#region --- License ---
/*
Copyright (c) 2006 - 2008 The Open Toolkit library.
Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
*/
#endregion
using System;
using System.Runtime.InteropServices;
namespace OpenTK
{
///
/// Represents a 3x4 matrix.
///
[Serializable]
[StructLayout(LayoutKind.Sequential)]
public struct Matrix4x3 : IEquatable
{
#region Fields
///
/// Top row of the matrix
///
public Vector3 Row0;
///
/// 2nd row of the matrix
///
public Vector3 Row1;
///
/// 3rd row of the matrix
///
public Vector3 Row2;
///
/// Bottom row of the matrix
///
public Vector3 Row3;
///
/// The zero matrix
///
public static readonly Matrix4x3 Zero = new Matrix4x3(Vector3.Zero, Vector3.Zero, Vector3.Zero, Vector3.Zero);
#endregion
#region Constructors
///
/// Constructs a new instance.
///
/// Top row of the matrix
/// Second row of the matrix
/// Third row of the matrix
/// Bottom row of the matrix
public Matrix4x3(Vector3 row0, Vector3 row1, Vector3 row2, Vector3 row3)
{
Row0 = row0;
Row1 = row1;
Row2 = row2;
Row3 = row3;
}
///
/// Constructs a new instance.
///
/// First item of the first row of the matrix.
/// Second item of the first row of the matrix.
/// Third item of the first row of the matrix.
/// First item of the second row of the matrix.
/// Second item of the second row of the matrix.
/// Third item of the second row of the matrix.
/// First item of the third row of the matrix.
/// Second item of the third row of the matrix.
/// Third item of the third row of the matrix.
/// First item of the fourth row of the matrix.
/// Second item of the fourth row of the matrix.
/// Third item of the fourth row of the matrix.
public Matrix4x3(
float m00, float m01, float m02,
float m10, float m11, float m12,
float m20, float m21, float m22,
float m30, float m31, float m32)
{
Row0 = new Vector3(m00, m01, m02);
Row1 = new Vector3(m10, m11, m12);
Row2 = new Vector3(m20, m21, m22);
Row3 = new Vector3(m30, m31, m32);
}
#endregion
#region Public Members
#region Properties
///
/// Gets the first column of this matrix.
///
public Vector4 Column0
{
get { return new Vector4(Row0.X, Row1.X, Row2.X, Row3.X); }
}
///
/// Gets the second column of this matrix.
///
public Vector4 Column1
{
get { return new Vector4(Row0.Y, Row1.Y, Row2.Y, Row3.Y); }
}
///
/// Gets the third column of this matrix.
///
public Vector4 Column2
{
get { return new Vector4(Row0.Z, Row1.Z, Row2.Z, Row3.Z); }
}
///
/// Gets or sets the value at row 1, column 1 of this instance.
///
public float M11 { get { return Row0.X; } set { Row0.X = value; } }
///
/// Gets or sets the value at row 1, column 2 of this instance.
///
public float M12 { get { return Row0.Y; } set { Row0.Y = value; } }
///
/// Gets or sets the value at row 1, column 3 of this instance.
///
public float M13 { get { return Row0.Z; } set { Row0.Z = value; } }
///
/// Gets or sets the value at row 2, column 1 of this instance.
///
public float M21 { get { return Row1.X; } set { Row1.X = value; } }
///
/// Gets or sets the value at row 2, column 2 of this instance.
///
public float M22 { get { return Row1.Y; } set { Row1.Y = value; } }
///
/// Gets or sets the value at row 2, column 3 of this instance.
///
public float M23 { get { return Row1.Z; } set { Row1.Z = value; } }
///
/// Gets or sets the value at row 3, column 1 of this instance.
///
public float M31 { get { return Row2.X; } set { Row2.X = value; } }
///
/// Gets or sets the value at row 3, column 2 of this instance.
///
public float M32 { get { return Row2.Y; } set { Row2.Y = value; } }
///
/// Gets or sets the value at row 3, column 3 of this instance.
///
public float M33 { get { return Row2.Z; } set { Row2.Z = value; } }
///
/// Gets or sets the value at row 4, column 1 of this instance.
///
public float M41 { get { return Row3.X; } set { Row3.X = value; } }
///
/// Gets or sets the value at row 4, column 2 of this instance.
