#region --- License ---
/*
Copyright (c) 2006 - 2008 The Open Toolkit library.
Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
*/
#endregion
using System;
using System.Runtime.InteropServices;
using System.Xml.Serialization;
namespace OpenTK
{
/// Represents a 4D vector using four single-precision floating-point numbers.
///
/// The Vector4 structure is suitable for interoperation with unmanaged code requiring four consecutive floats.
///
[Serializable]
[StructLayout(LayoutKind.Sequential)]
public struct Vector4 : IEquatable
{
#region Fields
///
/// The X component of the Vector4.
///
public float X;
///
/// The Y component of the Vector4.
///
public float Y;
///
/// The Z component of the Vector4.
///
public float Z;
///
/// The Z component of the Vector4.
///
public float W;
///
/// Defines a unit-length Vector4 that points towards the X-axis.
///
public static Vector4 UnitX = new Vector4(1, 0, 0, 0);
///
/// Defines a unit-length Vector4 that points towards the Y-axis.
///
public static Vector4 UnitY = new Vector4(0, 1, 0, 0);
///
/// Defines a unit-length Vector4 that points towards the Z-axis.
///
public static Vector4 UnitZ = new Vector4(0, 0, 1, 0);
///
/// Defines a unit-length Vector4 that points towards the W-axis.
///
public static Vector4 UnitW = new Vector4(0, 0, 0, 1);
///
/// Defines a zero-length Vector4.
///
public static Vector4 Zero = new Vector4(0, 0, 0, 0);
///
/// Defines an instance with all components set to 1.
///
public static readonly Vector4 One = new Vector4(1, 1, 1, 1);
///
/// Defines the size of the Vector4 struct in bytes.
///
public static readonly int SizeInBytes = Marshal.SizeOf(new Vector4());
#endregion
#region Constructors
///
/// Constructs a new Vector4.
///
/// The x component of the Vector4.
/// The y component of the Vector4.
/// The z component of the Vector4.
/// The z component of the Vector4.
public Vector4(float x, float y, float z, float w)
{
X = x;
Y = y;
Z = z;
W = w;
}
///
/// Constructs a new Vector4 from the given Vector2.
///
/// The Vector2 to copy components from.
public Vector4(Vector2 v)
{
X = v.X;
Y = v.Y;
Z = 0.0f;
W = 0.0f;
}
///
/// Constructs a new Vector4 from the given Vector3.
///
/// The Vector3 to copy components from.
public Vector4(Vector3 v)
{
X = v.X;
Y = v.Y;
Z = v.Z;
W = 0.0f;
}
///
/// Constructs a new Vector4 from the specified Vector3 and W component.
///
/// The Vector3 to copy components from.
/// The W component of the new Vector4.
public Vector4(Vector3 v, float w)
{
X = v.X;
Y = v.Y;
Z = v.Z;
W = w;
}
///
/// Constructs a new Vector4 from the given Vector4.
///
/// The Vector4 to copy components from.
public Vector4(Vector4 v)
{
X = v.X;
Y = v.Y;
Z = v.Z;
W = v.W;
}
#endregion
#region Public Members
#region Instance
#region public void Add()
/// Add the Vector passed as parameter to this instance.
/// Right operand. This parameter is only read from.
public void Add( Vector4 right )
{
this.X += right.X;
this.Y += right.Y;
this.Z += right.Z;
this.W += right.W;
}
/// Add the Vector passed as parameter to this instance.
/// Right operand. This parameter is only read from.
[CLSCompliant(false)]
public void Add( ref Vector4 right )
{
this.X += right.X;
this.Y += right.Y;
this.Z += right.Z;
this.W += right.W;
}
#endregion public void Add()
#region public void Sub()
/// Subtract the Vector passed as parameter from this instance.
/// Right operand. This parameter is only read from.
public void Sub( Vector4 right )
{
this.X -= right.X;
this.Y -= right.Y;
this.Z -= right.Z;
this.W -= right.W;
}
/// Subtract the Vector passed as parameter from this instance.
/// Right operand. This parameter is only read from.
[CLSCompliant(false)]
public void Sub( ref Vector4 right )
{
this.X -= right.X;
this.Y -= right.Y;
this.Z -= right.Z;
this.W -= right.W;
}
#endregion public void Sub()
#region public void Mult()
/// Multiply this instance by a scalar.
/// Scalar operand.
public void Mult( float f )
{
this.X *= f;
this.Y *= f;
this.Z *= f;
this.W *= f;
}
#endregion public void Mult()
#region public void Div()
/// Divide this instance by a scalar.
