namespace OpenTK.Tests open Xunit open FsCheck open FsCheck.Xunit open System open System.Runtime.InteropServices open OpenTK module Vector3 = [ |])>] module Constructors = // [] let ``Triple value constructor sets all components to the correct values`` (a, b, c) = let v = Vector3(a, b, c) Assert.Equal(a, v.X) Assert.Equal(b, v.Y) Assert.Equal(c, v.Z) [] let ``Single value constructor sets all components to the correct values`` (a : float32) = let v = Vector3(a) Assert.Equal(a, v.X) Assert.Equal(a, v.Y) Assert.Equal(a, v.Z) [] let ``Vector2 value constructor sets all components to the correct values`` (a, b) = let v1 = Vector2(a, b) let v2 = Vector3(v1) Assert.Equal(v1.X, v2.X) Assert.Equal(v1.Y, v2.Y) Assert.Equal(a, v2.X) Assert.Equal(b, v2.Y) Assert.Equal(0.0f, v2.Z) [] let ``Vector3 value constructor sets all components to the correct values`` (a, b, c) = let v1 = Vector3(a, b, c) let v2 = Vector3(v1) Assert.Equal(v1.X, v2.X) Assert.Equal(v1.Y, v2.Y) Assert.Equal(v1.Z, v2.Z) Assert.Equal(a, v2.X) Assert.Equal(b, v2.Y) Assert.Equal(c, v2.Z) [] let ``Vector4 value constructor sets all components to the correct values`` (a, b, c, d) = let v1 = Vector4(a, b, c, d) let v2 = Vector3(v1) Assert.Equal(v1.X, v2.X) Assert.Equal(v1.Y, v2.Y) Assert.Equal(v1.Z, v2.Z) Assert.Equal(a, v2.X) Assert.Equal(b, v2.Y) Assert.Equal(c, v2.Z) [ |])>] module Indexing = // [] let ``Index operator accesses the correct components`` (x, y, z) = let v = Vector3(x, y, z) Assert.Equal(x, v.[0]) Assert.Equal(y, v.[1]) Assert.Equal(z, v.[2]) [] let ``Indexed set operator throws exception for negative indices`` (x, y, z) = let mutable v = Vector3(x, y, z) (fun() -> v.[-1] <- x) |> Assert.ThrowsIndexExn [] let ``Indexed get operator throws exception for negative indices`` (x, y, z) = let mutable v = Vector3(x, y, z) (fun() -> v.[-1] |> ignore) |> Assert.ThrowsIndexExn [] let ``Indexed set operator throws exception for large indices`` (x, y, z) = let mutable v = Vector3(x, y, z) (fun() -> v.[4] <- x) |> Assert.ThrowsIndexExn [] let ``Indexed get operator throws exception for large indices`` (x, y, z) = let mutable v = Vector3(x, y, z) (fun() -> v.[4] |> ignore) |> Assert.ThrowsIndexExn [ |])>] module Length = // [] let ``Length method follows the pythagorean theorem`` (a, b, c) = let v = Vector3(a, b, c) let l = System.Math.Sqrt((float)(a * a + b * b + c * c)) Assert.Equal((float32)l, v.Length) [] let ``Fast length method is the same as one divided by the fast inverse square`` (a, b, c) = let v = Vector3(a, b, c) let l = 1.0f / MathHelper.InverseSqrtFast(a * a + b * b + c * c) Assert.Equal(l, v.LengthFast) [] let ``Length squared method returns each component squared and summed`` (a, b, c) = let v = Vector3(a, b, c) let lsq = a * a + b * b + c * c Assert.Equal(lsq, v.LengthSquared) [ |])>] module Normalization = // [] let ``Normalization creates a new unit length vector with the correct components`` (a, b, c) = let v = Vector3(a, b, c) let l = v.Length // Dividing by zero is not supported if not (approxEq l 0.0f) then let norm = v.Normalized() Assert.ApproximatelyEquivalent(v.X / l, norm.X) Assert.ApproximatelyEquivalent(v.Y / l, norm.Y) Assert.ApproximatelyEquivalent(v.Z / l, norm.Z) [] let ``Normalization of instance transforms the instance into a unit length vector with the correct components`` (a, b, c) = let v = Vector3(a, b, c) let l = v.Length if not (approxEq l 0.0f) then let norm = Vector3(a, b, c) norm.Normalize() Assert.ApproximatelyEquivalent(v.X / l, norm.X) Assert.ApproximatelyEquivalent(v.Y / l, norm.Y) Assert.ApproximatelyEquivalent(v.Z / l, norm.Z) [] let ``Fast approximate normalization of instance transforms the instance into a unit length vector with the correct components`` (a, b, c) = let v = Vector3(a, b, c) let norm = Vector3(a, b, c) norm.NormalizeFast() let scale = MathHelper.InverseSqrtFast(a * a + b * b + c * c) Assert.ApproximatelyEquivalent(v.X * scale, norm.X) Assert.ApproximatelyEquivalent(v.Y * scale, norm.Y) Assert.ApproximatelyEquivalent(v.Z * scale, norm.Z) [] let ``Normalization by reference is the same as division by magnitude`` (a : Vector3) = // Zero-length vectors can't be normalized if not (approxEq a.Length 0.0f) then let norm = a / a.Length let vRes = Vector3.Normalize(ref a) Assert.ApproximatelyEquivalent(norm, vRes) [] let ``Normalization is the same as division by magnitude`` (a : Vector3) = // Zero-length vectors can't be normalized if not (approxEq a.Length 0.0f) then let norm = a / a.Length Assert.ApproximatelyEquivalent(norm, Vector3.Normalize(a)); [] let ``Fast approximate normalization by reference is the same as multiplication by the fast inverse square`` (a : Vector3) = let scale = MathHelper.InverseSqrtFast(a.X * a.X + a.Y * a.Y + a.Z * a.Z) let norm = a * scale let vRes = Vector3.NormalizeFast(ref a) Assert.ApproximatelyEquivalent(norm, vRes) [] let ``Fast approximate normalization is the same as multiplication by fast inverse square`` (a : Vector3) = let scale = MathHelper.InverseSqrtFast(a.X * a.X + a.Y * a.Y + a.Z * a.Z) let norm = a * scale Assert.ApproximatelyEquivalent(norm, Vector3.NormalizeFast(a)); [ |])>] module Addition = // [] let ``Vector3 addition is the same as component addition`` (a : Vector3, b : Vector3) = let c = a + b Assert.ApproximatelyEquivalent(a.X + b.X,c.X) Assert.ApproximatelyEquivalent(a.Y + b.Y,c.Y) Assert.ApproximatelyEquivalent(a.Z + b.Z,c.Z) [] let ``Vector3 addition is commutative`` (a : Vector3, b : Vector3) = let c = a + b let c2 = b + a Assert.ApproximatelyEquivalent(c, c2) [] let ``Vector3 addition is associative`` (a : Vector3, b : Vector3, c : Vector3) = let r1 = (a + b) + c let r2 = a + (b + c) Assert.ApproximatelyEquivalent(r1, r2) [] let ``Static Vector3 addition method is the same as component addition`` (a : Vector3, b : Vector3) = let v1 = Vector3(a.X + b.X, a.Y + b.Y, a.Z + b.Z) let sum = Vector3.Add(a, b) Assert.ApproximatelyEquivalent(v1, sum) [] let ``Static Vector3 addition method by reference is the same as component addition`` (a : Vector3, b : Vector3) = let v1 = Vector3(a.X + b.X, a.Y + b.Y, a.Z + b.Z) let sum = Vector3.Add(ref a, ref b) Assert.ApproximatelyEquivalent(v1, sum) [ |])>] module Subtraction = // [] let ``Vector3 subtraction is the same as component subtraction`` (a : Vector3, b : Vector3) = let c = a - b Assert.Equal(a.X - b.X,c.X) Assert.Equal(a.Y - b.Y,c.Y) Assert.Equal(a.Z - b.Z,c.Z) [] let ``Static Vector3 subtraction method is the same as component addition`` (a : Vector3, b : Vector3) = let v1 = Vector3(a.X - b.X, a.Y - b.Y, a.Z - b.Z) let sum = Vector3.Subtract(a, b) Assert.ApproximatelyEquivalent(v1, sum) [] let ``Static Vector3 subtraction method by reference is the same as component addition`` (a : Vector3, b : Vector3) = let v1 = Vector3(a.X - b.X, a.Y - b.Y, a.Z - b.Z) let sum = Vector3.Subtract(ref a, ref b) Assert.ApproximatelyEquivalent(v1, sum) [ |])>] module Multiplication = // [] let ``Vector3 multiplication is the