///
public float M42 { get { return Row3.Y; } set { Row3.Y = value; } }
///
/// Gets or sets the value at row 4, column 3 of this instance.
///
public float M43 { get { return Row3.Z; } set { Row3.Z = value; } }
///
/// Gets or sets the values along the main diagonal of the matrix.
///
public Vector3 Diagonal
{
get
{
return new Vector3(Row0.X, Row1.Y, Row2.Z);
}
set
{
Row0.X = value.X;
Row1.Y = value.Y;
Row2.Z = value.Z;
}
}
///
/// Gets the trace of the matrix, the sum of the values along the diagonal.
///
public float Trace { get { return Row0.X + Row1.Y + Row2.Z; } }
#endregion
#region Indexers
///
/// Gets or sets the value at a specified row and column.
///
public float this[int rowIndex, int columnIndex]
{
get
{
if (rowIndex == 0) return Row0[columnIndex];
else if (rowIndex == 1) return Row1[columnIndex];
else if (rowIndex == 2) return Row2[columnIndex];
else if (rowIndex == 3) return Row3[columnIndex];
throw new IndexOutOfRangeException("You tried to access this matrix at: (" + rowIndex + ", " + columnIndex + ")");
}
set
{
if (rowIndex == 0) Row0[columnIndex] = value;
else if (rowIndex == 1) Row1[columnIndex] = value;
else if (rowIndex == 2) Row2[columnIndex] = value;
else if (rowIndex == 3) Row3[columnIndex] = value;
throw new IndexOutOfRangeException("You tried to set this matrix at: (" + rowIndex + ", " + columnIndex + ")");
}
}
#endregion
#region Instance
#region public void Invert()
///
/// Converts this instance into it's inverse by inverting the upper-left 3x3 and replacing Row3.
///
public void Invert()
{
this = Matrix4x3.Invert(this);
}
#endregion
#endregion
#region Static
#region CreateFromAxisAngle
///
/// Build a rotation matrix from the specified axis/angle rotation.
///
/// The axis to rotate about.
/// Angle in radians to rotate counter-clockwise (looking in the direction of the given axis).
/// A matrix instance.
public static void CreateFromAxisAngle(Vector3 axis, float angle, out Matrix4x3 result)
{
axis.Normalize();
float axisX = axis.X, axisY = axis.Y, axisZ = axis.Z;
float cos = (float)System.Math.Cos(-angle);
float sin = (float)System.Math.Sin(-angle);
float t = 1.0f - cos;
float tXX = t * axisX * axisX,
tXY = t * axisX * axisY,
tXZ = t * axisX * axisZ,
tYY = t * axisY * axisY,
tYZ = t * axisY * axisZ,
tZZ = t * axisZ * axisZ;
float sinX = sin * axisX,
sinY = sin * axisY,
sinZ = sin * axisZ;
result.Row0.X = tXX + cos;
result.Row0.Y = tXY - sinZ;
result.Row0.Z = tXZ + sinY;
result.Row1.X = tXY + sinZ;
result.Row1.Y = tYY + cos;
result.Row1.Z = tYZ - sinX;
result.Row2.X = tXZ - sinY;
result.Row2.Y = tYZ + sinX;
result.Row2.Z = tZZ + cos;
result.Row3.X = 0;
result.Row3.Y = 0;
result.Row3.Z = 0;
}
///
/// Build a rotation matrix from the specified axis/angle rotation.
///
/// The axis to rotate about.
/// Angle in radians to rotate counter-clockwise (looking in the direction of the given axis).
/// A matrix instance.
public static Matrix4x3 CreateFromAxisAngle(Vector3 axis, float angle)
{
Matrix4x3 result;
CreateFromAxisAngle(axis, angle, out result);
return result;
}
#endregion
#region CreateFromQuaternion
///
/// Builds a rotation matrix from a quaternion.
///
/// The quaternion to rotate by.
