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) = let A = Matrix4(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) - + Assert.Equal(a, A.[0, 0]) Assert.Equal(b, A.[0, 1]) Assert.Equal(c, A.[0, 2]) @@ -341,7 +341,7 @@ module Matrix4 = (fun() -> a.[-1, -2] <- x) |> Assert.Throws |> ignore [] - let ``Indexed get operator throws exception for negative indices`` (a : Matrix4) = + let ``Indexed get operator throws exception for negative indices`` (a : Matrix4) = (fun() -> a.[-1, 2] |> ignore) |> Assert.Throws |> ignore (fun() -> a.[1, -2] |> ignore) |> Assert.Throws |> ignore (fun() -> a.[-1, -2] |> ignore) |> Assert.Throws |> ignore @@ -352,25 +352,25 @@ module Matrix4 = (fun() -> b.[5, 2] <- x) |> Assert.Throws |> ignore (fun() -> b.[1, 6] <- x) |> Assert.Throws |> ignore (fun() -> b.[7, 12] <- x) |> Assert.Throws |> ignore - + [] - let ``Indexed get operator throws exception for large indices`` (a : Matrix4) = + let ``Indexed get operator throws exception for large indices`` (a : Matrix4) = (fun() -> a.[5, 2] |> ignore) |> Assert.Throws |> ignore (fun() -> a.[1, 6] |> ignore) |> Assert.Throws |> ignore (fun() -> a.[7, 12] |> ignore) |> Assert.Throws |> ignore - + [ |])>] - module ``Row and column properties`` = + module ``Row and column properties`` = // [] let ``Matrix row properties return the correct components`` (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) = let A = Matrix4(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) - + let R0 = A.Row0 let R1 = A.Row1 let R2 = A.Row2 let R3 = A.Row3 - + Assert.Equal(a, R0.X) Assert.Equal(b, R0.Y) Assert.Equal(c, R0.Z) diff --git a/tests/OpenTK.Tests/Vector2Tests.fs b/tests/OpenTK.Tests/Vector2Tests.fs index 3a3c3bd6..adb4ab70 100644 --- a/tests/OpenTK.Tests/Vector2Tests.fs +++ b/tests/OpenTK.Tests/Vector2Tests.fs @@ -7,18 +7,18 @@ open System open System.Runtime.InteropServices open OpenTK -module Vector2 = +module Vector2 = [ |])>] - module Constructors = + module Constructors = // [] - let ``Single value constructor sets all components to the same value`` (f : float32) = + let ``Single value constructor sets all components to the same value`` (f : float32) = let v = Vector2(f) Assert.Equal(f,v.X) Assert.Equal(f,v.Y) - + [] - let ``Two value constructor sets all components correctly`` (x,y) = + let ``Two value constructor sets all components correctly`` (x,y) = let v = Vector2(x,y) Assert.Equal(x,v.X) Assert.Equal(y,v.Y) @@ -29,269 +29,269 @@ module Vector2 = [] let ``Clamping one vector between two other vectors clamps all components between corresponding components`` (a : Vector2, b : Vector2, w : Vector2) = let res = Vector2.Clamp(w, a, b) - + let expX = if w.X < a.X then a.X else if w.X > b.X then b.X else w.X let expY = if w.Y < a.Y then a.Y else if w.Y > b.Y then b.Y else w.Y - + Assert.Equal(expX, res.X) Assert.Equal(expY, res.Y) - + [] let ``Clamping one vector between two other vectors by reference clamps all components`` (a : Vector2, b : Vector2, w : Vector2) = let res = Vector2.Clamp(ref w, ref a, ref b) - + let expX = if w.X < a.X then a.X else if w.X > b.X then b.X else w.X let expY = if w.Y < a.Y then a.Y else if w.Y > b.Y then b.Y else w.Y - + Assert.Equal(expX, res.X) Assert.Equal(expY, res.Y) - + [ |])>] - module Length = + module Length = // [] - let ``Length is always >= 0`` (a : Vector2) = + let ``Length is always >= 0`` (a : Vector2) = // Assert.True(a.Length >= 0.0f) - + [] - let ``Length follows the pythagorean theorem`` (a, b) = + let ``Length follows the pythagorean theorem`` (a, b) = let v = Vector2(a, b) let l = System.Math.Sqrt((float)(a * a + b * b)) - + Assert.Equal((float32)l, v.Length) - + [] - let ``Fast length method works`` (a, b) = + let ``Fast length method works`` (a, b) = let v = Vector2(a, b) let l = 1.0f / MathHelper.InverseSqrtFast(a * a + b * b) - + Assert.Equal(l, v.LengthFast) - + [] - let ``Length squared method works`` (a, b) = + let ``Length squared method works`` (a, b) = let v = Vector2(a, b) let lsq = a * a + b * b - + Assert.Equal(lsq, v.LengthSquared) - + [ |])>] - module ``Unit vectors and perpendicularity`` = + module ``Unit vectors and perpendicularity`` = // [] - let ``Perpendicular vector to the right is correct`` (a, b) = + let ``Perpendicular vector to the right is correct`` (a, b) = let v = Vector2(a, b) let perp = Vector2(b, -a) - + Assert.Equal(perp, v.PerpendicularRight) - + [] - let ``Perpendicular vector to the left is correct`` (a, b) = + let ``Perpendicular vector to the left is correct`` (a, b) = let v = Vector2(a, b) let perp = Vector2(-b, a) - + Assert.Equal(perp, v.PerpendicularLeft) - + [ |])>] - module Indexing = + module Indexing = // [] - let ``Index operator accesses the correct components`` (x, y) = + let ``Index operator accesses the correct components`` (x, y) = let v = Vector2(x, y) - + Assert.Equal(x, v.[0]) Assert.Equal(y, v.[1]) - + [] - let ``Indexed set operator throws exception for negative indices`` (x, y) = + let ``Indexed set operator throws exception for negative indices`` (x, y) = let mutable v = Vector2(x, y) (fun() -> v.[-1] <- x) |> Assert.Throws |> ignore [] - let ``Indexed get operator throws exception for negative indices`` (x, y) = + let ``Indexed get operator throws exception for negative indices`` (x, y) = let mutable v = Vector2(x, y) (fun() -> v.[-1] |> ignore) |> Assert.Throws |> ignore [] - let ``Indexed set operator throws exception for large indices`` (x, y) = + let ``Indexed set operator throws exception for large indices`` (x, y) = let mutable v = Vector2(x, y) - + (fun() -> v.[2] <- x) |> Assert.Throws |> ignore - + [] - let ``Indexed get operator throws exception for large indices`` (x, y) = + let ``Indexed get operator throws exception for large indices`` (x, y) = let mutable v = Vector2(x, y) - + (fun() -> v.[2] |> ignore) |> Assert.Throws |> ignore - + [ |])>] - module ``Simple Properties`` = + module ``Simple Properties`` = // [] - let ``Vector equality is by component`` (a : Vector2,b : Vector2) = + let ``Vector equality is by component`` (a : Vector2,b : Vector2) = // Assert.Equal((a.X = b.X && a.Y = b.Y),(a = b)) - + [] - let ``Vector length is always >= 0`` (a : Vector2) = + let ``Vector length is always >= 0`` (a : Vector2) = // Assert.True(a.Length >= 0.0f) - + [ |])>] - module Addition = + module Addition = // [] - let ``Vector addition is the same as component addition`` (a : Vector2,b : Vector2) = + let ``Vector addition is the same as component addition`` (a : Vector2,b : Vector2) = let c = a + b Assert.ApproximatelyEqual(a.X + b.X,c.X) Assert.ApproximatelyEqual(a.Y + b.Y,c.Y) - + [] - let ``Vector addition is commutative`` (a : Vector2,b : Vector2) = + let ``Vector addition is commutative`` (a : Vector2,b : Vector2) = let c = a + b let c2 = b + a Assert.ApproximatelyEqual(c,c2) - + [] - let ``Vector addition is associative`` (a : Vector2,b : Vector2,c : Vector2) = + let ``Vector addition is associative`` (a : Vector2,b : Vector2,c : Vector2) = let r1 = (a + b) + c let r2 = a + (b + c) Assert.ApproximatelyEqual(r1,r2) - + [] - let ``Static Vector2 addition method is the same as component addition`` (a : Vector2, b : Vector2) = - + let ``Static Vector2 addition method is the same as component addition`` (a : Vector2, b : Vector2) = + let v1 = Vector2(a.X + b.X, a.Y + b.Y) let sum = Vector2.Add(a, b) - + Assert.ApproximatelyEqual(v1, sum) - + [] - let ``Static Vector2 addition method by reference is the same as component addition`` (a : Vector2, b : Vector2) = - + let ``Static Vector2 addition method by reference is the same as component addition`` (a : Vector2, b : Vector2) = + let v1 = Vector2(a.X + b.X, a.Y + b.Y) let sum = Vector2.Add(ref a, ref b) - + Assert.ApproximatelyEqual(v1, sum) - + [ |])>] - module Multiplication = + module Multiplication = // [] - let ``Vector2 multiplication is the same as component multiplication`` (a : Vector2, b : Vector2) = + let ``Vector2 multiplication is the same as component multiplication`` (a : Vector2, b : Vector2) = let c = a * b Assert.Equal(a.X * b.X,c.X) Assert.Equal(a.Y * b.Y,c.Y) - + [] - let ``Vector2 multiplication is commutative`` (a : Vector2, b : Vector2) = + let ``Vector2 multiplication is commutative`` (a : Vector2, b : Vector2) = let r1 = a * b let r2 = b * a Assert.Equal(r1,r2) - + [] - let ``Left-handed Vector2-scalar multiplication is the same as component-scalar multiplication`` (a : Vector2, f : float32) = + let ``Left-handed Vector2-scalar multiplication is the same as component-scalar multiplication`` (a : Vector2, f : float32) = let r = a * f - + Assert.Equal(a.X * f,r.X) Assert.Equal(a.Y * f,r.Y) - + [] - let ``Right-handed Vector2-scalar multiplication is the same as component-scalar multiplication`` (a : Vector2, f : float32) = + let ``Right-handed Vector2-scalar multiplication is the same as component-scalar multiplication`` (a : Vector2, f : float32) = let r = f * a Assert.Equal(a.X * f,r.X) Assert.Equal(a.Y * f,r.Y) - + [] - let ``Static Vector2 multiplication method is the same as component multiplication`` (a : Vector2, b : Vector2) = - + let ``Static Vector2 multiplication method is the same as component multiplication`` (a : Vector2, b : Vector2) = + let v1 = Vector2(a.X * b.X, a.Y * b.Y) let sum = Vector2.Multiply(a, b) - + Assert.ApproximatelyEqual(v1, sum) - + [] - let ``Static Vector2 multiplication method by reference is the same as component multiplication`` (a : Vector2, b : Vector2) = - + let ``Static Vector2 multiplication method by reference is the same as component multiplication`` (a : Vector2, b : Vector2) = + let v1 = Vector2(a.X * b.X, a.Y * b.Y) let sum = Vector2.Multiply(ref a, ref b) - + Assert.ApproximatelyEqual(v1, sum) - + [] - let ``Static method Vector2-scalar multiplication is the same as component-scalar multiplication`` (a : Vector2, f : float32) = + let ``Static method Vector2-scalar multiplication is the same as component-scalar multiplication`` (a : Vector2, f : float32) = let r = Vector2.Multiply(a, f) - + Assert.Equal(a.X * f,r.X) Assert.Equal(a.Y * f,r.Y) - + [ |])>] - module Subtraction = + module Subtraction = // [] - let ``Vector2 subtraction is the same as component subtraction`` (a : Vector2, b : Vector2) = + let ``Vector2 subtraction is the same as component subtraction`` (a : Vector2, b : Vector2) = let c = a - b Assert.Equal(a.X - b.X,c.X) Assert.Equal(a.Y - b.Y,c.Y) - + [] - let ``Static Vector2 subtraction method is the same as component addition`` (a : Vector2, b : Vector2) = - + let ``Static Vector2 subtraction method is the same as component addition`` (a : Vector2, b : Vector2) = + let v1 = Vector2(a.X - b.X, a.Y - b.Y) let sum = Vector2.Subtract(a, b) - + Assert.ApproximatelyEqual(v1, sum) - + [] - let ``Static Vector2 subtraction method by reference is the same as component addition`` (a : Vector2, b : Vector2) = - + let ``Static Vector2 subtraction method by reference is the same as component addition`` (a : Vector2, b : Vector2) = + let v1 = Vector2(a.X - b.X, a.Y - b.Y) let sum = Vector2.Subtract(ref a, ref b) - + Assert.ApproximatelyEqual(v1, sum) - + [ |])>] - module Division = + module Division = // [] - let ``Vector2-float division is the same as component-float division`` (a : Vector2, f : float32) = + let ``Vector2-float division is the same as component-float division`` (a : Vector2, f : float32) = let r = a / f - + Assert.ApproximatelyEqual(a.X / f,r.X) Assert.ApproximatelyEqual(a.Y / f,r.Y) - + [] - let ``Static Vector2-Vector2 division method is the same as component division`` (a : Vector2, b : Vector2) = - + let ``Static Vector2-Vector2 division method is the same as component division`` (a : Vector2, b : Vector2) = + let v1 = Vector2(a.X / b.X, a.Y / b.Y) let sum = Vector2.Divide(a, b) - + Assert.ApproximatelyEqual(v1, sum) - + [] - let ``Static Vector2-Vector2 divison method by reference `` (a : Vector2, b : Vector2) = - + let ``Static Vector2-Vector2 divison method by reference `` (a : Vector2, b : Vector2) = + let v1 = Vector2(a.X / b.X, a.Y / b.Y) let sum = Vector2.Divide(ref a, ref b) - + Assert.ApproximatelyEqual(v1, sum) - + [] - let ``Static Vector2-scalar division method is the same as component division`` (a : Vector2, b : float32) = - + let ``Static Vector2-scalar division method is the same as component division`` (a : Vector2, b : float32) = + let v1 = Vector2(a.X / b, a.Y / b) let sum = Vector2.Divide(a, b) - + Assert.ApproximatelyEqual(v1, sum) - + [] - let ``Static Vector2-scalar divison method by reference is the same as component division`` (a : Vector2, b : float32) = - + let ``Static Vector2-scalar divison method by reference is the same as component division`` (a : Vector2, b : float32) = + let v1 = Vector2(a.X / b, a.Y / b) let sum = Vector2.Divide(ref a, b) - + Assert.ApproximatelyEqual(v1, sum) [ |])>] @@ -303,7 +303,7 @@ module Vector2 = let vNeg = -v Assert.Equal(-x, vNeg.X) Assert.Equal(-y, vNeg.Y) - + [ |])>] module Equality = // @@ -312,29 +312,29 @@ module Vector2 = let v1 = Vector2(x, y) let v2 = Vector2(x, y) let equality = v1 = v2 - + Assert.True(equality) - + [] let ``Vector inequality operator is by component`` (x, y) = let v1 = Vector2(x, y) let v2 = Vector2(x + (float32)1 , y + (float32)1) let inequality = v1 <> v2 - + Assert.True(inequality) - + [] let ``Vector equality method is by component`` (x, y) = let v1 = Vector2(x, y) let v2 = Vector2(x, y) let notVector = Matrix2() - + let equality = v1.Equals(v2) let inequalityByOtherType = v1.Equals(notVector) - + Assert.True(equality) Assert.False(inequalityByOtherType) - + [ |])>] module Swizzling = // @@ -342,7 +342,7 @@ module Vector2 = let ``Vector swizzling returns the correct composites`` (x, y) = let v1 = Vector2(x, y) let v2 = Vector2(y, x) - + let v1yx = v1.Yx; Assert.Equal(v2, v1yx); @@ -353,76 +353,76 @@ module Vector2 = let ``Linear interpolation is by component`` (a : Vector2, b : Vector2, q) = let blend = q - - let rX = blend * (b.X - a.X) + a.X + + let rX = blend * (b.X - a.X) + a.X let rY = blend * (b.Y - a.Y) + a.Y let vExp = Vector2(rX, rY) - + Assert.Equal(vExp, Vector2.Lerp(a, b, q)) - + let vRes = Vector2.Lerp(ref a, ref b, q) Assert.Equal(vExp, vRes) - + [] let ``Barycentric interpolation follows the barycentric formula`` (a : Vector2, b : Vector2, c : Vector2, u, v) = let r = a + u * (b - a) + v * (c - a) - + Assert.Equal(r, Vector2.BaryCentric(a, b, c, u, v)) - + let vRes = Vector2.BaryCentric(ref a, ref b, ref c, u, v) Assert.Equal(r, vRes) - + [ |])>] module ``Vector products`` = // [] let ``Dot product follows the dot product formula`` (a : Vector2, b : Vector2) = let dot = a.X * b.X + a.Y * b.Y - + Assert.Equal(dot, Vector2.Dot(a, b)); - + let vRes = Vector2.Dot(ref a, ref b) Assert.Equal(dot, vRes) - + [] let ``Perpendicular dot product follows the perpendicular dot product formula`` (a : Vector2, b : Vector2) = let perpDot = a.X * b.Y - a.Y * b.X - + Assert.Equal(perpDot, Vector2.PerpDot(a, b)); - + let vRes = Vector2.PerpDot(ref a, ref b) Assert.Equal(perpDot, vRes) - + [ |])>] - module Normalization = + module Normalization = // [] - let ``Normalization creates a new unit length vector with the correct components`` (a, b) = + let ``Normalization creates a new unit length vector with the correct components`` (a, b) = let v = Vector2(a, b) let l = v.Length - + // Dividing by zero is not supported if not (approxEq l 0.0f) then let norm = v.Normalized() - + Assert.ApproximatelyEqual(v.X / l, norm.X) Assert.ApproximatelyEqual(v.Y / l, norm.Y) [] - let ``Normalization of instance transforms the instance into a unit length vector with the correct components`` (a, b) = + let ``Normalization of instance transforms the instance into a unit length vector with the correct components`` (a, b) = let v = Vector2(a, b) let l = v.Length - + if not (approxEq l 0.0f) then let norm = Vector2(a, b) norm.Normalize() - + Assert.ApproximatelyEqual(v.X / l, norm.X) Assert.ApproximatelyEqual(v.Y / l, norm.Y) [] - let ``Fast approximate normalization of instance transforms the instance into a unit length vector with the correct components`` (a, b) = + let ``Fast approximate normalization of instance transforms the instance into a unit length vector with the correct components`` (a, b) = let v = Vector2(a, b) let norm = Vector2(a, b) norm.NormalizeFast() @@ -431,37 +431,37 @@ module Vector2 = Assert.ApproximatelyEqual(v.X * scale, norm.X) Assert.ApproximatelyEqual(v.Y * scale, norm.Y) - + [] let ``Normalization by reference is the same as division by magnitude`` (a : Vector2) = let norm = a / a.Length let vRes = Vector2.Normalize(ref a) - + Assert.ApproximatelyEqual(norm, vRes) - + [] let ``Normalization is the same as division by magnitude`` (a : Vector2) = let norm = a / a.Length - + Assert.ApproximatelyEqual(norm, Vector2.Normalize(a)); - + [] let ``Fast approximate normalization by reference is the same as multiplication by the fast inverse square`` (a : Vector2) = let scale = MathHelper.InverseSqrtFast(a.X * a.X + a.Y * a.Y) - + let norm = a * scale let vRes = Vector2.NormalizeFast(ref a) - + Assert.ApproximatelyEqual(norm, vRes) - + [] let ``Fast approximate normalization is the same as multiplication by the fast inverse square`` (a : Vector2) = let scale = MathHelper.InverseSqrtFast(a.X * a.X + a.Y * a.Y) - + let norm = a * scale - + Assert.ApproximatelyEqual(norm, Vector2.NormalizeFast(a)); - + [ |])>] module ``Component min and max`` = // @@ -469,117 +469,117 @@ module Vector2 = let ``ComponentMin produces a new vector from the smallest components of the given vectors`` (x, y, u, w) = let v1 = Vector2(x, y) let v2 = Vector2(u, w) - + let vMin = Vector2.ComponentMin(v1, v2) - + Assert.True(vMin.X <= v1.X) Assert.True(vMin.X <= v2.X) - + Assert.True(vMin.Y <= v1.Y) Assert.True(vMin.Y <= v2.Y) - + [] let ``ComponentMax produces a new vector from the largest components of the given vectors`` (x, y, u, w) = let v1 = Vector2(x, y) let v2 = Vector2(u, w) - + let vMax = Vector2.ComponentMax(v1, v2) - + Assert.True(vMax.X >= v1.X) Assert.True(vMax.X >= v2.X) - + Assert.True(vMax.Y >= v1.Y) Assert.True(vMax.Y >= v2.Y) - + [] let ``ComponentMin by reference produces a new vector from the smallest components of the given vectors`` (x, y, u, w) = let v1 = Vector2(x, y) let v2 = Vector2(u, w) - + let vMin = Vector2.ComponentMin(ref v1, ref v2) - + Assert.True(vMin.X <= v1.X) Assert.True(vMin.X <= v2.X) - + Assert.True(vMin.Y <= v1.Y) Assert.True(vMin.Y <= v2.Y) - + [] let ``ComponentMax by reference produces a new vector from the largest components of the given vectors`` (x, y, u, w) = let v1 = Vector2(x, y) let v2 = Vector2(u, w) - + let vMax = Vector2.ComponentMax(ref v1, ref v2) - + Assert.True(vMax.X >= v1.X) Assert.True(vMax.X >= v2.X) - + Assert.True(vMax.Y >= v1.Y) Assert.True(vMax.Y >= v2.Y) - + [] let ``Min selects the vector with lesser magnitude given two vectors`` (x, y, u, w) = let v1 = Vector2(x, y) let v2 = Vector2(u, w) - + let l1 = v1.LengthSquared let l2 = v2.LengthSquared - + let vMin = Vector2.Min(v1, v2) - + if l1 < l2 then - let equalsFirst = vMin = v1 + let equalsFirst = vMin = v1 Assert.True(equalsFirst) - else - let equalsLast = vMin = v2 - Assert.True(equalsLast) - + else + let equalsLast = vMin = v2 + Assert.True(equalsLast) + [] let ``Max selects the vector with greater magnitude given two vectors`` (x, y, u, w) = let v1 = Vector2(x, y) let v2 = Vector2(u, w) - + let l1 = v1.LengthSquared let l2 = v2.LengthSquared - + let vMin = Vector2.Max(v1, v2) - + if l1 >= l2 then - let equalsFirst = vMin = v1 + let equalsFirst = vMin = v1 Assert.True(equalsFirst) - else - let equalsLast = vMin = v2 - Assert.True(equalsLast) + else + let equalsLast = vMin = v2 + Assert.True(equalsLast) [ |])>] - module Transformation = + module Transformation = // [] - let ``Transformation by quaternion is the same as multiplication by quaternion and its conjugate`` (v : Vector2, q : Quaternion) = + let ``Transformation by quaternion is the same as multiplication by quaternion and its conjugate`` (v : Vector2, q : Quaternion) = let vectorQuat = Quaternion(v.X, v.Y, (float32)0, (float32)0) let inverse = Quaternion.Invert(q) - + let transformedQuat = q * vectorQuat * inverse let transformedVector = Vector2(transformedQuat.X, transformedQuat.Y) - + Assert.Equal(transformedVector, Vector2.Transform(v, q)) - + [] - let ``Transformation by quaternion by reference is the same as multiplication by quaternion and its conjugate`` (v : Vector2, q : Quaternion) = + let ``Transformation by quaternion by reference is the same as multiplication by quaternion and its conjugate`` (v : Vector2, q : Quaternion) = let vectorQuat = Quaternion(v.X, v.Y, (float32)0, (float32)0) let inverse = Quaternion.Invert(q) - + let transformedQuat = q * vectorQuat * inverse let transformedVector = Vector2(transformedQuat.X, transformedQuat.Y) - + Assert.Equal(transformedVector, Vector2.Transform(ref v, ref q)) - + [ |])>] - module Serialization = + module Serialization = // [] - let ``The absolute size of a Vector2 is always the size of its components`` (v : Vector2) = + let ``The absolute size of a Vector2 is always the size of its components`` (v : Vector2) = let expectedSize = sizeof * 2 - + Assert.Equal(expectedSize, Vector2.SizeInBytes) Assert.Equal(expectedSize, Marshal.SizeOf(Vector2())) \ No newline at end of file diff --git a/tests/OpenTK.Tests/Vector3Tests.fs b/tests/OpenTK.Tests/Vector3Tests.fs index 81edaa24..9c879b68 100644 --- a/tests/OpenTK.Tests/Vector3Tests.fs +++ b/tests/OpenTK.Tests/Vector3Tests.fs @@ -7,28 +7,28 @@ open System open System.Runtime.InteropServices open OpenTK -module Vector3 = +module Vector3 = [ |])>] - module Constructors = + module Constructors = // [] - let ``Triple value constructor sets all components to the correct values`` (a, b, c) = + let ``Triple value constructor sets all components to the correct values`` (a, b, c) = let v = Vector3(a, b, c) Assert.Equal(a, v.X) Assert.Equal(b, v.Y) Assert.Equal(c, v.Z) - + [] - let ``Single value constructor sets all components to the correct values`` (a : float32) = + let ``Single value constructor sets all components to the correct values`` (a : float32) = let v = Vector3(a) Assert.Equal(a, v.X) Assert.Equal(a, v.Y) Assert.Equal(a, v.Z) - + [] - let ``Vector2 value constructor sets all components to the correct values`` (a, b) = + let ``Vector2 value constructor sets all components to the correct values`` (a, b) = let v1 = Vector2(a, b) let v2 = Vector3(v1) @@ -38,9 +38,9 @@ module Vector3 = Assert.Equal(a, v2.X) Assert.Equal(b, v2.Y) Assert.Equal((float32)0, v2.Z) - + [] - let ``Vector3 value constructor sets all components to the correct values`` (a, b, c) = + let ``Vector3 value constructor sets all components to the correct values`` (a, b, c) = let v1 = Vector3(a, b, c) let v2 = Vector3(v1) @@ -51,9 +51,9 @@ module Vector3 = Assert.Equal(a, v2.X) Assert.Equal(b, v2.Y) Assert.Equal(c, v2.Z) - + [] - let ``Vector4 value constructor sets all components to the correct values`` (a, b, c, d) = + let ``Vector4 value constructor sets all components to the correct values`` (a, b, c, d) = let v1 = Vector4(a, b, c, d) let v2 = Vector3(v1) @@ -64,87 +64,87 @@ module Vector3 = Assert.Equal(a, v2.X) Assert.Equal(b, v2.Y) Assert.Equal(c, v2.Z) - + [ |])>] - module Indexing = + module Indexing = // [] - let ``Index operator accesses the correct components`` (x, y, z) = + let ``Index operator accesses the correct components`` (x, y, z) = let v = Vector3(x, y, z) - + Assert.Equal(x, v.[0]) Assert.Equal(y, v.[1]) Assert.Equal(z, v.[2]) - + [] - let ``Indexed set operator throws exception for negative indices`` (x, y, z) = + let ``Indexed set operator throws exception for negative indices`` (x, y, z) = let mutable v = Vector3(x, y, z) (fun() -> v.[-1] <- x) |> Assert.Throws |> ignore [] - let ``Indexed get operator throws exception for negative indices`` (x, y, z) = + let ``Indexed get operator throws exception for negative indices`` (x, y, z) = let mutable v = Vector3(x, y, z) (fun() -> v.[-1] |> ignore) |> Assert.Throws |> ignore [] - let ``Indexed set operator throws exception for large indices`` (x, y, z) = + let ``Indexed set operator throws exception for large indices`` (x, y, z) = let mutable v = Vector3(x, y, z) - + (fun() -> v.[4] <- x) |> Assert.Throws |> ignore - + [] - let ``Indexed get operator throws exception for large indices`` (x, y, z) = + let ``Indexed get operator throws exception for large indices`` (x, y, z) = let mutable v = Vector3(x, y, z) - + (fun() -> v.[4] |> ignore) |> Assert.Throws |> ignore - + [ |])>] - module Length = + module Length = // [] - let ``Length method follows the pythagorean theorem`` (a, b, c) = + let ``Length method follows the pythagorean theorem`` (a, b, c) = let v = Vector3(a, b, c) let l = System.Math.Sqrt((float)(a * a + b * b + c * c)) - + Assert.Equal((float32)l, v.Length) - + [] - let ``Fast length method is the same as one divided by the fast inverse square`` (a, b, c) = + let ``Fast length method is the same as one divided by the fast inverse square`` (a, b, c) = let v = Vector3(a, b, c) let l = 1.0f / MathHelper.InverseSqrtFast(a * a + b * b + c * c) - + Assert.Equal(l, v.LengthFast) - + [] - let ``Length squared method returns each component squared and summed`` (a, b, c) = + let ``Length squared method returns each component squared and summed`` (a, b, c) = let v = Vector3(a, b, c) let lsq = a * a + b * b + c * c - + Assert.Equal(lsq, v.LengthSquared) - + [ |])>] - module Normalization = + module Normalization = // [] - let ``Normalization creates a new unit length vector with the correct components`` (a, b, c) = + let ``Normalization creates a new unit length vector with the correct components`` (a, b, c) = let v = Vector3(a, b, c) let l = v.Length - + // Dividing by zero is not supported if not (approxEq l 0.0f) then let norm = v.Normalized() - + Assert.ApproximatelyEqual(v.X / l, norm.X) Assert.ApproximatelyEqual(v.Y / l, norm.Y) Assert.ApproximatelyEqual(v.Z / l, norm.Z) [] - let ``Normalization of instance transforms the instance into a unit length vector with the correct components`` (a, b, c) = + let ``Normalization of instance transforms the instance