same as component multiplication`` (a : Vector3, b : Vector3) = let c = a * b Assert.Equal(a.X * b.X,c.X) Assert.Equal(a.Y * b.Y,c.Y) Assert.Equal(a.Z * b.Z,c.Z) [] let ``Vector3 multiplication is commutative`` (a : Vector3, b : Vector3) = let r1 = a * b let r2 = b * a Assert.Equal(r1, r2) [] let ``Left-handed Vector3-scalar multiplication is the same as component-scalar multiplication`` (a : Vector3, f : float32) = let r = a * f Assert.Equal(a.X * f,r.X) Assert.Equal(a.Y * f,r.Y) Assert.Equal(a.Z * f,r.Z) [] let ``Right-handed Vector3-scalar multiplication is the same as component-scalar multiplication`` (a : Vector3, f : float32) = let r = f * a Assert.Equal(a.X * f,r.X) Assert.Equal(a.Y * f,r.Y) Assert.Equal(a.Z * f,r.Z) [] let ``Static method Vector3-scalar multiplication is the same as component-scalar multiplication`` (a : Vector3, f : float32) = let r = Vector3.Multiply(a, f) Assert.Equal(a.X * f,r.X) Assert.Equal(a.Y * f,r.Y) Assert.Equal(a.Z * f,r.Z) [] let ``Vector3-Matrix3 multiplication using right-handed notation is the same as vector/row multiplication and summation`` (a : Matrix3, b : Vector3) = let res = a*b let c1 = b.X * a.M11 + b.Y * a.M12 + b.Z * a.M13 let c2 = b.X * a.M21 + b.Y * a.M22 + b.Z * a.M23 let c3 = b.X * a.M31 + b.Y * a.M32 + b.Z * a.M33 let exp = Vector3(c1, c2, c3) Assert.Equal(exp, res) [] let ``Vector3-Matrix3 multiplication using left-handed notation is the same as vector/column multiplication and summation`` (a : Matrix3, b : Vector3) = let res = b*a let c1 = b.X * a.M11 + b.Y * a.M21 + b.Z * a.M31 let c2 = b.X * a.M12 + b.Y * a.M22 + b.Z * a.M32 let c3 = b.X * a.M13 + b.Y * a.M23 + b.Z * a.M33 let exp = Vector3(c1, c2, c3) Assert.Equal(exp, res) [] let ``Static Vector3 multiplication method is the same as component multiplication`` (a : Vector3, b : Vector3) = let v1 = Vector3(a.X * b.X, a.Y * b.Y, a.Z * b.Z) let sum = Vector3.Multiply(a, b) Assert.ApproximatelyEquivalent(v1, sum) [] let ``Static Vector3 multiplication method by reference is the same as component multiplication`` (a : Vector3, b : Vector3) = let v1 = Vector3(a.X * b.X, a.Y * b.Y, a.Z * b.Z) let sum = Vector3.Multiply(ref a, ref b) Assert.ApproximatelyEquivalent(v1, sum) [ |])>] module Division = // [] let ``Vector3-float division is the same as component-float division`` (a : Vector3, f : float32) = if not (approxEq f 0.0f) then // we don't support diving by zero. let r = a / f Assert.ApproximatelyEquivalent(a.X / f,r.X) Assert.ApproximatelyEquivalent(a.Y / f,r.Y) Assert.ApproximatelyEquivalent(a.Z / f,r.Z) [] let ``Static Vector3-Vector3 division method is the same as component division`` (a : Vector3, b : Vector3) = if not (anyZero3 a || anyZero3 b) then let v1 = Vector3(a.X / b.X, a.Y / b.Y, a.Z / b.Z) let sum = Vector3.Divide(a, b) Assert.ApproximatelyEquivalent(v1, sum) [] let ``Static Vector3-Vector3 divison method by reference is the same as component division`` (a : Vector3, b : Vector3) = if not (anyZero3 a || anyZero3 b) then let v1 = Vector3(a.X / b.X, a.Y / b.Y, a.Z / b.Z) let sum = Vector3.Divide(ref a, ref b) Assert.ApproximatelyEquivalent(v1, sum) [] let ``Static Vector3-scalar division method is the same as component division`` (a : Vector3, b : float32) = if not (approxEq b 0.0f) then // we don't support diving by zero. let v1 = Vector3(a.X / b, a.Y / b, a.Z / b) let sum = Vector3.Divide(a, b) Assert.ApproximatelyEquivalent(v1, sum) [] let ``Static Vector3-scalar divison method by reference is