/// A matrix instance.
public static void CreateFromQuaternion(ref Quaternion q, out Matrix4x3 result)
{
float x = q.X, y = q.Y, z = q.Z, w = q.W,
tx = 2 * x, ty = 2 * y, tz = 2 * z,
txx = tx * x, tyy = ty * y, tzz = tz * z,
txy = tx * y, txz = tx * z, tyz = ty * z,
twx = w * tx, twy = w * ty, twz = w * tz;
result.Row0.X = 1f - tyy - tzz;
result.Row0.Y = txy - twz;
result.Row0.Z = txz + twy;
result.Row1.X = txy + twz;
result.Row1.Y = 1f - txx - tzz;
result.Row1.Z = tyz - twx;
result.Row2.X = txz - twy;
result.Row2.Y = tyz + twx;
result.Row2.Z = 1f - txx - tyy;
result.Row3.X = 0;
result.Row3.Y = 0;
result.Row3.Z = 0;
/*Vector3 axis;
float angle;
q.ToAxisAngle(out axis, out angle);
CreateFromAxisAngle(axis, angle, out result);*/
}
///
/// Builds a rotation matrix from a quaternion.
///
/// The quaternion to rotate by.
/// A matrix instance.
public static Matrix4x3 CreateFromQuaternion(Quaternion q)
{
Matrix4x3 result;
CreateFromQuaternion(ref q, out result);
return result;
}
#endregion
#region CreateRotation[XYZ]
///
/// Builds a rotation matrix for a rotation around the x-axis.
///
/// The counter-clockwise angle in radians.
/// The resulting Matrix4 instance.
public static void CreateRotationX(float angle, out Matrix4x3 result)
{
float cos = (float)System.Math.Cos(angle);
float sin = (float)System.Math.Sin(angle);
result.Row0.X = 1;
result.Row0.Y = 0;
result.Row0.Z = 0;
result.Row1.X = 0;
result.Row1.Y = cos;
result.Row1.Z = sin;
result.Row2.X = 0;
result.Row2.Y = -sin;
result.Row2.Z = cos;
result.Row3.X = 0;
result.Row3.Y = 0;
result.Row3.Z = 0;
}
///
/// Builds a rotation matrix for a rotation around the x-axis.
///
/// The counter-clockwise angle in radians.
/// The resulting Matrix4 instance.
public static Matrix4x3 CreateRotationX(float angle)
{
Matrix4x3 result;
CreateRotationX(angle, out result);
return result;
}
///
/// Builds a rotation matrix for a rotation around the y-axis.
///
/// The counter-clockwise angle in radians.
/// The resulting Matrix4 instance.
public static void CreateRotationY(float angle, out Matrix4x3 result)
{
float cos = (float)System.Math.Cos(angle);
float sin = (float)System.Math.Sin(angle);
result.Row0.X = cos;
result.Row0.Y = 0;
result.Row0.Z = -sin;
result.Row1.X = 0;
result.Row1.Y = 1;
result.Row1.Z = 0;
result.Row2.X = sin;
result.Row2.Y = 0;
result.Row2.Z = cos;
result.Row3.X = 0;
result.Row3.Y = 0;
result.Row3.Z = 0;
}
///
/// Builds a rotation matrix for a rotation around the y-axis.
///
/// The counter-clockwise angle in radians.
/// The resulting Matrix4 instance.
public static Matrix4x3 CreateRotationY(float angle)
{
Matrix4x3 result;
CreateRotationY(angle, out result);
return result;
}
///
/// Builds a rotation matrix for a rotation around the z-axis.
///
/// The counter-clockwise angle in radians.
/// The resulting Matrix4 instance.
public static void CreateRotationZ(float angle, out Matrix4x3 result)
{
float cos = (float)System.Math.Cos(angle);
float sin = (float)System.Math.Sin(angle);
result.Row0.X = cos;
result.Row0.Y = sin;
result.Row0.Z = 0;
result.Row1.X = -sin;
result.Row1.Y = cos;
result.Row1.Z = 0;
result.Row2.X = 0;
result.Row2.Y = 0;
result.Row2.Z = 1;
result.Row3.X = 0;
result.Row3.Y = 0;
result.Row3.Z = 0;
}
///
/// Builds a rotation matrix for a rotation around the z-axis.
///
/// The counter-clockwise angle in radians.
/// The resulting Matrix4 instance.
public static Matrix4x3 CreateRotationZ(float angle)
{
Matrix4x3 result;
CreateRotationZ(angle, out result);
return result;
}
#endregion
#region CreateTranslation
///
/// Creates a translation matrix.
