namespace OpenTK.Tests open Xunit open FsCheck open FsCheck.Xunit open System open OpenTK module Matrix4 = [ |])>] module Constructors = // [] let ``Sixteen value constructor sets all components to the correct values`` (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) = let A = Matrix4(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) Assert.Equal(a, A.M11) Assert.Equal(b, A.M12) Assert.Equal(c, A.M13) Assert.Equal(d, A.M14) Assert.Equal(e, A.M21) Assert.Equal(f, A.M22) Assert.Equal(g, A.M23) Assert.Equal(h, A.M24) Assert.Equal(i, A.M31) Assert.Equal(j, A.M32) Assert.Equal(k, A.M33) Assert.Equal(l, A.M34) Assert.Equal(m, A.M41) Assert.Equal(n, A.M42) Assert.Equal(o, A.M43) Assert.Equal(p, A.M44) [] let ``Matrix3 partial constructor sets all components to the correct values`` (a, b, c, d, e, f, g, h, i) = let B = Matrix3(a, b, c, d, e, f, g, h, i) let A = Matrix4(B) Assert.Equal(a, A.M11) Assert.Equal(b, A.M12) Assert.Equal(c, A.M13) Assert.Equal(0.0f, A.M14) Assert.Equal(d, A.M21) Assert.Equal(e, A.M22) Assert.Equal(f, A.M23) Assert.Equal(0.0f, A.M24) Assert.Equal(g, A.M31) Assert.Equal(h, A.M32) Assert.Equal(i, A.M33) Assert.Equal(0.0f, A.M34) Assert.Equal(0.0f, A.M41) Assert.Equal(0.0f, A.M42) Assert.Equal(0.0f, A.M43) Assert.Equal(1.0f, A.M44) [] let ``Four-vector4 constructor sets all components to the correct values`` (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) = let v1 = Vector4(a, b, c, d) let v2 = Vector4(e, f, g, h) let v3 = Vector4(i, j, k, l) let v4 = Vector4(m, n, o, p) let A = Matrix4(v1, v2, v3, v4) Assert.Equal(a, A.M11) Assert.Equal(b, A.M12) Assert.Equal(c, A.M13) Assert.Equal(d, A.M14) Assert.Equal(e, A.M21) Assert.Equal(f, A.M22) Assert.Equal(g, A.M23) Assert.Equal(h, A.M24) Assert.Equal(i, A.M31) Assert.Equal(j, A.M32) Assert.Equal(k, A.M33) Assert.Equal(l, A.M34) Assert.Equal(m, A.M41) Assert.Equal(n, A.M42) Assert.Equal(o, A.M43) Assert.Equal(p, A.M44) [ |])>] module Equality = // [] let ``Two matrices with identical values are equal`` (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) = let A = Matrix4(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) let B = Matrix4(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) let equality = A = B Assert.True(equality) [] let ``A matrix is not equal to an object which is not a matrix`` (a : Matrix4, b : Vector3) = Assert.False(a.Equals(b)) [ |])>] module Multiplication = // [] let ``Matrix multiplication is done by row/column multiplication and summation`` (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) = let A = Matrix4(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) let B = Matrix4(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) let R11 = a*a + b*e + c*i + d*m let R12 = a*b + b*f + c*j + d*n let R13 = a*c + b*g + c*k + d*o let R14 = a*d + b*h + c*l + d*p let R21 = e*a + f*e + g*i + h*m let R22 = e*b + f*f + g*j + h*n let R23 = e*c + f*g + g*k + h*o let R24 = e*d + f*h + g*l + h*p let R31 = i*a + j*e + k*i + l*m let R32 = i*b + j*f + k*j + l*n let R33 = i*c + j*g + k*k + l*o let R34 = i*d + j*h + k*l + l*p let R41 = m*a + n*e + o*i + p*m let R42 = m*b + n*f + o*j + p*n let R43 = m*c + n*g + o*k + p*o let R44 = m*d + n*h + o*l + p*p let AB = A*B