the same as component division`` (a : Vector3, b : float32) = if not (approxEq b 0.0f) then // we don't support diving by zero. let v1 = Vector3(a.X / b, a.Y / b, a.Z / b) let sum = Vector3.Divide(ref a, b) Assert.ApproximatelyEquivalent(v1, sum) [ |])>] module Negation = // [] let ``Vector negation operator negates all components`` (x, y, z) = let v = Vector3(x, y, z) let vNeg = -v Assert.Equal(-x, vNeg.X) Assert.Equal(-y, vNeg.Y) Assert.Equal(-z, vNeg.Z) [ |])>] module Equality = // [] let ``Vector equality operator is by component`` (x, y, z) = let v1 = Vector3(x, y, z) let v2 = Vector3(x, y, z) let equality = v1 = v2 Assert.True(equality) [] let ``Vector inequality operator is by component`` (x, y, z) = let v1 = Vector3(x, y, z) let v2 = Vector3(x + 1.0f , y + 1.0f, z + 1.0f) let inequality = v1 <> v2 Assert.True(inequality) [] let ``Vector equality method is by component`` (x, y, z) = let v1 = Vector3(x, y, z) let v2 = Vector3(x, y, z) let notVector = Matrix2() let equality = v1.Equals(v2) let inequalityByOtherType = v1.Equals(notVector) Assert.True(equality) Assert.False(inequalityByOtherType) [ |])>] module Swizzling = // [] let ``Vector swizzling returns the correct composite for X-primary components`` (x, y, z) = let v = Vector3(x, y, z) let xyz = Vector3(x, y, z) let xzy = Vector3(x, z, y) let xy = Vector2(x, y) let xz = Vector2(x, z) Assert.Equal(xyz, v); Assert.Equal(xzy, v.Xzy); Assert.Equal(xy, v.Xy); Assert.Equal(xz, v.Xz); [] let ``Vector swizzling returns the correct composite for Y-primary components`` (x, y, z) = let v = Vector3(x, y, z) let yxz = Vector3(y, x, z) let yzx = Vector3(y, z, x) let yx = Vector2(y, x) let yz = Vector2(y, z) Assert.Equal(yxz, v.Yxz); Assert.Equal(yzx, v.Yzx); Assert.Equal(yx, v.Yx); Assert.Equal(yz, v.Yz); [] let ``Vector swizzling returns the correct composite for Z-primary components`` (x, y, z) = let v = Vector3(x, y, z) let zxy = Vector3(z, x, y) let zyx = Vector3(z, y, x) let zx = Vector2(z, x) let zy = Vector2(z, y); Assert.Equal(zxy, v.Zxy); Assert.Equal(zyx, v.Zyx); Assert.Equal(zx, v.Zx); Assert.Equal(zy, v.Zy); [ |])>] module Interpolation = // [] let ``Linear interpolation is by component`` (a : Vector3, b : Vector3, q) = let blend = q let rX = blend * (b.X - a.X) + a.X let rY = blend * (b.Y - a.Y) + a.Y let rZ = blend * (b.Z - a.Z) + a.Z let vExp = Vector3(rX, rY, rZ) Assert.Equal(vExp, Vector3.Lerp(a, b, q)) let vRes = Vector3.Lerp(ref a, ref b, q) Assert.Equal(vExp, vRes) [] let ``Barycentric interpolation follows the barycentric formula`` (a : Vector3, b : Vector3, c : Vector3, u, v) = let r = a + u * (b - a) + v * (c - a) Assert.Equal(r, Vector3.BaryCentric(a, b, c, u, v)) let vRes = Vector3.BaryCentric(ref a, ref b, ref c, u, v) Assert.Equal(r, vRes) [ |])>] module ``Vector products`` = // [] let ``Dot product follows the dot product formula`` (a : Vector3, b : Vector3) = let dot = a.X * b.X + a.Y * b.Y + a.Z * b.Z Assert.Equal(dot, Vector3.Dot(a, b)); let vRes = Vector3.Dot(ref a, ref b) Assert.Equal(dot, vRes) [] let ``Cross product follows the cross product formula`` (a : Vector3, b : Vector3) = let crossX = a.Y * b.Z - a.Z * b.Y let crossY = a.Z * b.X - a.X * b.Z let crossZ = a.X * b.Y - a.Y * b.X let cross = Vector3(crossX, crossY, crossZ) Assert.Equal(cross, Vector3.Cross(a, b)); let vRes = Vector3.Cross(ref a, ref b) Assert.Equal(cross, vRes) [ |])>] module ``Magnitude min and max`` = // [] let ``MagnitudeMin selects the vector with equal or