///
/// X translation.
/// Y translation.
/// Z translation.
/// The resulting Matrix4 instance.
public static void CreateTranslation(float x, float y, float z, out Matrix4x3 result)
{
result.Row0.X = 1;
result.Row0.Y = 0;
result.Row0.Z = 0;
result.Row1.X = 0;
result.Row1.Y = 1;
result.Row1.Z = 0;
result.Row2.X = 0;
result.Row2.Y = 0;
result.Row2.Z = 1;
result.Row3.X = x;
result.Row3.Y = y;
result.Row3.Z = z;
}
///
/// Creates a translation matrix.
///
/// The translation vector.
/// The resulting Matrix4 instance.
public static void CreateTranslation(ref Vector3 vector, out Matrix4x3 result)
{
result.Row0.X = 1;
result.Row0.Y = 0;
result.Row0.Z = 0;
result.Row1.X = 0;
result.Row1.Y = 1;
result.Row1.Z = 0;
result.Row2.X = 0;
result.Row2.Y = 0;
result.Row2.Z = 1;
result.Row3.X = vector.X;
result.Row3.Y = vector.Y;
result.Row3.Z = vector.Z;
}
///
/// Creates a translation matrix.
///
/// X translation.
/// Y translation.
/// Z translation.
/// The resulting Matrix4 instance.
public static Matrix4x3 CreateTranslation(float x, float y, float z)
{
Matrix4x3 result;
CreateTranslation(x, y, z, out result);
return result;
}
///
/// Creates a translation matrix.
///
/// The translation vector.
/// The resulting Matrix4 instance.
public static Matrix4x3 CreateTranslation(Vector3 vector)
{
Matrix4x3 result;
CreateTranslation(vector.X, vector.Y, vector.Z, out result);
return result;
}
#endregion
#region CreateScale
///
/// Build a scaling matrix
///
/// Single scale factor for x,y and z axes
/// A scaling matrix
public static Matrix4x3 CreateScale(float scale)
{
return CreateScale(scale, scale, scale);
}
///
/// Build a scaling matrix
///
/// Scale factors for x,y and z axes
/// A scaling matrix
public static Matrix4x3 CreateScale(Vector3 scale)
{
return CreateScale(scale.X, scale.Y, scale.Z);
}
///
/// Build a scaling matrix
///
/// Scale factor for x-axis
/// Scale factor for y-axis
/// Scale factor for z-axis
/// A scaling matrix
public static Matrix4x3 CreateScale(float x, float y, float z)
{
Matrix4x3 result;
result.Row0.X = x;
result.Row0.Y = 0;
result.Row0.Z = 0;
result.Row1.X = 0;
result.Row1.Y = y;
result.Row1.Z = 0;
result.Row2.X = 0;
result.Row2.Y = 0;
result.Row2.Z = z;
result.Row3.X = 0;
result.Row3.Y = 0;
result.Row3.Z = 0;
return result;
}
#endregion
#region Multiply Functions
///
/// This isn't quite a multiply, but the result may be useful in some situations.
/// Multiplies two instances.
///
/// The left operand of the multiplication.
/// The right operand of the multiplication.
/// A new instance that is the result of the multiplication
public static Matrix4 Mult(Matrix4x3 left, Matrix3x4 right)
{
Matrix4 result;
Mult(ref left, ref right, out result);
return result;
}
///
/// This isn't quite a multiply, but the result may be useful in some situations.
/// Multiplies two instances.
///
/// The left operand of the multiplication.
/// The right operand of the multiplication.