/// Scalar operand.
public void Div( float f )
{
float mult = 1.0f / f;
this.X *= mult;
this.Y *= mult;
this.Z *= mult;
this.W *= mult;
}
#endregion public void Div()
#region public float Length
///
/// Gets the length (magnitude) of the vector.
///
///
///
public float Length
{
get
{
return (float)System.Math.Sqrt(X * X + Y * Y + Z * Z + W * W);
}
}
#endregion
#region public float LengthFast
///
/// Gets an approximation of the vector length (magnitude).
///
///
/// This property uses an approximation of the square root function to calculate vector magnitude, with
/// an upper error bound of 0.001.
///
///
///
public float LengthFast
{
get
{
return 1.0f /OpenTK.Functions.InverseSqrtFast(X * X + Y * Y + Z * Z + W * W);
}
}
#endregion
#region public float LengthSquared
///
/// Gets the square of the vector length (magnitude).
///
///
/// This property avoids the costly square root operation required by the Length property. This makes it more suitable
/// for comparisons.
///
///
///
public float LengthSquared
{
get
{
return X * X + Y * Y + Z * Z + W * W;
}
}
#endregion
#region public void Normalize()
///
/// Scales the Vector4 to unit length.
///
public void Normalize()
{
float scale = 1.0f / this.Length;
X *= scale;
Y *= scale;
Z *= scale;
W *= scale;
}
#endregion
#region public void NormalizeFast()
///
/// Scales the Vector4 to approximately unit length.
///
public void NormalizeFast()
{
float scale = Functions.InverseSqrtFast(X * X + Y * Y + Z * Z + W * W);
X *= scale;
Y *= scale;
Z *= scale;
W *= scale;
}
#endregion
#region public void Scale()
///
/// Scales the current Vector4 by the given amounts.
///
/// The scale of the X component.
/// The scale of the Y component.
/// The scale of the Z component.
/// The scale of the Z component.
public void Scale( float sx, float sy, float sz, float sw )
{
this.X = X * sx;
this.Y = Y * sy;
this.Z = Z * sz;
this.W = W * sw;
}
/// Scales this instance by the given parameter.
/// The scaling of the individual components.
public void Scale( Vector4 scale )
{
this.X *= scale.X;
this.Y *= scale.Y;
this.Z *= scale.Z;
this.W *= scale.W;
}
/// Scales this instance by the given parameter.
/// The scaling of the individual components.
[CLSCompliant(false)]
public void Scale( ref Vector4 scale )
{
this.X *= scale.X;
this.Y *= scale.Y;
this.Z *= scale.Z;
this.W *= scale.W;
}
#endregion public void Scale()
#endregion
#region Static
#region Add
///
/// Add two Vectors
///
/// First operand
/// Second operand
/// Result of addition
public static Vector4 Add(Vector4 a, Vector4 b)
{
a.X += b.X;
a.Y += b.Y;
a.Z += b.Z;
a.W += b.W;
return a;
}
///
/// Add two Vectors
///
/// First operand
/// Second operand
/// Result of addition
public static void Add(ref Vector4 a, ref Vector4 b, out Vector4 result)
{
result.X = a.X + b.X;
result.Y = a.Y + b.Y;
result.Z = a.Z + b.Z;
result.W = a.W + b.W;
}
#endregion
#region Sub
///
/// Subtract one Vector from another
///
/// First operand
/// Second operand
/// Result of subtraction
public static Vector4 Sub(Vector4 a, Vector4 b)
{
a.X -= b.X;
a.Y -= b.Y;
a.Z -= b.Z;
a.W -= b.W;
return a;
}
///
/// Subtract one Vector from another
///
/// First operand
/// Second operand
/// Result of subtraction
public static void Sub(ref Vector4 a, ref Vector4 b, out Vector4 result)
{
result.X = a.X - b.X;
result.Y = a.Y - b.Y;
result.Z = a.Z - b.Z;
result.W = a.W - b.W;
}
#endregion
#region Mult
///
/// Multiply a vector and a scalar
///
/// Vector operand
/// Scalar operand
/// Result of the multiplication
public static Vector4 Mult(Vector4 a, float f)
{
a.X *= f;
a.Y *= f;
a.Z *= f;
a.W *= f;
return a;
}
///
/// Multiply a vector and a scalar
///
/// Vector operand
/// Scalar operand
/// Result of the multiplication
public static void Mult(ref Vector4 a, float f, out Vector4 result)