lesser magnitude given two vectors`` (v1 : Vector3, v2: Vector3) = // Results do not matter for equal vectors if not (v1 = v2) then let l1 = v1.LengthSquared let l2 = v2.LengthSquared let vMin = Vector3.MagnitudeMin(v1, v2) if vMin = v1 then let v1ShorterThanv2 = l1 < l2 Assert.True(v1ShorterThanv2) else let v2ShorterThanOrEqualTov1 = l2 <= l1 Assert.True(v2ShorterThanOrEqualTov1) [] let ``MagnitudeMax selects the vector with equal or greater magnitude given two vectors`` (v1 : Vector3, v2: Vector3) = // Results do not matter for equal vectors if not (v1 = v2) then let l1 = v1.LengthSquared let l2 = v2.LengthSquared let vMin = Vector3.MagnitudeMax(v1, v2) if vMin = v1 then let v1LongerThanOrEqualTov2 = l1 >= l2 Assert.True(v1LongerThanOrEqualTov2) else let v2LongerThanv1 = l2 > l1 Assert.True(v2LongerThanv1) [] let ``MagnitudeMin by reference selects the vector with equal or lesser magnitude given two vectors`` (v1 : Vector3, v2: Vector3) = // Results do not matter for equal vectors if not (v1 = v2) then let l1 = v1.LengthSquared let l2 = v2.LengthSquared let vMin = Vector3.MagnitudeMin(ref v1, ref v2) if vMin = v1 then let v1ShorterThanv2 = l1 < l2 Assert.True(v1ShorterThanv2) else let v2ShorterThanOrEqualTov1 = l2 <= l1 Assert.True(v2ShorterThanOrEqualTov1) [] let ``MagnitudeMax by reference selects the vector with equal or greater magnitude given two vectors`` (v1 : Vector3, v2: Vector3) = // Results do not matter for equal vectors if not (v1 = v2) then let l1 = v1.LengthSquared let l2 = v2.LengthSquared let vMin = Vector3.MagnitudeMax(ref v1, ref v2) if vMin = v1 then let v1LongerThanOrEqualTov2 = l1 >= l2 Assert.True(v1LongerThanOrEqualTov2) else let v2LongerThanv1 = l2 > l1 Assert.True(v2LongerThanv1) [ |])>] module ``Component min and max`` = // [] let ``ComponentMin creates a new vector from the smallest components of given vectors`` (v1 : Vector3, v2: Vector3) = let vMin = Vector3.ComponentMin(v1, v2) let isComponentSmallest smallComp comp1 comp2 = smallComp <= comp1 && smallComp <= comp2 Assert.True(isComponentSmallest vMin.X v1.X v2.X) Assert.True(isComponentSmallest vMin.Y v1.Y v2.Y) Assert.True(isComponentSmallest vMin.Z v1.Z v2.Z) [] let ``ComponentMax creates a new vector from the greatest components of given vectors`` (v1 : Vector3, v2: Vector3) = let vMax = Vector3.ComponentMax(v1, v2) let isComponentLargest largeComp comp1 comp2 = largeComp >= comp1 && largeComp >= comp2 Assert.True(isComponentLargest vMax.X v1.X v2.X) Assert.True(isComponentLargest vMax.Y v1.Y v2.Y) Assert.True(isComponentLargest vMax.Z v1.Z v2.Z) [] let ``ComponentMin by reference creates a new vector from the smallest components of given vectors`` (v1 : Vector3, v2: Vector3) = let vMin = Vector3.ComponentMin(ref v1, ref v2) let isComponentSmallest smallComp comp1 comp2 = smallComp <= comp1 && smallComp <= comp2 Assert.True(isComponentSmallest vMin.X v1.X v2.X) Assert.True(isComponentSmallest vMin.Y v1.Y v2.Y) Assert.True(isComponentSmallest vMin.Z v1.Z v2.Z) [] let ``ComponentMax by reference creates a new vector from the greatest components of given vectors`` (v1 : Vector3, v2: Vector3) = let vMax = Vector3.ComponentMax(ref v1, ref v2) let isComponentLargest largeComp comp1 comp2 = largeComp >= comp1 && largeComp >= comp2 Assert.True(isComponentLargest vMax.X v1.X v2.X) Assert.True(isComponentLargest vMax.Y v1.Y v2.Y) Assert.True(isComponentLargest vMax.Z v1.Z v2.Z) [ |])>] module Clamping = // [] let ``Clamping one vector