into a unit length vector with the correct components`` (a, b, c) = let v = Vector3(a, b, c) let l = v.Length - + if not (approxEq l 0.0f) then let norm = Vector3(a, b, c) norm.Normalize() @@ -154,7 +154,7 @@ module Vector3 = Assert.ApproximatelyEqual(v.Z / l, norm.Z) [] - let ``Fast approximate normalization of instance transforms the instance into a unit length vector with the correct components`` (a, b, c) = + let ``Fast approximate normalization of instance transforms the instance into a unit length vector with the correct components`` (a, b, c) = let v = Vector3(a, b, c) let norm = Vector3(a, b, c) norm.NormalizeFast() @@ -164,230 +164,230 @@ module Vector3 = Assert.ApproximatelyEqual(v.X * scale, norm.X) Assert.ApproximatelyEqual(v.Y * scale, norm.Y) Assert.ApproximatelyEqual(v.Z * scale, norm.Z) - + [] let ``Normalization by reference is the same as division by magnitude`` (a : Vector3) = let norm = a / a.Length let vRes = Vector3.Normalize(ref a) - + Assert.ApproximatelyEqual(norm, vRes) - + [] let ``Normalization is the same as division by magnitude`` (a : Vector3) = let norm = a / a.Length - + Assert.ApproximatelyEqual(norm, Vector3.Normalize(a)); - + [] let ``Fast approximate normalization by reference is the same as multiplication by the fast inverse square`` (a : Vector3) = let scale = MathHelper.InverseSqrtFast(a.X * a.X + a.Y * a.Y + a.Z * a.Z) - + let norm = a * scale let vRes = Vector3.NormalizeFast(ref a) - + Assert.ApproximatelyEqual(norm, vRes) - + [] let ``Fast approximate normalization is the same as multiplication by fast inverse square`` (a : Vector3) = let scale = MathHelper.InverseSqrtFast(a.X * a.X + a.Y * a.Y + a.Z * a.Z) - + let norm = a * scale - + Assert.ApproximatelyEqual(norm, Vector3.NormalizeFast(a)); [ |])>] - module Addition = + module Addition = // [] - let ``Vector3 addition is the same as component addition`` (a : Vector3, b : Vector3) = + let ``Vector3 addition is the same as component addition`` (a : Vector3, b : Vector3) = let c = a + b - + Assert.ApproximatelyEqual(a.X + b.X,c.X) Assert.ApproximatelyEqual(a.Y + b.Y,c.Y) Assert.ApproximatelyEqual(a.Z + b.Z,c.Z) - + [] - let ``Vector3 addition is commutative`` (a : Vector3, b : Vector3) = + let ``Vector3 addition is commutative`` (a : Vector3, b : Vector3) = let c = a + b let c2 = b + a - + Assert.ApproximatelyEqual(c, c2) - + [] - let ``Vector3 addition is associative`` (a : Vector3, b : Vector3, c : Vector3) = + let ``Vector3 addition is associative`` (a : Vector3, b : Vector3, c : Vector3) = let r1 = (a + b) + c let r2 = a + (b + c) - + Assert.ApproximatelyEqual(r1, r2) - + [] - let ``Static Vector3 addition method is the same as component addition`` (a : Vector3, b : Vector3) = - + let ``Static Vector3 addition method is the same as component addition`` (a : Vector3, b : Vector3) = + let v1 = Vector3(a.X + b.X, a.Y + b.Y, a.Z + b.Z) let sum = Vector3.Add(a, b) - + Assert.ApproximatelyEqual(v1, sum) - + [] - let ``Static Vector3 addition method by reference is the same as component addition`` (a : Vector3, b : Vector3) = - + let ``Static Vector3 addition method by reference is the same as component addition`` (a : Vector3, b : Vector3) = + let v1 = Vector3(a.X + b.X, a.Y + b.Y, a.Z + b.Z) let sum = Vector3.Add(ref a, ref b) - + Assert.ApproximatelyEqual(v1, sum) - + [ |])>] - module Subtraction = + module Subtraction = // [] - let ``Vector3 subtraction is the same as component subtraction`` (a : Vector3, b : Vector3) = + let ``Vector3 subtraction is the same as component subtraction`` (a : Vector3, b : Vector3) = let c = a - b - + Assert.Equal(a.X - b.X,c.X) Assert.Equal(a.Y - b.Y,c.Y) Assert.Equal(a.Z - b.Z,c.Z) - + [] - let ``Static Vector3 subtraction method is the same as component addition`` (a : Vector3, b : Vector3) = - + let ``Static Vector3 subtraction method is the same as component addition`` (a : Vector3, b : Vector3) = + let v1 = Vector3(a.X - b.X, a.Y - b.Y, a.Z - b.Z) let sum = Vector3.Subtract(a, b) - + Assert.ApproximatelyEqual(v1, sum) - + [] - let ``Static Vector3 subtraction method by reference is the same as component addition`` (a : Vector3, b : Vector3) = - + let ``Static Vector3 subtraction method by reference is the same as component addition`` (a : Vector3, b : Vector3) = + let v1 = Vector3(a.X - b.X, a.Y - b.Y, a.Z - b.Z) let sum = Vector3.Subtract(ref a, ref b) - + Assert.ApproximatelyEqual(v1, sum) - + [ |])>] - module Multiplication = + module Multiplication = // [] - let ``Vector3 multiplication is the same as component multiplication`` (a : Vector3, b : Vector3) = + let ``Vector3 multiplication is the same as component multiplication`` (a : Vector3, b : Vector3) = let c = a * b - + Assert.Equal(a.X * b.X,c.X) Assert.Equal(a.Y * b.Y,c.Y) Assert.Equal(a.Z * b.Z,c.Z) - + [] - let ``Vector3 multiplication is commutative`` (a : Vector3, b : Vector3) = + let ``Vector3 multiplication is commutative`` (a : Vector3, b : Vector3) = let r1 = a * b let r2 = b * a - + Assert.Equal(r1, r2) - + [] - let ``Left-handed Vector3-scalar multiplication is the same as component-scalar multiplication`` (a : Vector3, f : float32) = + let ``Left-handed Vector3-scalar multiplication is the same as component-scalar multiplication`` (a : Vector3, f : float32) = let r = a * f - + Assert.Equal(a.X * f,r.X) Assert.Equal(a.Y * f,r.Y) Assert.Equal(a.Z * f,r.Z) - + [] - let ``Right-handed Vector3-scalar multiplication is the same as component-scalar multiplication`` (a : Vector3, f : float32) = + let ``Right-handed Vector3-scalar multiplication is the same as component-scalar multiplication`` (a : Vector3, f : float32) = let r = f * a Assert.Equal(a.X * f,r.X) Assert.Equal(a.Y * f,r.Y) Assert.Equal(a.Z * f,r.Z) - + [] - let ``Static method Vector3-scalar multiplication is the same as component-scalar multiplication`` (a : Vector3, f : float32) = + let ``Static method Vector3-scalar multiplication is the same as component-scalar multiplication`` (a : Vector3, f : float32) = let r = Vector3.Multiply(a, f) - + Assert.Equal(a.X * f,r.X) Assert.Equal(a.Y * f,r.Y) Assert.Equal(a.Z * f,r.Z) - + [] - let ``Vector3-Matrix3 multiplication using right-handed notation is the same as vector/row multiplication and summation`` (a : Matrix3, b : Vector3) = + let ``Vector3-Matrix3 multiplication using right-handed notation is the same as vector/row multiplication and summation`` (a : Matrix3, b : Vector3) = let res = a*b - + let c1 = b.X * a.M11 + b.Y * a.M12 + b.Z * a.M13 let c2 = b.X * a.M21 + b.Y * a.M22 + b.Z * a.M23 let c3 = b.X * a.M31 + b.Y * a.M32 + b.Z * a.M33 - + let exp = Vector3(c1, c2, c3) - + Assert.Equal(exp, res) - + [] - let ``Vector3-Matrix3 multiplication using left-handed notation is the same as vector/column multiplication and summation`` (a : Matrix3, b : Vector3) = + let ``Vector3-Matrix3 multiplication using left-handed notation is the same as vector/column multiplication and summation`` (a : Matrix3, b : Vector3) = let res = b*a - + let c1 = b.X * a.M11 + b.Y * a.M21 + b.Z * a.M31 let c2 = b.X * a.M12 + b.Y * a.M22 + b.Z * a.M32 let c3 = b.X * a.M13 + b.Y * a.M23 + b.Z * a.M33 - + let exp = Vector3(c1, c2, c3) - + Assert.Equal(exp, res) - + [] - let ``Static Vector3 multiplication method is the same as component multiplication`` (a : Vector3, b : Vector3) = - + let ``Static Vector3 multiplication method is the same as component multiplication`` (a : Vector3, b : Vector3) = + let v1 = Vector3(a.X * b.X, a.Y * b.Y, a.Z * b.Z) let sum = Vector3.Multiply(a, b) - + Assert.ApproximatelyEqual(v1, sum) - + [] - let ``Static Vector3 multiplication method by reference is the same as component multiplication`` (a : Vector3, b : Vector3) = - + let ``Static Vector3 multiplication method by reference is the same as component multiplication`` (a : Vector3, b : Vector3) = + let v1 = Vector3(a.X * b.X, a.Y * b.Y, a.Z * b.Z) let sum = Vector3.Multiply(ref a, ref b) - + Assert.ApproximatelyEqual(v1, sum) - + [ |])>] - module Division = + module Division = // [] - let ``Vector3-float division is the same as component-float division`` (a : Vector3, f : float32) = + let ``Vector3-float division is the same as component-float division`` (a : Vector3, f : float32) = if not (approxEq f 0.0f) then // we don't support diving by zero. let r = a / f - + Assert.ApproximatelyEqual(a.X / f,r.X) Assert.ApproximatelyEqual(a.Y / f,r.Y) Assert.ApproximatelyEqual(a.Z / f,r.Z) - + [] - let ``Static Vector3-Vector3 division method is the same as component division`` (a : Vector3, b : Vector3) = - + let ``Static Vector3-Vector3 division method is the same as component division`` (a : Vector3, b : Vector3) = + let v1 = Vector3(a.X / b.X, a.Y / b.Y, a.Z / b.Z) let sum = Vector3.Divide(a, b) - + Assert.ApproximatelyEqual(v1, sum) - + [] - let ``Static Vector3-Vector3 divison method by reference is the same as component division`` (a : Vector3, b : Vector3) = - + let ``Static Vector3-Vector3 divison method by reference is the same as component division`` (a : Vector3, b : Vector3) = + let v1 = Vector3(a.X / b.X, a.Y / b.Y, a.Z / b.Z) let sum = Vector3.Divide(ref a, ref b) - + Assert.ApproximatelyEqual(v1, sum) - + [] - let ``Static Vector3-scalar division method is the same as component division`` (a : Vector3, b : float32) = - + let ``Static Vector3-scalar division method is the same as component division`` (a : Vector3, b : float32) = + let v1 = Vector3(a.X / b, a.Y / b, a.Z / b) let sum = Vector3.Divide(a, b) - + Assert.ApproximatelyEqual(v1, sum) - + [] - let ``Static Vector3-scalar divison method by reference is the same as component division`` (a : Vector3, b : float32) = - + let ``Static Vector3-scalar divison method by reference is the same as component division`` (a : Vector3, b : float32) = + let v1 = Vector3(a.X / b, a.Y / b, a.Z / b) let sum = Vector3.Divide(ref a, b) - + Assert.ApproximatelyEqual(v1, sum) - + [ |])>] module Negation = // @@ -398,7 +398,7 @@ module Vector3 = Assert.Equal(-x, vNeg.X) Assert.Equal(-y, vNeg.Y) Assert.Equal(-z, vNeg.Z) - + [ |])>] module Equality = // @@ -407,74 +407,74 @@ module Vector3 = let v1 = Vector3(x, y, z) let v2 = Vector3(x, y, z) let equality = v1 = v2 - + Assert.True(equality) - + [] let ``Vector inequality operator is by component`` (x, y, z) = let v1 = Vector3(x, y, z) let v2 = Vector3(x + (float32)1 , y + (float32)1, z + (float32)1) let inequality = v1 <> v2 - + Assert.True(inequality) - + [] let ``Vector equality method is by component`` (x, y, z) = let v1 = Vector3(x, y, z) let v2 = Vector3(x, y, z) let notVector = Matrix2() - + let equality = v1.Equals(v2) let inequalityByOtherType = v1.Equals(notVector) - + Assert.True(equality) Assert.False(inequalityByOtherType) - + [ |])>] module Swizzling = // [] let ``Vector swizzling returns the correct composite for X-primary components`` (x, y, z) = let v = Vector3(x, y, z) - + let xyz = Vector3(x, y, z) let xzy = Vector3(x, z, y) let xy = Vector2(x, y) let xz = Vector2(x, z) - + Assert.Equal(xyz, v); Assert.Equal(xzy, v.Xzy); Assert.Equal(xy, v.Xy); Assert.Equal(xz, v.Xz); - + [] let ``Vector swizzling returns the correct composite for Y-primary components`` (x, y, z) = let v = Vector3(x, y, z) - + let yxz = Vector3(y, x, z) let yzx = Vector3(y, z, x) let yx = Vector2(y, x) let yz = Vector2(y, z) - + Assert.Equal(yxz, v.Yxz); Assert.Equal(yzx, v.Yzx); Assert.Equal(yx, v.Yx); Assert.Equal(yz, v.Yz); - + [] let ``Vector swizzling returns the correct composite for Z-primary components`` (x, y, z) = let v = Vector3(x, y, z) - + let zxy = Vector3(z, x, y) let zyx = Vector3(z, y, x) let zx = Vector2(z, x) let zy = Vector2(z, y); - + Assert.Equal(zxy, v.Zxy); Assert.Equal(zyx, v.Zyx); Assert.Equal(zx, v.Zx); Assert.Equal(zy, v.Zy); - + [ |])>] module Interpolation = // @@ -482,51 +482,51 @@ module Vector3 = let ``Linear interpolation is by component`` (a : Vector3, b : Vector3, q) = let blend = q - - let rX = blend * (b.X - a.X) + a.X + + let rX = blend * (b.X - a.X) + a.X let rY = blend * (b.Y - a.Y) + a.Y let rZ = blend * (b.Z - a.Z) + a.Z let vExp = Vector3(rX, rY, rZ) - + Assert.Equal(vExp, Vector3.Lerp(a, b, q)) - + let vRes = Vector3.Lerp(ref a, ref b, q) Assert.Equal(vExp, vRes) - + [] let ``Barycentric interpolation follows the barycentric formula`` (a : Vector3, b : Vector3, c : Vector3, u, v) = let r = a + u * (b - a) + v * (c - a) - + Assert.Equal(r, Vector3.BaryCentric(a, b, c, u, v)) - + let vRes = Vector3.BaryCentric(ref a, ref b, ref c, u, v) Assert.Equal(r, vRes) - + [ |])>] module ``Vector products`` = // [] let ``Dot product follows the dot product formula`` (a : Vector3, b : Vector3) = let dot = a.X * b.X + a.Y * b.Y + a.Z * b.Z - + Assert.Equal(dot, Vector3.Dot(a, b)); - + let vRes = Vector3.Dot(ref a, ref b) Assert.Equal(dot, vRes) - + [] let ``Cross product follows the cross product formula`` (a : Vector3, b : Vector3) = let crossX = a.Y * b.Z - a.Z * b.Y let crossY = a.Z * b.X - a.X * b.Z let crossZ = a.X * b.Y - a.Y * b.X let cross = Vector3(crossX, crossY, crossZ) - + Assert.Equal(cross, Vector3.Cross(a, b)); - + let vRes = Vector3.Cross(ref a, ref b) Assert.Equal(cross, vRes) - + [ |])>] module ``Component min and max`` = // @@ -534,166 +534,166 @@ module Vector3 = let ``ComponentMin produces a new vector from the smallest components of the given vectors`` (x, y, z, u, w, q) = let v1 = Vector3(x, y, z) let v2 = Vector3(u, w, q) - + let vMin = Vector3.ComponentMin(v1, v2) - + Assert.True(vMin.X <= v1.X) Assert.True(vMin.X <= v2.X) - + Assert.True(vMin.Y <= v1.Y) Assert.True(vMin.Y <= v2.Y) - + Assert.True(vMin.Z <= v1.Z) Assert.True(vMin.Z <= v2.Z) - + [] let ``ComponentMax producing a new vector from the largest components of the given vectors`` (x, y, z, u, w, q) = let v1 = Vector3(x, y, z) let v2 = Vector3(u, w, q) - + let vMax = Vector3.ComponentMax(v1, v2) - + Assert.True(vMax.X >= v1.X) Assert.True(vMax.X >= v2.X) - + Assert.True(vMax.Y >= v1.Y) Assert.True(vMax.Y >= v2.Y) - + Assert.True(vMax.Z >= v1.Z) Assert.True(vMax.Z >= v2.Z) - + [] let ``ComponentMin by reference produces a new vector from the smallest components of the given vectors`` (x, y, z, u, w, q) = let v1 = Vector3(x, y, z) let v2 = Vector3(u, w, q) - + let vMin = Vector3.ComponentMin(ref v1, ref v2) - + Assert.True(vMin.X <= v1.X) Assert.True(vMin.X <= v2.X) - + Assert.True(vMin.Y <= v1.Y) Assert.True(vMin.Y <= v2.Y) - + Assert.True(vMin.Z <= v1.Z) Assert.True(vMin.Z <= v2.Z) - + [] let ``ComponentMax produces a new vector from the smallest components of the given vectors`` (x, y, z, u, w, q) = let v1 = Vector3(x, y, z) let v2 = Vector3(u, w, q) - + let vMax = Vector3.ComponentMax(ref v1, ref v2) - + Assert.True(vMax.X >= v1.X) Assert.True(vMax.X >= v2.X) - + Assert.True(vMax.Y >= v1.Y) Assert.True(vMax.Y >= v2.Y) - + Assert.True(vMax.Z >= v1.Z) Assert.True(vMax.Z >= v2.Z) - + [] let ``Min selects the vector with lesser magnitude given two vectors`` (x, y, z, u, w, q) = let v1 = Vector3(x, y, z) let v2 = Vector3(u, w, q) - + let l1 = v1.LengthSquared let l2 = v2.LengthSquared - + let vMin = Vector3.Min(v1, v2) - + if l1 < l2 then - let equalsFirst = vMin = v1 + let equalsFirst = vMin = v1 Assert.True(equalsFirst) - else - let equalsLast = vMin = v2 - Assert.True(equalsLast) - + else + let equalsLast = vMin = v2 + Assert.True(equalsLast) + [] let ``Max selects the vector with greater magnitude given two vectors`` (x, y, z, u, w, q) = let v1 = Vector3(x, y, z) let v2 = Vector3(u, w, q) - + let l1 = v1.LengthSquared let l2 = v2.LengthSquared - + let vMin = Vector3.Max(v1, v2) - + if l1 >= l2 then - let equalsFirst = vMin = v1 + let equalsFirst = vMin = v1 Assert.True(equalsFirst) - else - let equalsLast = vMin = v2 - Assert.True(equalsLast) - + else + let equalsLast = vMin = v2 + Assert.True(equalsLast) + [ |])>] module Clamping = // [] let ``Clamping one vector between two other vectors clamps all components between corresponding components`` (a : Vector3, b : Vector3, w : Vector3) = let res = Vector3.Clamp(w, a, b) - + let expX = if w.X < a.X then a.X else if w.X > b.X then b.X else w.X let expY = if w.Y < a.Y then a.Y else if w.Y > b.Y then b.Y else w.Y let expZ = if w.Z < a.Z then a.Z else if w.Z > b.Z then b.Z else w.Z - + Assert.Equal(expX, res.X) Assert.Equal(expY, res.Y) Assert.Equal(expZ, res.Z) - + [] let ``Clamping one vector between two other vectors by reference clamps all components between corresponding components`` (a : Vector3, b : Vector3, w : Vector3) = let res = Vector3.Clamp(ref w, ref a, ref b) - + let expX = if w.X < a.X then a.X else if w.X > b.X then b.X else w.X let expY = if w.Y < a.Y then a.Y else if w.Y > b.Y then b.Y else w.Y let expZ = if w.Z < a.Z then a.Z else if w.Z > b.Z then b.Z else w.Z - + Assert.Equal(expX, res.X) Assert.Equal(expY, res.Y) Assert.Equal(expZ, res.Z) - + [ |])>] - module ``Unit vectors``= + module ``Unit vectors``= // [] - let ``Unit X is correct`` = + let ``Unit X is correct`` = let unitX = Vector3((float32)1, (float32)0, (float32)0) - + Assert.Equal(Vector3.UnitX, unitX) - + [] - let ``Unit Y is correct`` = + let ``Unit Y is correct`` = let unitY = Vector3((float32)0, (float32)1, (float32)0) - + Assert.Equal(Vector3.UnitY, unitY) - + [] - let ``Unit Z is correct`` = + let ``Unit Z is correct`` = let unitZ = Vector3((float32)0, (float32)0, (float32)1) - + Assert.Equal(Vector3.UnitZ, unitZ) - + [] - let ``Unit zero is correct`` = + let ``Unit zero is correct`` = let unitZero = Vector3((float32)0, (float32)0, (float32)0) - + Assert.Equal(Vector3.Zero, unitZero) - + [] - let ``Unit one is correct`` = + let ``Unit one is correct`` = let unitOne = Vector3((float32)1, (float32)1, (float32)1) - + Assert.Equal(Vector3.One, unitOne) - + [ |])>] - module Serialization = + module Serialization = // [] - let ``The absolute size of a Vector3 is always the size of its components`` (v : Vector3) = + let ``The absolute size of a Vector3 is always the size of its components`` (v : Vector3) = let expectedSize = sizeof * 3 - + Assert.Equal(expectedSize, Vector3.SizeInBytes) Assert.Equal(expectedSize, Marshal.SizeOf(Vector3())) \ No newline at end of file diff --git a/tests/OpenTK.Tests/Vector4Tests.fs b/tests/OpenTK.Tests/Vector4Tests.fs index 877e1744..7033f2a7 100644 --- a/tests/OpenTK.Tests/Vector4Tests.fs +++ b/tests/OpenTK.Tests/Vector4Tests.fs @@ -7,30 +7,30 @@ open System open System.Runtime.InteropServices open OpenTK -module Vector4 = +module Vector4 = [ |])>] - module Constructors = + module Constructors = // [] - let ``Triple value constructor sets all components to the correct values`` (x, y, z, w) = + let ``Triple value constructor sets all components to the correct values`` (x, y, z, w) = let v = Vector4(x, y, z, w) Assert.Equal(x, v.X) Assert.Equal(y, v.Y) Assert.Equal(z, v.Z) Assert.Equal(w, v.W) - + [] - let ``Single value constructor sets all components to the correct values`` (a : float32) = + let ``Single value constructor sets all components to the correct values`` (a : float32) = let v = Vector4(a) Assert.Equal(a, v.X) Assert.Equal(a, v.Y) Assert.Equal(a, v.Z) Assert.Equal(a, v.W) - + [] - let ``Vector2 value constructor sets all components to the correct values`` (x, y) = + let ``Vector2 value constructor sets all components to the correct values`` (x, y) = let v1 = Vector2(x, y) let v2 = Vector4(v1) @@ -41,9 +41,9 @@ module Vector4 = Assert.Equal(y, v2.Y) Assert.Equal((float32)0, v2.Z) Assert.Equal((float32)0, v2.W) - + [] - let ``Vector3 value constructor sets all components to the correct values`` (x, y, z) = + let ``Vector3 value constructor sets all components to the correct values`` (x, y, z) = let v1 = Vector3(x, y, z) let v2 = Vector4(v1) @@ -55,9 +55,9 @@ module Vector4 = Assert.Equal(y, v2.Y) Assert.Equal(z, v2.Z) Assert.Equal((float32)0, v2.W) - + [] - let ``Vector3 value and scalar constructor sets all components to the correct values`` (x, y, z, w) = + let ``Vector3 value and scalar constructor sets all components to the correct values`` (x, y, z, w) = let v1 = Vector3(x, y, z) let v2 = Vector4(v1, w) @@ -69,9 +69,9 @@ module Vector4 = Assert.Equal(y, v2.Y) Assert.Equal(z, v2.Z) Assert.Equal(w, v2.W) - + [] - let ``Vector4 value constructor sets all components to the correct values`` (x, y, z, w) = + let ``Vector4 value constructor sets all components to the correct values`` (x, y, z, w) = let v1 = Vector4(x, y, z, w) let v2 = Vector4(v1) @@ -84,72 +84,72 @@ module Vector4 = Assert.Equal(y, v2.Y) Assert.Equal(z, v2.Z) Assert.Equal(w, v2.W) - + [ |])>] - module Indexing = + module Indexing = // [] - let ``Index operator accesses the correct components`` (x, y, z, w) = + let ``Index operator accesses the correct components`` (x, y, z, w) = let v = Vector4(x, y, z, w) - + Assert.Equal(x, v.[0]) Assert.Equal(y, v.[1]) Assert.Equal(z, v.[2]) Assert.Equal(w, v.[3]) - + [] - let ``Indexed set operator throws exception for negative indices`` (x, y, z, w) = + let ``Indexed set operator throws exception for negative indices`` (x, y, z, w) = let mutable v = Vector4(x, y, z, w) (fun() -> v.[-1] <- x) |> Assert.Throws |> ignore [] - let ``Indexed get operator throws exception for negative indices`` (x, y, z, w) = + let ``Indexed get operator throws exception for negative indices`` (x, y, z, w) = let mutable v = Vector4(x, y, z, w) (fun() -> v.[-1] |> ignore) |> Assert.Throws |> ignore [] - let ``Indexed set operator throws exception for large indices`` (x, y, z, w) = + let ``Indexed set operator throws exception for large indices`` (x, y, z, w) = let mutable v = Vector4(x, y, z, w) - + (fun() -> v.[4] <- x) |> Assert.Throws |> ignore - + [] - let ``Indexed get operator throws exception for large indices`` (x, y, z, w) = + let ``Indexed get operator throws exception for large indices`` (x, y, z, w) = let mutable v = Vector4(x, y, z, w) - + (fun() -> v.[4] |> ignore) |> Assert.Throws |> ignore - + [ |])>] - module Length = + module Length = // [] - let ``Length method follows the pythagorean theorem`` (x, y, z, w) = + let ``Length method follows the pythagorean theorem`` (x, y, z, w) = let v = Vector4(x, y, z, w) let l = System.Math.Sqrt((float)(x * x + y * y + z * z + w * w)) - + Assert.Equal((float32)l, v.Length) - + [] - let ``Fast length method is the same as one divided by the fast inverse square`` (x, y, z, w) = + let ``Fast length method is the same as one divided by the fast inverse square`` (x, y, z, w) = let v = Vector4(x, y, z, w) let l = 1.0f / MathHelper.InverseSqrtFast(x * x + y * y + z * z + w * w) - + Assert.Equal(l, v.LengthFast) - + [] - let ``Length squared method returns each component squared and summed`` (x, y, z, w) = + let ``Length squared method returns each component squared and summed`` (x, y, z, w) = let v = Vector4(x, y, z, w) let lsq = x * x + y * y + z * z + w * w - + Assert.Equal(lsq, v.LengthSquared) - + [ |])>] - module Normalization = + module Normalization = // [] - let ``Normalization creates a new unit length vector with the correct components`` (x, y, z, w) = + let ``Normalization creates a new unit length vector with the correct components`` (x, y, z, w) = let v = Vector4(x, y, z, w) let l = v.Length @@ -161,7 +161,7 @@ module Vector4 = Assert.ApproximatelyEqual(v.W / l, norm.W) [] - let ``Normalization of instance transforms the instance into a unit length vector with the correct components`` (x, y, z, w) = + let ``Normalization of instance transforms the instance into a unit length vector with the correct components`` (x, y, z, w) = let v = Vector4(x, y, z, w) let l = v.Length @@ -174,7 +174,7 @@ module Vector4 = Assert.ApproximatelyEqual(v.W / l, norm.W) [] - let ``Fast approximate normalization of instance transforms the instance into a unit length vector with the correct components`` (x, y, z, w) = + let ``Fast approximate normalization of instance transforms the instance into a unit length vector with the correct components`` (x, y, z, w) = let v = Vector4(x, y, z, w) let norm = Vector4(x, y, z, w) norm.NormalizeFast() @@ -185,240 +185,240 @@ module Vector4 = Assert.ApproximatelyEqual(v.Y * scale, norm.Y) Assert.ApproximatelyEqual(v.Z * scale, norm.Z) Assert.ApproximatelyEqual(v.W * scale, norm.W) - + [] let ``Normalization by reference is the same as division by magnitude`` (a : Vector4) = let norm = a / a.Length let vRes = Vector4.Normalize(ref a) - + Assert.ApproximatelyEqual(norm, vRes) - + [] let ``Normalization is the same as division by magnitude`` (a : Vector4) = let norm = a / a.Length - + Assert.ApproximatelyEqual(norm, Vector4.Normalize(a)); - + [] let ``Fast approximate normalization by reference is the same as multiplication by the fast inverse square`` (a : Vector4) = let scale = MathHelper.InverseSqrtFast(a.X * a.X + a.Y * a.Y + a.Z * a.Z + a.W * a.W) - + let norm = a * scale let vRes = Vector4.NormalizeFast(ref a) - + Assert.ApproximatelyEqual(norm, vRes) - + [] let ``Fast approximate normalization is the same as multiplication by the fast inverse square`` (a : Vector4) = let scale = MathHelper.InverseSqrtFast(a.X * a.X + a.Y * a.Y + a.Z * a.Z + a.W * a.W) - + let norm = a * scale - + Assert.ApproximatelyEqual(norm, Vector4.NormalizeFast(a)); [ |])>] - module Addition = + module Addition = // [] - let ``Vector4 addition is the same as component addition`` (a : Vector4, b : Vector4) = + let ``Vector4 addition is the same as component addition`` (a : Vector4, b : Vector4) = let c = a + b - + Assert.ApproximatelyEqual(a.X + b.X,c.X) Assert.ApproximatelyEqual(a.Y + b.Y,c.Y) Assert.ApproximatelyEqual(a.Z + b.Z,c.Z) Assert.ApproximatelyEqual(a.W + b.W,c.W) - + [] - let ``Vector4 addition is commutative`` (a : Vector4, b : Vector4) = + let ``Vector4 addition is commutative`` (a : Vector4, b : Vector4) = let c = a + b let c2 = b + a - + Assert.ApproximatelyEqual(c, c2) - + [] - let ``Vector4 addition is associative`` (a : Vector4, b : Vector4, c : Vector4) = + let ``Vector4 addition is associative`` (a : Vector4, b : Vector4, c : Vector4) = let r1 = (a + b) + c let r2 = a + (b + c) - + Assert.ApproximatelyEqual(r1, r2) - + [] - let ``Static Vector4 addition method is the same as component addition`` (a : Vector4, b : Vector4) = - + let ``Static Vector4 addition method is the same as component addition`` (a : Vector4, b : Vector4) = + let v1 = Vector4(a.X + b.X, a.Y + b.Y, a.Z + b.Z, a.W + b.W) let sum = Vector4.Add(a, b) - + Assert.ApproximatelyEqual(v1, sum) - + [] - let ``Static Vector4 addition method by reference is the same as component addition`` (a : Vector4, b : Vector4) = - + let ``Static Vector4 addition method by reference is the same as component addition`` (a : Vector4, b : Vector4) = + let v1 = Vector4(a.X + b.X, a.Y + b.Y, a.Z + b.Z, a.W + b.W) let sum = Vector4.Add(ref a, ref b) - + Assert.ApproximatelyEqual(v1, sum) - + [ |])>] - module Subtraction = + module Subtraction = // [] - let ``Vector4 subtraction is the same as component subtraction`` (a : Vector4, b : Vector4) = + let ``Vector4 subtraction is the same as component subtraction`` (a : Vector4, b : Vector4) = let c = a - b - + Assert.Equal(a.X - b.X,c.X) Assert.Equal(a.Y - b.Y,c.Y) Assert.Equal(a.Z - b.Z,c.Z) Assert.Equal(a.W - b.W,c.W) - + [] - let ``Static Vector4 subtraction method is the same as component addition`` (a : Vector4, b : Vector4) = - + let ``Static Vector4 subtraction method is the same as component addition`` (a : Vector4, b : Vector4) = + let v1 = Vector4(a.X - b.X, a.Y - b.Y, a.Z - b.Z, a.W - b.W) let sum = Vector4.Subtract(a, b) - + Assert.ApproximatelyEqual(v1, sum) - + [] - let ``Static Vector4 subtraction method by reference is the same as component addition`` (a : Vector4, b : Vector4) = - + let ``Static Vector4 subtraction method by reference is the same as component addition`` (a : Vector4, b : Vector4) = + let v1 = Vector4(a.X - b.X, a.Y - b.Y, a.Z - b.Z, a.W - b.W) let sum = Vector4.Subtract(ref a, ref b) - + Assert.ApproximatelyEqual(v1, sum) - + [ |])>] - module Multiplication = + module Multiplication = // [] - let ``Vector4 multiplication is the same as component multiplication`` (a : Vector4, b : Vector4) = + let ``Vector4 multiplication is the same as component multiplication`` (a : Vector4, b : Vector4) = let c = a * b - + Assert.Equal(a.X * b.X,c.X) Assert.Equal(a.Y * b.Y,c.Y) Assert.Equal(a.Z * b.Z,c.Z) Assert.Equal(a.W * b.W,c.W) - + [] - let ``Vector4 multiplication is commutative`` (a : Vector4, b : Vector4) = + let ``Vector4 multiplication is commutative`` (a : Vector4, b : Vector4) = let r1 = a * b let r2 = b * a - + Assert.Equal(r1, r2) - + [] - let ``Left-handed Vector4-scalar multiplication is the same as component-scalar multiplication`` (a : Vector4, f : float32) = + let ``Left-handed Vector4-scalar multiplication is the same as component-scalar multiplication`` (a : Vector4, f : float32) = let r = a * f - + Assert.Equal(a.X * f,r.X) Assert.Equal(a.Y * f,r.Y) Assert.Equal(a.Z * f,r.Z) Assert.Equal(a.W * f,r.W) - + [] - let ``Right-handed Vector4-scalar multiplication is the same as component-scalar multiplication`` (a : Vector4, f : float32) = + let ``Right-handed Vector4-scalar multiplication is the same as component-scalar multiplication`` (a : Vector4, f : float32) = let r = f * a Assert.Equal(a.X * f,r.X) Assert.Equal(a.Y * f,r.Y) Assert.Equal(a.Z * f,r.Z) Assert.Equal(a.W * f,r.W) - + [] - let ``Static method Vector4-scalar multiplication is the same as component-scalar multiplication`` (a : Vector4, f : float32) = + let ``Static method Vector4-scalar multiplication is the same as component-scalar multiplication`` (a : Vector4, f : float32) = let r = Vector4.Multiply(a, f) - + Assert.Equal(a.X * f,r.X) Assert.Equal(a.Y * f,r.Y) Assert.Equal(a.Z * f,r.Z) Assert.Equal(a.W * f,r.W) - + [] - let ``Vector4-Matrix4 multiplication using right-handed notation is the same as vector/row multiplication and summation`` (a : Matrix4, b : Vector4) = + let ``Vector4-Matrix4 multiplication using right-handed notation is the same as vector/row multiplication and summation`` (a : Matrix4, b : Vector4) = let res = a*b - + let c1 = b.X * a.M11 + b.Y * a.M12 + b.Z * a.M13 + b.W * a.M14 let c2 = b.X * a.M21 + b.Y * a.M22 + b.Z * a.M23 + b.W * a.M24 let c3 = b.X * a.M31 + b.Y * a.M32 + b.Z * a.M33 + b.W * a.M34 let c4 = b.X * a.M41 + b.Y * a.M42 + b.Z * a.M43 + b.W * a.M44 - + let exp = Vector4(c1, c2, c3, c4) - + Assert.Equal(exp, res) - + [] - let ``Vector4-Matrix4 multiplication using left-handed notation is the same as vector/column multiplication and summation`` (a : Matrix4, b : Vector4) = + let ``Vector4-Matrix4 multiplication using left-handed notation is the same as vector/column multiplication and summation`` (a : Matrix4, b : Vector4) = let res = b*a - + let c1 = b.X * a.M11 + b.Y * a.M21 + b.Z * a.M31 + b.W * a.M41 let c2 = b.X * a.M12 + b.Y * a.M22 + b.Z * a.M32 + b.W * a.M42 let c3 = b.X * a.M13 + b.Y * a.M23 + b.Z * a.M33 + b.W * a.M43 let c4 = b.X * a.M14 + b.Y * a.M24 + b.Z * a.M34 + b.W * a.M44 - + let exp = Vector4(c1, c2, c3, c4) - + Assert.Equal(exp, res) - + [] - let ``Static Vector4 multiplication method is the same as component multiplication`` (a : Vector4, b : Vector4) = - + let ``Static Vector4 multiplication method is the same as component multiplication`` (a : Vector4, b : Vector4) = + let v1 = Vector4(a.X * b.X, a.Y * b.Y, a.Z * b.Z, a.W * b.W) let sum = Vector4.Multiply(a, b) - + Assert.ApproximatelyEqual(v1, sum) - + [] - let ``Static Vector4 multiplication method by reference is the same as component multiplication`` (a : Vector4, b : Vector4) = - + let ``Static Vector4 multiplication method by reference is the same as component multiplication`` (a : Vector4, b : Vector4) = + let v1 = Vector4(a.X * b.X, a.Y * b.Y, a.Z * b.Z, a.W * b.W) let sum = Vector4.Multiply(ref a, ref b) - + Assert.ApproximatelyEqual(v1, sum) - + [ |])>] - module Division = + module Division = // [] - let ``Vector4-float division is the same as component-float division`` (a : Vector4, f : float32) = + let ``Vector4-float division is the same as component-float division`` (a : Vector4, f : float32) = if not (approxEq f 0.0f) then // we don't support diving by zero. let r = a / f - + Assert.ApproximatelyEqual(a.X / f, r.X) Assert.ApproximatelyEqual(a.Y / f, r.Y) Assert.ApproximatelyEqual(a.Z / f, r.Z) Assert.ApproximatelyEqual(a.W / f, r.W) - + [] - let ``Static Vector4-Vector4 division method is the same as component division`` (a : Vector4, b : Vector4) = - + let ``Static Vector4-Vector4 division method is the same as component division`` (a : Vector4, b : Vector4) = + let v1 = Vector4(a.X / b.X, a.Y / b.Y, a.Z / b.Z, a.W / b.W) let sum = Vector4.Divide(a, b) - + Assert.ApproximatelyEqual(v1, sum) - + [] - let ``Static Vector4-Vector4 divison method by reference is the same as component division`` (a : Vector4, b : Vector4) = - + let ``Static Vector4-Vector4 divison method by reference is the same as component division`` (a : Vector4, b : Vector4) = + let v1 = Vector4(a.X / b.X, a.Y / b.Y, a.Z / b.Z, a.W / b.W) let sum = Vector4.Divide(ref a, ref b) - + Assert.ApproximatelyEqual(v1, sum) - + [] - let ``Static Vector4-scalar division method is the same as component division`` (a : Vector4, b : float32) = - + let ``Static Vector4-scalar division method is the same as component division`` (a : Vector4, b : float32) = + let v1 = Vector4(a.X / b, a.Y / b, a.Z / b, a.W / b) let sum = Vector4.Divide(a, b) - + Assert.ApproximatelyEqual(v1, sum) - + [] - let ``Static Vector4-scalar divison method by reference is the same as component division`` (a : Vector4, b : float32) = - + let ``Static Vector4-scalar divison method by reference is the same as component division`` (a : Vector4, b : float32) = + let v1 = Vector4(a.X / b, a.Y / b, a.Z / b, a.W / b) let sum = Vector4.Divide(ref a, b) - + Assert.ApproximatelyEqual(v1, sum) - + [ |])>] module Negation = // @@ -430,7 +430,7 @@ module Vector4 = Assert.Equal(-y, vNeg.Y) Assert.Equal(-z, vNeg.Z) Assert.Equal(-w, vNeg.W) - + [ |])>] module Equality = // @@ -439,64 +439,64 @@ module Vector4 = let v1 = Vector4(x, y, z, w) let v2 = Vector4(x, y, z, w) let equality = v1 = v2 - + Assert.True(equality) - + [] let ``Vector inequality operator is by component`` (x, y, z, w) = let v1 = Vector4(x, y, z, w) let v2 = Vector4(x + (float32)1 , y + (float32)1, z + (float32)1, w + (float32)1) let inequality = v1 <> v2 - + Assert.True(inequality) - + [] let ``Vector equality method is by component`` (x, y, z, w) = let v1 = Vector4(x, y, z, w) let v2 = Vector4(x, y, z, w) let notVector = Matrix2() - + let equality = v1.Equals(v2) let inequalityByOtherType = v1.Equals(notVector) - + Assert.True(equality) Assert.False(inequalityByOtherType) - + [] let ``Vector equality method returns false for other classes`` (x, y, z, w) = let v1 = Vector4(x, y, z, w) let notVector = Matrix2() - + let inequalityByOtherType = v1.Equals(notVector) - + Assert.False(inequalityByOtherType) - + [ |])>] module Swizzling = // [] let ``Vector swizzling returns