/// A new instance that is the result of the multiplication
public static void Mult(ref Matrix4x3 left, ref Matrix3x4 right, out Matrix4 result)
{
float lM11 = left.Row0.X, lM12 = left.Row0.Y, lM13 = left.Row0.Z,
lM21 = left.Row1.X, lM22 = left.Row1.Y, lM23 = left.Row1.Z,
lM31 = left.Row2.X, lM32 = left.Row2.Y, lM33 = left.Row2.Z,
lM41 = left.Row3.X, lM42 = left.Row3.Y, lM43 = left.Row3.Z,
rM11 = right.Row0.X, rM12 = right.Row0.Y, rM13 = right.Row0.Z, rM14 = right.Row0.W,
rM21 = right.Row1.X, rM22 = right.Row1.Y, rM23 = right.Row1.Z, rM24 = right.Row1.W,
rM31 = right.Row2.X, rM32 = right.Row2.Y, rM33 = right.Row2.Z, rM34 = right.Row2.W;
result.Row0.X = (lM11 * rM11) + (lM12 * rM21) + (lM13 * rM31);
result.Row0.Y = (lM11 * rM12) + (lM12 * rM22) + (lM13 * rM32);
result.Row0.Z = (lM11 * rM13) + (lM12 * rM23) + (lM13 * rM33);
result.Row0.W = (lM11 * rM14) + (lM12 * rM24) + (lM13 * rM34);
result.Row1.X = (lM21 * rM11) + (lM22 * rM21) + (lM23 * rM31);
result.Row1.Y = (lM21 * rM12) + (lM22 * rM22) + (lM23 * rM32);
result.Row1.Z = (lM21 * rM13) + (lM22 * rM23) + (lM23 * rM33);
result.Row1.W = (lM21 * rM14) + (lM22 * rM24) + (lM23 * rM34);
result.Row2.X = (lM31 * rM11) + (lM32 * rM21) + (lM33 * rM31);
result.Row2.Y = (lM31 * rM12) + (lM32 * rM22) + (lM33 * rM32);
result.Row2.Z = (lM31 * rM13) + (lM32 * rM23) + (lM33 * rM33);
result.Row2.W = (lM31 * rM14) + (lM32 * rM24) + (lM33 * rM34);
result.Row3.X = (lM41 * rM11) + (lM42 * rM21) + (lM43 * rM31);
result.Row3.Y = (lM41 * rM12) + (lM42 * rM22) + (lM43 * rM32);
result.Row3.Z = (lM41 * rM13) + (lM42 * rM23) + (lM43 * rM33);
result.Row3.W = (lM41 * rM14) + (lM42 * rM24) + (lM43 * rM34);
}
///
/// Multiplies two instances.
///
/// The left operand of the multiplication.
/// The right operand of the multiplication.
/// A new instance that is the result of the multiplication
public static Matrix4x3 Mult(Matrix4x3 left, Matrix4x3 right)
{
Matrix4x3 result;
Mult(ref left, ref right, out result);
return result;
}
///
/// This isn't quite a multiply, but the result may be useful in some situations.
/// Multiplies two instances.
///
/// The left operand of the multiplication.
/// The right operand of the multiplication.
/// A new instance that is the result of the multiplication
public static void Mult(ref Matrix4x3 left, ref Matrix4x3 right, out Matrix4x3 result)
{
float lM11 = left.Row0.X, lM12 = left.Row0.Y, lM13 = left.Row0.Z,
lM21 = left.Row1.X, lM22 = left.Row1.Y, lM23 = left.Row1.Z,
lM31 = left.Row2.X, lM32 = left.Row2.Y, lM33 = left.Row2.Z,
lM41 = left.Row3.X, lM42 = left.Row3.Y, lM43 = left.Row3.Z,
rM11 = right.Row0.X, rM12 = right.Row0.Y, rM13 = right.Row0.Z,
rM21 = right.Row1.X, rM22 = right.Row1.Y, rM23 = right.Row1.Z,
rM31 = right.Row2.X, rM32 = right.Row2.Y, rM33 = right.Row2.Z,
rM41 = right.Row3.X, rM42 = right.Row3.Y, rM43 = right.Row3.Z;
result.Row0.X = (lM11 * rM11) + (lM12 * rM21) + (lM13 * rM31) + rM41;
result.Row0.Y = (lM11 * rM12) + (lM12 * rM22) + (lM13 * rM32) + rM42;
result.Row0.Z = (lM11 * rM13) + (lM12 * rM23) + (lM13 * rM33) + rM43;
result.Row1.X = (lM21 * rM11) + (lM22 * rM21) + (lM23 * rM31) + rM41;
result.Row1.Y = (lM21 * rM12) + (lM22 * rM22) + (lM23 * rM32) + rM42;
result.Row1.Z = (lM21 * rM13) + (lM22 * rM23) + (lM23 * rM33) + rM43;
result.Row2.X = (lM31 * rM11) + (lM32 * rM21) + (lM33 * rM31) + rM41;
result.Row2.Y = (lM31 * rM12) + (lM32 * rM22) + (lM33 * rM32) + rM42;
result.Row2.Z = (lM31 * rM13) + (lM32 * rM23) + (lM33 * rM33) + rM43;
result.Row3.X = (lM41 * rM11) + (lM42 * rM21) + (lM43 * rM31) + rM41;
result.Row3.Y = (lM41 * rM12) + (lM42 * rM22) + (lM43 * rM32) + rM42;
result.Row3.Z = (lM41 * rM13) + (lM42 * rM23) + (lM43 * rM33) + rM43;
}
///
/// Multiplies an instance by a scalar.