{
result.X = a.X * f;
result.Y = a.Y * f;
result.Z = a.Z * f;
result.W = a.W * f;
}
#endregion
#region Div
///
/// Divide a vector by a scalar
///
/// Vector operand
/// Scalar operand
/// Result of the division
public static Vector4 Div(Vector4 a, float f)
{
float mult = 1.0f / f;
a.X *= mult;
a.Y *= mult;
a.Z *= mult;
a.W *= mult;
return a;
}
///
/// Divide a vector by a scalar
///
/// Vector operand
/// Scalar operand
/// Result of the division
public static void Div(ref Vector4 a, float f, out Vector4 result)
{
float mult = 1.0f / f;
result.X = a.X * mult;
result.Y = a.Y * mult;
result.Z = a.Z * mult;
result.W = a.W * mult;
}
#endregion
#region Min
///
/// Calculate the component-wise minimum of two vectors
///
/// First operand
/// Second operand
/// The component-wise minimum
public static Vector4 Min(Vector4 a, Vector4 b)
{
a.X = a.X < b.X ? a.X : b.X;
a.Y = a.Y < b.Y ? a.Y : b.Y;
a.Z = a.Z < b.Z ? a.Z : b.Z;
a.W = a.W < b.W ? a.W : b.W;
return a;
}
///
/// Calculate the component-wise minimum of two vectors
///
/// First operand
/// Second operand
/// The component-wise minimum
public static void Min(ref Vector4 a, ref Vector4 b, out Vector4 result)
{
result.X = a.X < b.X ? a.X : b.X;
result.Y = a.Y < b.Y ? a.Y : b.Y;
result.Z = a.Z < b.Z ? a.Z : b.Z;
result.W = a.W < b.W ? a.W : b.W;
}
#endregion
#region Max
///
/// Calculate the component-wise maximum of two vectors
///
/// First operand
/// Second operand
/// The component-wise maximum
public static Vector4 Max(Vector4 a, Vector4 b)
{
a.X = a.X > b.X ? a.X : b.X;
a.Y = a.Y > b.Y ? a.Y : b.Y;
a.Z = a.Z > b.Z ? a.Z : b.Z;
a.W = a.W > b.W ? a.W : b.W;
return a;
}
///
/// Calculate the component-wise maximum of two vectors
///
/// First operand
/// Second operand
/// The component-wise maximum
public static void Max(ref Vector4 a, ref Vector4 b, out Vector4 result)
{
result.X = a.X > b.X ? a.X : b.X;
result.Y = a.Y > b.Y ? a.Y : b.Y;
result.Z = a.Z > b.Z ? a.Z : b.Z;
result.W = a.W > b.W ? a.W : b.W;
}
#endregion
#region Clamp
///
/// Clamp a vector to the given minimum and maximum vectors
///
/// Input vector
/// Minimum vector
/// Maximum vector
/// The clamped vector
public static Vector4 Clamp(Vector4 vec, Vector4 min, Vector4 max)
{
vec.X = vec.X < min.X ? min.X : vec.X > max.X ? max.X : vec.X;
vec.Y = vec.Y < min.Y ? min.Y : vec.Y > max.Y ? max.Y : vec.Y;
vec.Z = vec.X < min.Z ? min.Z : vec.Z > max.Z ? max.Z : vec.Z;
vec.W = vec.Y < min.W ? min.W : vec.W > max.W ? max.W : vec.W;
return vec;
}
///
/// Clamp a vector to the given minimum and maximum vectors
///
/// Input vector
/// Minimum vector
/// Maximum vector
/// The clamped vector
public static void Clamp(ref Vector4 vec, ref Vector4 min, ref Vector4 max, out Vector4 result)
{
result.X = vec.X < min.X ? min.X : vec.X > max.X ? max.X : vec.X;
result.Y = vec.Y < min.Y ? min.Y : vec.Y > max.Y ? max.Y : vec.Y;
result.Z = vec.X < min.Z ? min.Z : vec.Z > max.Z ? max.Z : vec.Z;
result.W = vec.Y < min.W ? min.W : vec.W > max.W ? max.W : vec.W;
}
#endregion
#region Normalize
///
/// Scale a vector to unit length
///
/// The input vector
/// The normalized vector
public static Vector4 Normalize(Vector4 vec)
{
float scale = 1.0f / vec.Length;
vec.X *= scale;
vec.Y *= scale;
vec.Z *= scale;
vec.W *= scale;
return vec;
}
///
/// Scale a vector to unit length
///
/// The input vector
/// The normalized vector
public static void Normalize(ref Vector4 vec, out Vector4 result)
{
float scale = 1.0f / vec.Length;
result.X = vec.X * scale;
result.Y = vec.Y * scale;
result.Z = vec.Z * scale;
result.W = vec.W * scale;
}
#endregion
#region NormalizeFast
///
/// Scale a vector to approximately unit length
///
/// The input vector
/// The normalized vector
public static Vector4 NormalizeFast(Vector4 vec)
{