the correct composite for X-primary components`` (x, y, z, w) = - + let v = Vector4(x, y, z, w) - + let xyzw = v let xywz = Vector4(x, y, w, z) let xzyw = Vector4(x, z, y, w) let xzwy = Vector4(x, z, w, y) let xwyz = Vector4(x, w, y, z) let xwzy = Vector4(x, w, z, y) - + let xyz = Vector3(x, y, z) let xyw = Vector3(x, y, w) let xzy = Vector3(x, z, y) let xzw = Vector3(x, z, w) let xwy = Vector3(x, w, y) let xwz = Vector3(x, w, z) - + let xy = Vector2(x, y) let xz = Vector2(x, z) let xw = Vector2(x, w) - + // X primary Assert.Equal(xyzw, v) Assert.Equal(xywz, v.Xywz) @@ -504,23 +504,23 @@ module Vector4 = Assert.Equal(xzwy, v.Xzwy) Assert.Equal(xwyz, v.Xwyz) Assert.Equal(xwzy, v.Xwzy) - + Assert.Equal(xyz, v.Xyz) Assert.Equal(xyw, v.Xyw) Assert.Equal(xzy, v.Xzy) Assert.Equal(xzw, v.Xzw) Assert.Equal(xwy, v.Xwy) Assert.Equal(xwz, v.Xwz) - + Assert.Equal(xy, v.Xy) Assert.Equal(xz, v.Xz) Assert.Equal(xw, v.Xw) - + [] let ``Vector swizzling returns the correct composite for Y-primary components`` (x, y, z, w) = - + let v = Vector4(x, y, z, w) - + let yxzw = Vector4(y, x, z, w) let yxwz = Vector4(y, x, w, z) let yyzw = Vector4(y, y, z, w) @@ -529,18 +529,18 @@ module Vector4 = let yzwx = Vector4(y, z, w, x) let ywxz = Vector4(y, w, x, z) let ywzx = Vector4(y, w, z, x) - + let yxz = Vector3(y, x, z) let yxw = Vector3(y, x, w) let yzx = Vector3(y, z, x) let yzw = Vector3(y, z, w) let ywx = Vector3(y, w, x) let ywz = Vector3(y, w, z) - + let yx = Vector2(y, x) let yz = Vector2(y, z) let yw = Vector2(y, w) - + // Y primary Assert.Equal(yxzw, v.Yxzw) Assert.Equal(yxwz, v.Yxwz) @@ -550,23 +550,23 @@ module Vector4 = Assert.Equal(yzwx, v.Yzwx) Assert.Equal(ywxz, v.Ywxz) Assert.Equal(ywzx, v.Ywzx) - + Assert.Equal(yxz, v.Yxz) Assert.Equal(yxw, v.Yxw) Assert.Equal(yzx, v.Yzx) Assert.Equal(yzw, v.Yzw) Assert.Equal(ywx, v.Ywx) Assert.Equal(ywz, v.Ywz) - + Assert.Equal(yx, v.Yx) Assert.Equal(yz, v.Yz) Assert.Equal(yw, v.Yw) - + [] let ``Vector swizzling returns the correct composite for Z-primary components`` (x, y, z, w) = - + let v = Vector4(x, y, z, w) - + let zxyw = Vector4(z, x, y, w) let zxwy = Vector4(z, x, w, y) let zyxw = Vector4(z, y, x, w) @@ -574,18 +574,18 @@ module Vector4 = let zwxy = Vector4(z, w, x, y) let zwyx = Vector4(z, w, y, x) let zwzy = Vector4(z, w, z, y) - + let zxy = Vector3(z, x, y) let zxw = Vector3(z, x, w) let zyx = Vector3(z, y, x) let zyw = Vector3(z, y, w) let zwx = Vector3(z, w, x) let zwy = Vector3(z, w, y) - + let zx = Vector2(z, x) let zy = Vector2(z, y) let zw = Vector2(z, w) - + // Z primary Assert.Equal(zxyw, v.Zxyw) Assert.Equal(zxwy, v.Zxwy) @@ -594,21 +594,21 @@ module Vector4 = Assert.Equal(zwxy, v.Zwxy) Assert.Equal(zwyx, v.Zwyx) Assert.Equal(zwzy, v.Zwzy) - + Assert.Equal(zxy, v.Zxy) Assert.Equal(zxw, v.Zxw) Assert.Equal(zyx, v.Zyx) Assert.Equal(zyw, v.Zyw) Assert.Equal(zwx, v.Zwx) Assert.Equal(zwy, v.Zwy) - + Assert.Equal(zx, v.Zx) Assert.Equal(zy, v.Zy) Assert.Equal(zw, v.Zw) - + [] let ``Vector swizzling returns the correct composite for W-primary components`` (x, y, z, w) = - + let v = Vector4(x, y, z, w) let wxyz = Vector4(w, x, y, z) @@ -618,14 +618,14 @@ module Vector4 = let wzxy = Vector4(w, z, x, y) let wzyx = Vector4(w, z, y, x) let wzyw = Vector4(w, z, y, w) - + let wxy = Vector3(w, x, y) let wxz = Vector3(w, x, z) let wyx = Vector3(w, y, x) let wyz = Vector3(w, y, z) let wzx = Vector3(w, z, x) let wzy = Vector3(w, z, y) - + let wx = Vector2(w, x) let wy = Vector2(w, y) let wz = Vector2(w, z) @@ -638,18 +638,18 @@ module Vector4 = Assert.Equal(wzxy, v.Wzxy) Assert.Equal(wzyx, v.Wzyx) Assert.Equal(wzyw, v.Wzyw) - + Assert.Equal(wxy, v.Wxy) Assert.Equal(wxz, v.Wxz) Assert.Equal(wyx, v.Wyx) Assert.Equal(wyz, v.Wyz) Assert.Equal(wzx, v.Wzx) Assert.Equal(wzy, v.Wzy) - + Assert.Equal(wx, v.Wx) Assert.Equal(wy, v.Wy) Assert.Equal(wz, v.Wz) - + [ |])>] module Interpolation = // @@ -657,40 +657,40 @@ module Vector4 = let ``Linear interpolation is by component`` (a : Vector4, b : Vector4, q) = let blend = q - - let rX = blend * (b.X - a.X) + a.X + + let rX = blend * (b.X - a.X) + a.X let rY = blend * (b.Y - a.Y) + a.Y let rZ = blend * (b.Z - a.Z) + a.Z let rW = blend * (b.W - a.W) + a.W let vExp = Vector4(rX, rY, rZ, rW) - + Assert.Equal(vExp, Vector4.Lerp(a, b, q)) - + let vRes = Vector4.Lerp(ref a, ref b, q) Assert.Equal(vExp, vRes) - + [] let ``Barycentric interpolation follows the barycentric formula`` (a : Vector4, b : Vector4, c : Vector4, u, v) = let r = a + u * (b - a) + v * (c - a) - + Assert.Equal(r, Vector4.BaryCentric(a, b, c, u, v)) - + let vRes = Vector4.BaryCentric(ref a, ref b, ref c, u, v) Assert.Equal(r, vRes) - + [ |])>] module ``Vector products`` = // [] let ``Dot product method follows the dot product formula`` (a : Vector4, b : Vector4) = let dot = a.X * b.X + a.Y * b.Y + a.Z * b.Z + a.W * b.W - + Assert.Equal(dot, Vector4.Dot(a, b)); - + let vRes = Vector4.Dot(ref a, ref b) Assert.Equal(dot, vRes) - + [ |])>] module ``Component min and max`` = // @@ -698,112 +698,112 @@ module Vector4 = let ``Min selects the vector with lesser magnitude given two vectors`` (x, y, z, w, a, b, c, d) = let v1 = Vector4(x, y, z, w) let v2 = Vector4(a, b, c, d) - + let l1 = v1.LengthSquared let l2 = v2.LengthSquared - + let vMin = Vector4.Min(v1, v2) - + if vMin = v1 then let v1ShorterThanv2 = l1 < l2 Assert.True(v1ShorterThanv2) - else + else let v2ShorterThanv1 = l2 < l1 - Assert.True(v2ShorterThanv1) - + Assert.True(v2ShorterThanv1) + [] let ``Max selects the vector with greater magnitude given two vectors`` (x, y, z, w, a, b, c, d) = let v1 = Vector4(x, y, z, w) let v2 = Vector4(a, b, c, d) - + let l1 = v1.LengthSquared let l2 = v2.LengthSquared - + let vMin = Vector4.Max(v1, v2) - + if vMin = v1 then - let v1LongerThanOrEqualTov2 = l1 >= l2 + let v1LongerThanOrEqualTov2 = l1 >= l2 Assert.True(v1LongerThanOrEqualTov2) - else - let v2LongerThanv1 = l2 > l1 - Assert.True(v2LongerThanv1) - + else + let v2LongerThanv1 = l2 > l1 + Assert.True(v2LongerThanv1) + [ |])>] module Clamping = // [] let ``Clamping one vector between two other vectors clamps all components between corresponding components`` (a : Vector4, b : Vector4, w : Vector4) = let res = Vector4.Clamp(w, a, b) - + let expX = if w.X < a.X then a.X else if w.X > b.X then b.X else w.X let expY = if w.Y < a.Y then a.Y else if w.Y > b.Y then b.Y else w.Y let expZ = if w.Z < a.Z then a.Z else if w.Z > b.Z then b.Z else w.Z let expW = if w.W < a.W then a.W else if w.W > b.W then b.W else w.W - + Assert.Equal(expX, res.X) Assert.Equal(expY, res.Y) Assert.Equal(expZ, res.Z) Assert.Equal(expW, res.W) - + [] let ``Clamping one vector between two other vectors by reference clamps all components`` (a : Vector4, b : Vector4, w : Vector4) = let res = Vector4.Clamp(ref w, ref a, ref b) - + let expX = if w.X < a.X then a.X else if w.X > b.X then b.X else w.X let expY = if w.Y < a.Y then a.Y else if w.Y > b.Y then b.Y else w.Y let expZ = if w.Z < a.Z then a.Z else if w.Z > b.Z then b.Z else w.Z let expW = if w.W < a.W then a.W else if w.W > b.W then b.W else w.W - + Assert.Equal(expX, res.X) Assert.Equal(expY, res.Y) Assert.Equal(expZ, res.Z) Assert.Equal(expW, res.W) - + [ |])>] - module ``Unit vectors``= + module ``Unit vectors``= // [] - let ``Unit X is correct`` = + let ``Unit X is correct`` = let unitX = Vector4((float32)1, (float32)0, (float32)0, (float32)0) - + Assert.Equal(Vector4.UnitX, unitX) - + [] - let ``Unit Y is correct`` = + let ``Unit Y is correct`` = let unitY = Vector4((float32)0, (float32)1, (float32)0, (float32)0) - + Assert.Equal(Vector4.UnitY, unitY) - + [] - let ``Unit Z is correct`` = + let ``Unit Z is correct`` = let unitZ = Vector4((float32)0, (float32)0, (float32)1, (float32)0) - + Assert.Equal(Vector4.UnitZ, unitZ) - + [] - let ``Unit W is correct`` = + let ``Unit W is correct`` = let unitW = Vector4((float32)0, (float32)0, (float32)0, (float32)1) - + Assert.Equal(Vector4.UnitW, unitW) - + [] - let ``Unit zero is correct`` = + let ``Unit zero is correct`` = let unitZero = Vector4((float32)0, (float32)0, (float32)0, (float32)0) - + Assert.Equal(Vector4.Zero, unitZero) - + [] - let ``Unit one is correct`` = + let ``Unit one is correct`` = let unitOne = Vector4((float32)1, (float32)1, (float32)1, (float32)1) - + Assert.Equal(Vector4.One, unitOne) - + [ |])>] - module Serialization = + module Serialization = // [] - let ``The absolute size of a Vector4 is always the size of its components`` (v : Vector4) = + let ``The absolute size of a Vector4 is always the size of its components`` (v : Vector4) = let expectedSize = sizeof * 4 - + Assert.Equal(expectedSize, Vector4.SizeInBytes) Assert.Equal(expectedSize, Marshal.SizeOf(Vector4())) \ No newline at end of file