between two other vectors clamps all components between corresponding components`` (a : Vector3, b : Vector3, w : Vector3) = let res = Vector3.Clamp(w, a, b) let expX = if w.X < a.X then a.X else if w.X > b.X then b.X else w.X let expY = if w.Y < a.Y then a.Y else if w.Y > b.Y then b.Y else w.Y let expZ = if w.Z < a.Z then a.Z else if w.Z > b.Z then b.Z else w.Z Assert.Equal(expX, res.X) Assert.Equal(expY, res.Y) Assert.Equal(expZ, res.Z) [] let ``Clamping one vector between two other vectors by reference clamps all components between corresponding components`` (a : Vector3, b : Vector3, w : Vector3) = let res = Vector3.Clamp(ref w, ref a, ref b) let expX = if w.X < a.X then a.X else if w.X > b.X then b.X else w.X let expY = if w.Y < a.Y then a.Y else if w.Y > b.Y then b.Y else w.Y let expZ = if w.Z < a.Z then a.Z else if w.Z > b.Z then b.Z else w.Z Assert.Equal(expX, res.X) Assert.Equal(expY, res.Y) Assert.Equal(expZ, res.Z) [ |])>] module ``Unit vectors``= // [] let ``Unit X is correct`` = let unitX = Vector3(1.0f, 0.0f, 0.0f) Assert.Equal(Vector3.UnitX, unitX) [] let ``Unit Y is correct`` = let unitY = Vector3(0.0f, 1.0f, 0.0f) Assert.Equal(Vector3.UnitY, unitY) [] let ``Unit Z is correct`` = let unitZ = Vector3(0.0f, 0.0f, 1.0f) Assert.Equal(Vector3.UnitZ, unitZ) [] let ``Unit zero is correct`` = let unitZero = Vector3(0.0f, 0.0f, 0.0f) Assert.Equal(Vector3.Zero, unitZero) [] let ``Unit one is correct`` = let unitOne = Vector3(1.0f, 1.0f, 1.0f) Assert.Equal(Vector3.One, unitOne) [ |])>] module Serialization = // [] let ``The absolute size of a Vector3 is always the size of its components`` (v : Vector3) = let expectedSize = sizeof * 3 Assert.Equal(expectedSize, Vector3.SizeInBytes) Assert.Equal(expectedSize, Marshal.SizeOf(Vector3())) [ |])>] module Transformation = // [] let ``Transformation by quaternion is the same as multiplication by quaternion and its conjugate`` (v : Vector3, q : Quaternion) = let vectorQuat = Quaternion(v.X, v.Y, v.Z, 0.0f) let inverse = Quaternion.Invert(q) let transformedQuat = q * vectorQuat * inverse let transformedVector = transformedQuat.Xyz Assert.ApproximatelyEquivalent(transformedVector, Vector3.Transform(v, q)) [] let ``Transformation by quaternion by reference is the same as multiplication by quaternion and its conjugate`` (v : Vector3, q : Quaternion) = let vectorQuat = Quaternion(v.X, v.Y, v.Z, 0.0f) let inverse = Quaternion.Invert(q) let transformedQuat = q * vectorQuat * inverse let transformedVector = transformedQuat.Xyz Assert.ApproximatelyEquivalent(transformedVector, Vector3.Transform(ref v, ref q)) [] let ``Transformation by quaternion by multiplication using right-handed notation is the same as multiplication by quaternion and its conjugate`` (v : Vector3, q : Quaternion) = let vectorQuat = Quaternion(v.X, v.Y, v.Z, 0.0f) let inverse = Quaternion.Invert(q) let transformedQuat = q * vectorQuat * inverse let transformedVector = transformedQuat.Xyz Assert.ApproximatelyEquivalent(transformedVector, q * v) [] let ``Transformation by identity quaternion does not alter vector`` (v : Vector3) = let q = Quaternion.Identity let vectorQuat = Quaternion(v.X, v.Y, v.Z, 0.0f) let inverse = Quaternion.Invert(q) let transformedQuat = q * vectorQuat * inverse let transformedVector = transformedQuat.Xyz Assert.ApproximatelyEquivalent(v, transformedVector) Assert.ApproximatelyEquivalent(v, Vector3.Transform(v, q)) Assert.ApproximatelyEquivalent(transformedVector, Vector3.Transform(v, q))