Assert.Equal(R11, AB.M11) Assert.Equal(R12, AB.M12) Assert.Equal(R13, AB.M13) Assert.Equal(R14, AB.M14) Assert.Equal(R21, AB.M21) Assert.Equal(R22, AB.M22) Assert.Equal(R23, AB.M23) Assert.Equal(R24, AB.M24) Assert.Equal(R31, AB.M31) Assert.Equal(R32, AB.M32) Assert.Equal(R33, AB.M33) Assert.Equal(R34, AB.M34) Assert.Equal(R41, AB.M41) Assert.Equal(R42, AB.M42) Assert.Equal(R43, AB.M43) Assert.Equal(R44, AB.M44) [] let ``Matrix multiplication by scalar is the same as row multiplication by scalar`` (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, scalar : float32) = let A = Matrix4(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) let R1 = Vector4(a, b, c, d) * scalar let R2 = Vector4(e, f, g, h) * scalar let R3 = Vector4(i, j, k, l) * scalar let R4 = Vector4(m, n, o, p) * scalar let AScaled = A * scalar Assert.Equal(R1, AScaled.Row0) Assert.Equal(R2, AScaled.Row1) Assert.Equal(R3, AScaled.Row2) Assert.Equal(R4, AScaled.Row3) [] let ``Static method matrix multiplication by scalar is the same as row multiplication by scalar`` (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, scalar : float32) = let A = Matrix4(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) let R1 = Vector4(a, b, c, d) * scalar let R2 = Vector4(e, f, g, h) * scalar let R3 = Vector4(i, j, k, l) * scalar let R4 = Vector4(m, n, o, p) * scalar let AScaled = Matrix4.Mult(A, scalar) Assert.Equal(R1, AScaled.Row0) Assert.Equal(R2, AScaled.Row1) Assert.Equal(R3, AScaled.Row2) Assert.Equal(R4, AScaled.Row3) [] let ``Static method matrix multiplication by reference by scalar is the same as row multiplication by scalar`` (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, scalar : float32) = let A = Matrix4(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) let R1 = Vector4(a, b, c, d) * scalar let R2 = Vector4(e, f, g, h) * scalar let R3 = Vector4(i, j, k, l) * scalar let R4 = Vector4(m, n, o, p) * scalar let AScaled = Matrix4.Mult(ref A, scalar) Assert.Equal(R1, AScaled.Row0) Assert.Equal(R2, AScaled.Row1) Assert.Equal(R3, AScaled.Row2) Assert.Equal(R4, AScaled.Row3) [ |])>] module Addition = // [] let ``Matrix addition adds corresponding components`` (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) = let A = Matrix4(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) let B = Matrix4(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) let sum = A + B Assert.Equal(a + a, sum.M11) Assert.Equal(b + b, sum.M12) Assert.Equal(c + c, sum.M13) Assert.Equal(d + d, sum.M14) Assert.Equal(e + e, sum.M21) Assert.Equal(f + f, sum.M22) Assert.Equal(g + g, sum.M23) Assert.Equal(h + h, sum.M24) Assert.Equal(i + i, sum.M31) Assert.Equal(j + j, sum.M32) Assert.Equal(k + k, sum.M33) Assert.Equal(l + l, sum.M34) Assert.Equal(m + m, sum.M41) Assert.Equal(n + n, sum.M42) Assert.Equal(o + o, sum.M43) Assert.Equal(p + p, sum.M44) [ |])>] module Subtraction = // [] let ``Matrix subtraction subtracts corresponding components`` (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) = let A = Matrix4(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) let B = Matrix4(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) let sub = A - B Assert.Equal(a - a, sub.M11) Assert.Equal(b - b, sub.M12) Assert.Equal(c - c, sub.M13) Assert.Equal(d - d, sub.M14) Assert.Equal(e - e, sub.M21) Assert.Equal(f - f, sub.M22) Assert.Equal(g - g, sub.M23) Assert.Equal(h - h, sub.M24) Assert.Equal(i - i, sub.M31) Assert.Equal(j - j, sub.M32) Assert.Equal(k - k, sub.M33) Assert.Equal(l - l, sub.M34) Assert.Equal(m - m, sub.M41) Assert.Equal(n - n, sub.M42) Assert.Equal(o - o, sub.M43) Assert.Equal(p - p, sub.M44) [ |])>] module Indexing = // [] let ``Matrix set indexing sets correct components`` (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) = let mutable A = Matrix4() A.