#region --- License --- /* Copyright (c) 2006 - 2008 The Open Toolkit library. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #endregion using System; using System.Runtime.InteropServices; namespace OpenTK.Math { /// /// Represents a Quaternion /// [Serializable] [StructLayout(LayoutKind.Sequential)] public struct Quaternion { #region Fields /// /// The vector part of the quaternion /// public Vector3 XYZ; /// /// The w component of the quaternion /// public float W; #endregion #region Constructors /// /// Construct a new Quaternion from vector and w components /// /// The vector part /// The w part public Quaternion(Vector3 v, float w) { XYZ = v; W = w; } /// /// Construct a new Quaternion /// /// The x component /// The y component /// The z component /// The w component public Quaternion(float x, float y, float z, float w) { XYZ = new Vector3(x, y, z); W = w; } #endregion #region Public Members #region Properties /// /// Gets or sets the X component of this instance. /// public float X { get { return XYZ.X; } set { XYZ.X = value; } } /// /// Gets or sets the Y component of this instance. /// public float Y { get { return XYZ.Y; } set { XYZ.Y = value; } } /// /// Gets or sets the Z component of this instance. /// public float Z { get { return XYZ.Z; } set { XYZ.Z = value; } } #endregion #region Instance #region pubilc void ToAxisAngle(out Vector3 axis, out float angle) /// /// Convert the current quaternion to axis angle representation /// /// The resultant axis /// The resultant angle public void ToAxisAngle(out Vector3 axis, out float angle) { Quaternion q = this; if (q.W > 1.0f) q.Normalize(); angle = 2.0f * (float)System.Math.Acos(q.W); float den = (float)System.Math.Sqrt(1.0 - q.W * q.W); axis = q.XYZ; if (den > 0.0001f) { axis = q.XYZ / den; } } #endregion #region public float Length /// /// Gets the length (magnitude) of the quaternion. /// /// public float Length { get { return (float)System.Math.Sqrt(W * W + XYZ.LengthSquared); } } #endregion #region public float LengthSquared /// /// Gets the square of the quaternion length (magnitude). /// public float LengthSquared { get { return W * W + XYZ.LengthSquared; } } #endregion #region public void Normalize() /// /// Scales the Quaternion to unit length. /// public void Normalize() { float scale = 1.0f / this.Length; XYZ *= scale; W *= scale; } #endregion #region public void Conjugate() /// /// Convert this quaternion to its conjugate /// public void Conjugate() { XYZ = -XYZ; } #endregion #endregion #region Static #region Fields /// /// Defines the identity quaternion. /// public static Quaternion Identity = new Quaternion(0, 0, 0, 1); #endregion #region Add /// /// Add two quaternions /// /// The first operand /// The second operand /// The result of the addition public static Quaternion Add(Quaternion left, Quaternion right) { left.XYZ += right.XYZ; left.W += right.W; return left; } /// /// Add two quaternions /// /// The first operand /// The second operand /// The result of the addition public static void Add(ref Quaternion left, ref Quaternion right, out Quaternion result) { result.XYZ = left.XYZ + right.XYZ; result.W = left.W + right.W; } #endregion #region Sub public static Quaternion Sub(Quaternion left, Quaternion right) { left.XYZ -= right.XYZ; left.W -= right.W; return left; } public static void Sub(ref Quaternion left, ref Quaternion right, out Quaternion result) { result.XYZ = left.XYZ - right.XYZ; result.W = left.W - right.W; } #endregion #region Mult public static Quaternion Mult(Quaternion left, Quaternion right) { float w = left.W * right.W - Vector3.Dot(left.XYZ, right.XYZ); left.XYZ = right.W * left.XYZ + left.W * right.XYZ + Vector3.Cross(left.XYZ, right.XYZ); left.W = w; return left; } public static void Mult(ref Quaternion left, ref Quaternion right, out Quaternion result) { result.W = left.W * right.W - Vector3.Dot(left.XYZ, right.XYZ); result.XYZ = right.W * left.XYZ + left.W * right.XYZ + Vector3.Cross(left.XYZ, right.XYZ); } #endregion #region Conjugate /// /// Get the conjugate of the given quaternion /// /// The quaternion /// The conjugate of the given quaternion public static Quaternion Conjugate(Quaternion q) { q.XYZ = -q.XYZ; return q; } /// /// Get the conjugate of the given quaternion /// /// The quaternion /// The conjugate of the given quaternion public static void Conjugate(ref Quaternion q, out Quaternion result) { result.XYZ = -q.XYZ; result.W = q.W; } #endregion #region Invert /// /// Get the inverse of the given quaternion /// /// The quaternion to invert /// The inverse of the given quaternion public static Quaternion Invert(Quaternion q) { float lengthSq = q.LengthSquared; if (lengthSq != 0.0) { float i = 1.0f / lengthSq; q.XYZ *= -i; q.W *= i; } return q; } /// /// Get the inverse of the given quaternion /// /// The quaternion to invert /// The inverse of the given quaternion public static void Invert(ref Quaternion q, out Quaternion result) { float lengthSq = q.LengthSquared; if (lengthSq != 0.0) { float i = 1.0f / lengthSq; result.XYZ = q.XYZ * -i; result.W = q.W * i; } else { result = q; } } #endregion #region Normalize /// /// Scale the given quaternion to unit length /// /// The quaternion to normalize /// The normalized quaternion public static Quaternion Normalize(Quaternion q) { float scale = 1.0f / q.Length; q.XYZ *= scale; q.W *= scale; return q; } /// /// Scale the given quaternion to unit length /// /// The quaternion to normalize /// The normalized quaternion public static void Normalize(ref Quaternion q, out Quaternion result) { float scale = 1.0f / q.Length; result.XYZ = q.XYZ * scale; result.W = q.W * scale; } #endregion #region FromAxisAngle /// /// Build a quaternion from the given axis and angle /// /// The axis to rotate about /// The rotation angle in radians /// public static Quaternion FromAxisAngle(Vector3 axis, float angle) { if (axis.LengthSquared == 0.0f) return Identity; Quaternion result = Identity; angle *= 0.5f; axis.Normalize(); result.XYZ = axis * (float)System.Math.Sin(angle); result.W = (float)System.Math.Cos(angle); return Normalize(result); } #endregion #region Slerp /// /// Do Spherical linear interpolation between two quaternions /// /// The first quaternion /// The second quaternion /// The blend factor /// A smooth blend between the given quaternions public static Quaternion Slerp(Quaternion q1, Quaternion q2, float blend) { // if either input is zero, return the other. if (q1.LengthSquared == 0.0f) { if (q2.LengthSquared == 0.0f) { return Identity; } return q2; } else if (q2.LengthSquared == 0.0f) { return q1; } float cosHalfAngle = q1.W * q2.W + Vector3.Dot(q1.XYZ, q2.XYZ); if (cosHalfAngle >= 1.0f || cosHalfAngle <= -1.0f) { // angle = 0.0f, so just return one input. return q1; } else if (cosHalfAngle < 0.0f) { q2.XYZ = -q2.XYZ; q2.W = -q2.W; cosHalfAngle = -cosHalfAngle; } float blendA; float blendB; if (cosHalfAngle < 0.99f) { // do proper slerp for big angles float halfAngle = (float)System.Math.Acos(cosHalfAngle); float sinHalfAngle = (float)System.Math.Sin(halfAngle); float oneOverSinHalfAngle = 1.0f / sinHalfAngle; blendA = (float)System.Math.Sin(halfAngle * (1.0f - blend)) * oneOverSinHalfAngle; blendB = (float)System.Math.Sin(halfAngle * blend) * oneOverSinHalfAngle; } else { // do lerp if angle is really small. blendA = 1.0f - blend; blendB = blend; } Quaternion result = new Quaternion(blendA * q1.XYZ + blendB * q2.XYZ, blendA * q1.W + blendB * q2.W); if (result.LengthSquared > 0.0f) return Normalize(result); else return Identity; } #endregion #endregion #region Operators public static Quaternion operator +(Quaternion left, Quaternion right) { left.XYZ += right.XYZ; left.W += right.W; return left; } public static Quaternion operator -(Quaternion left, Quaternion right) { left.XYZ -= right.XYZ; left.W -= right.W; return left; } public static Quaternion operator *(Quaternion left, Quaternion right) { float w = left.W * right.W - Vector3.Dot(left.XYZ, right.XYZ); left.XYZ = right.W * left.XYZ + left.W * right.XYZ + Vector3.Cross(left.XYZ, right.XYZ); left.W = w; return left; } [CLSCompliant(false)] unsafe public static explicit operator float*(Quaternion q) { return &q.XYZ.X; } public static explicit operator IntPtr(Quaternion q) { unsafe { return (IntPtr)(&q.XYZ.X); } } #endregion #region Overrides #region public override string ToString() /// /// Returns a System.String that represents the current Quaternion. /// /// public override string ToString() { return String.Format("V: {0}, W: {1}", XYZ, W); } #endregion #endregion #endregion } }