///
/// The left operand of the multiplication.
/// The right operand of the multiplication.
/// A new instance that is the result of the multiplication
public static Matrix4x3 Mult(Matrix4x3 left, float right)
{
Matrix4x3 result;
Mult(ref left, right, out result);
return result;
}
///
/// Multiplies an instance by a scalar.
///
/// The left operand of the multiplication.
/// The right operand of the multiplication.
/// A new instance that is the result of the multiplication
public static void Mult(ref Matrix4x3 left, float right, out Matrix4x3 result)
{
result.Row0 = left.Row0 * right;
result.Row1 = left.Row1 * right;
result.Row2 = left.Row2 * right;
result.Row3 = left.Row3 * right;
}
#endregion
#region Add Functions
///
/// Adds two instances.
///
/// The left operand of the addition.
/// The right operand of the addition.
/// A new instance that is the result of the addition.
public static Matrix4x3 Add(Matrix4x3 left, Matrix4x3 right)
{
Matrix4x3 result;
Add(ref left, ref right, out result);
return result;
}
///
/// Adds two instances.
///
/// The left operand of the addition.
/// The right operand of the addition.
/// A new instance that is the result of the addition.
public static void Add(ref Matrix4x3 left, ref Matrix4x3 right, out Matrix4x3 result)
{
result.Row0 = left.Row0 + right.Row0;
result.Row1 = left.Row1 + right.Row1;
result.Row2 = left.Row2 + right.Row2;
result.Row3 = left.Row3 + right.Row3;
}
#endregion
#region Subtract Functions
///
/// Subtracts one instance from another.
///
/// The left operand of the subraction.
/// The right operand of the subraction.
/// A new instance that is the result of the subraction.
public static Matrix4x3 Subtract(Matrix4x3 left, Matrix4x3 right)
{
Matrix4x3 result;
Subtract(ref left, ref right, out result);
return result;
}
///
/// Subtracts one instance from another.
///
/// The left operand of the subraction.
/// The right operand of the subraction.
/// A new instance that is the result of the subraction.
public static void Subtract(ref Matrix4x3 left, ref Matrix4x3 right, out Matrix4x3 result)
{
result.Row0 = left.Row0 - right.Row0;
result.Row1 = left.Row1 - right.Row1;
result.Row2 = left.Row2 - right.Row2;
result.Row3 = left.Row3 - right.Row3;
}
#endregion
#region Invert Functions
///
/// Calculate the inverse of the given matrix
///
/// The matrix to invert
/// The inverse of the given matrix if it has one, or the input if it is singular
/// Thrown if the Matrix4 is singular.
public static Matrix4x3 Invert(Matrix4x3 mat)
{
Matrix4x3 result;
Invert(ref mat, out result);
return result;
}
///
/// Calculate the inverse of the given matrix
///
/// The matrix to invert
/// The inverse of the given matrix if it has one, or the input if it is singular
/// Thrown if the Matrix4 is singular.