[0, 0] <- a A.[0, 1] <- b A.[0, 2] <- c A.[0, 3] <- d A.[1, 0] <- e A.[1, 1] <- f A.[1, 2] <- g A.[1, 3] <- h A.[2, 0] <- i A.[2, 1] <- j A.[2, 2] <- k A.[2, 3] <- l A.[3, 0] <- m A.[3, 1] <- n A.[3, 2] <- o A.[3, 3] <- p Assert.Equal(a, A.M11) Assert.Equal(b, A.M12) Assert.Equal(c, A.M13) Assert.Equal(d, A.M14) Assert.Equal(e, A.M21) Assert.Equal(f, A.M22) Assert.Equal(g, A.M23) Assert.Equal(h, A.M24) Assert.Equal(i, A.M31) Assert.Equal(j, A.M32) Assert.Equal(k, A.M33) Assert.Equal(l, A.M34) Assert.Equal(m, A.M41) Assert.Equal(n, A.M42) Assert.Equal(o, A.M43) Assert.Equal(p, A.M44) [] let ``Matrix get indexing accesses the correct components`` (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) = let A = Matrix4(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) Assert.Equal(a, A.[0, 0]) Assert.Equal(b, A.[0, 1]) Assert.Equal(c, A.[0, 2]) Assert.Equal(d, A.[0, 3]) Assert.Equal(e, A.[1, 0]) Assert.Equal(f, A.[1, 1]) Assert.Equal(g, A.[1, 2]) Assert.Equal(h, A.[1, 3]) Assert.Equal(i, A.[2, 0]) Assert.Equal(j, A.[2, 1]) Assert.Equal(k, A.[2, 2]) Assert.Equal(l, A.[2, 3]) Assert.Equal(m, A.[3, 0]) Assert.Equal(n, A.[3, 1]) Assert.Equal(o, A.[3, 2]) Assert.Equal(p, A.[3, 3]) [] let ``Indexed set operator throws exception for negative indices`` (b : Matrix4, x : float32) = let mutable a = b (fun() -> a.[-1, 2] <- x) |> Assert.Throws |> ignore (fun() -> a.[1, -2] <- x) |> Assert.Throws |> ignore (fun() -> a.[-1, -2] <- x) |> Assert.Throws |> ignore [] let ``Indexed get operator throws exception for negative indices`` (a : Matrix4) = (fun() -> a.[-1, 2] |> ignore) |> Assert.Throws |> ignore (fun() -> a.[1, -2] |> ignore) |> Assert.Throws |> ignore (fun() -> a.[-1, -2] |> ignore) |> Assert.Throws |> ignore [] let ``Indexed set operator throws exception for large indices`` (a : Matrix4, x : float32) = let mutable b = a (fun() -> b.[5, 2] <- x) |> Assert.Throws |> ignore (fun() -> b.[1, 6] <- x) |> Assert.Throws |> ignore (fun() -> b.[7, 12] <- x) |> Assert.Throws |> ignore [] let ``Indexed get operator throws exception for large indices`` (a : Matrix4) = (fun() -> a.[5, 2] |> ignore) |> Assert.Throws |> ignore (fun() -> a.[1, 6] |> ignore) |> Assert.Throws |> ignore (fun() -> a.[7, 12] |> ignore) |> Assert.Throws |> ignore [ |])>] module ``Row and column properties`` = // [] let ``Matrix row properties return the correct components`` (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) = let A = Matrix4(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) let R0 = A.Row0 let R1 = A.Row1 let R2 = A.Row2 let R3 = A.Row3 Assert.Equal(a, R0.X) Assert.Equal(b, R0.Y) Assert.Equal(c, R0.Z) Assert.Equal(d, R0.W) Assert.Equal(e, R1.X) Assert.Equal(f, R1.Y) Assert.Equal(g, R1.Z) Assert.Equal(h, R1.W) Assert.Equal(i, R2.X) Assert.Equal(j, R2.Y) Assert.Equal(k, R2.Z) Assert.Equal(l, R2.W) Assert.Equal(m, R3.X) Assert.Equal(n, R3.Y) Assert.Equal(o, R3.Z) Assert.Equal(p, R3.W)