public static void Invert(ref Matrix4x3 mat, out Matrix4x3 result)
{
Matrix3 inverseRotation = new Matrix3(mat.Column0.Xyz, mat.Column1.Xyz, mat.Column2.Xyz);
inverseRotation.Row0 /= inverseRotation.Row0.LengthSquared;
inverseRotation.Row1 /= inverseRotation.Row1.LengthSquared;
inverseRotation.Row2 /= inverseRotation.Row2.LengthSquared;
Vector3 translation = mat.Row3;
result.Row0 = inverseRotation.Row0;
result.Row1 = inverseRotation.Row1;
result.Row2 = inverseRotation.Row2;
result.Row3 = new Vector3(-Vector3.Dot(inverseRotation.Row0, translation), -Vector3.Dot(inverseRotation.Row1, translation), -Vector3.Dot(inverseRotation.Row2, translation));
}
#endregion
#region Transpose
///
/// Calculate the transpose of the given matrix
///
/// The matrix to transpose
/// The transpose of the given matrix
public static Matrix3x4 Transpose(Matrix4x3 mat)
{
return new Matrix3x4(mat.Column0, mat.Column1, mat.Column2);
}
///
/// Calculate the transpose of the given matrix
///
/// The matrix to transpose
/// The result of the calculation
public static void Transpose(ref Matrix4x3 mat, out Matrix3x4 result)
{
result.Row0 = mat.Column0;
result.Row1 = mat.Column1;
result.Row2 = mat.Column2;
}
#endregion
#endregion
#region Operators
///
/// Matrix multiplication
///
/// left-hand operand
/// right-hand operand
/// A new Matrix4 which holds the result of the multiplication
public static Matrix4 operator *(Matrix4x3 left, Matrix3x4 right)
{
return Matrix4x3.Mult(left, right);
}
///
/// Matrix multiplication
///
/// left-hand operand
/// right-hand operand
/// A new Matrix4x3 which holds the result of the multiplication
public static Matrix4x3 operator *(Matrix4x3 left, Matrix4x3 right)
{
return Matrix4x3.Mult(left, right);
}
///
/// Matrix-scalar multiplication
///
/// left-hand operand
/// right-hand operand
/// A new Matrix4x3 which holds the result of the multiplication
public static Matrix4x3 operator *(Matrix4x3 left, float right)
{
return Matrix4x3.Mult(left, right);
}
///
/// Matrix addition
///
/// left-hand operand
/// right-hand operand
/// A new Matrix4x3 which holds the result of the addition
public static Matrix4x3 operator +(Matrix4x3 left, Matrix4x3 right)
{
return Matrix4x3.Add(left, right);
}
///
/// Matrix subtraction
///
/// left-hand operand
/// right-hand operand
/// A new Matrix4x3 which holds the result of the subtraction
public static Matrix4x3 operator -(Matrix4x3 left, Matrix4x3 right)
{
return Matrix4x3.Subtract(left, right);
}
///
/// Compares two instances for equality.
///
/// The first instance.
/// The second instance.
/// True, if left equals right; false otherwise.
public static bool operator ==(Matrix4x3 left, Matrix4x3 right)
{
return left.Equals(right);
}
///
/// Compares two instances for inequality.
///
/// The first instance.
/// The second instance.
/// True, if left does not equal right; false otherwise.
public static bool operator !=(Matrix4x3 left, Matrix4x3 right)
{
return !left.Equals(right);
}
#endregion
#region Overrides
#region public override string ToString()
///
/// Returns a System.String that represents the current Matrix4x3.
///
/// The string representation of the matrix.
public override string ToString()
{
return string.Format("{0}\n{1}\n{2}", Row0, Row1, Row2);
}
#endregion
#region public override int GetHashCode()
///
/// Returns the hashcode for this instance.
///
/// A System.Int32 containing the unique hashcode for this instance.
public override int GetHashCode()
{
return Row0.GetHashCode() ^ Row1.GetHashCode() ^ Row2.GetHashCode();
}
#endregion
#region public override bool Equals(object obj)
///
/// Indicates whether this instance and a specified object are equal.
///
/// The object to compare tresult.
/// True if the instances are equal; false otherwise.
public override bool Equals(object obj)
{
if (!(obj is Matrix4x3))
return false;
return this.Equals((Matrix4x3)obj);
}
#endregion
#endregion
#endregion
#region IEquatable Members
/// Indicates whether the current matrix is equal to another matrix.
/// An matrix to compare with this matrix.
/// true if the current matrix is equal to the matrix parameter; otherwise, false.
public bool Equals(Matrix4x3 other)
{
return
Row0 == other.Row0 &&
Row1 == other.Row1 &&
Row2 == other.Row2 &&
Row3 == other.Row3;
}
#endregion
}
}