float scale = Functions.InverseSqrtFast(vec.X * vec.X + vec.Y * vec.Y + vec.Z * vec.Z + vec.W * vec.W);
vec.X *= scale;
vec.Y *= scale;
vec.Z *= scale;
vec.W *= scale;
return vec;
}
///
/// Scale a vector to approximately unit length
///
/// The input vector
/// The normalized vector
public static void NormalizeFast(ref Vector4 vec, out Vector4 result)
{
float scale = Functions.InverseSqrtFast(vec.X * vec.X + vec.Y * vec.Y + vec.Z * vec.Z + vec.W * vec.W);
result.X = vec.X * scale;
result.Y = vec.Y * scale;
result.Z = vec.Z * scale;
result.W = vec.W * scale;
}
#endregion
#region Dot
///
/// Calculate the dot product of two vectors
///
/// First operand
/// Second operand
/// The dot product of the two inputs
public static float Dot(Vector4 left, Vector4 right)
{
return left.X * right.X + left.Y * right.Y + left.Z * right.Z + left.W * right.W;
}
///
/// Calculate the dot product of two vectors
///
/// First operand
/// Second operand
/// The dot product of the two inputs
public static void Dot( ref Vector4 left, ref Vector4 right, out float result )
{
result = left.X * right.X + left.Y * right.Y + left.Z * right.Z + left.W * right.W;
}
#endregion
#region Lerp
///
/// Returns a new Vector that is the linear blend of the 2 given Vectors
///
/// First input vector
/// Second input vector
/// The blend factor. a when blend=0, b when blend=1.
/// a when blend=0, b when blend=1, and a linear combination otherwise
public static Vector4 Lerp(Vector4 a, Vector4 b, float blend)
{
a.X = blend * (b.X - a.X) + a.X;
a.Y = blend * (b.Y - a.Y) + a.Y;
a.Z = blend * (b.Z - a.Z) + a.Z;
a.W = blend * (b.W - a.W) + a.W;
return a;
}
///
/// Returns a new Vector that is the linear blend of the 2 given Vectors
///
/// First input vector
/// Second input vector
/// The blend factor. a when blend=0, b when blend=1.
/// a when blend=0, b when blend=1, and a linear combination otherwise
public static void Lerp( ref Vector4 a, ref Vector4 b, float blend, out Vector4 result )
{
result.X = blend * ( b.X - a.X ) + a.X;
result.Y = blend * ( b.Y - a.Y ) + a.Y;
result.Z = blend * ( b.Z - a.Z ) + a.Z;
result.W = blend * ( b.W - a.W ) + a.W;
}
#endregion
#region Barycentric
///
/// Interpolate 3 Vectors using Barycentric coordinates
///
/// First input Vector
/// Second input Vector
/// Third input Vector
/// First Barycentric Coordinate
/// Second Barycentric Coordinate
/// a when u=v=0, b when u=1,v=0, c when u=0,v=1, and a linear combination of a,b,c otherwise
public static Vector4 BaryCentric(Vector4 a, Vector4 b, Vector4 c, float u, float v)
{
return a + u * (b - a) + v * (c - a);
}
/// Interpolate 3 Vectors using Barycentric coordinates
/// First input Vector.
/// Second input Vector.
/// Third input Vector.
/// First Barycentric Coordinate.
/// Second Barycentric Coordinate.
/// Output Vector. a when u=v=0, b when u=1,v=0, c when u=0,v=1, and a linear combination of a,b,c otherwise
public static void BaryCentric( ref Vector4 a, ref Vector4 b, ref Vector4 c, float u, float v, out Vector4 result )
{
result = a; // copy
Vector4 temp = b; // copy
temp.Sub( ref a );
temp.Mult( u );
result.Add( ref temp );
temp = c; // copy
temp.Sub( ref a );
temp.Mult( v );
result.Add( ref temp );
}
#endregion
#region Transform
/// Transform a Vector by the given Matrix
/// The vector to transform
/// The desired transformation
/// The transformed vector
public static Vector4 Transform(Vector4 vec, Matrix4 mat)
{
Vector4 result;
result.X = Vector4.Dot(vec, mat.Column0);
result.Y = Vector4.Dot(vec, mat.Column1);
result.Z = Vector4.Dot(vec, mat.Column2);
result.W = Vector4.Dot(vec, mat.Column3);
return result;
}
/// Transform a Vector by the given Matrix
/// The vector to transform
/// The desired transformation
/// The transformed vector
public static void Transform( ref Vector4 vec, ref Matrix4 mat, out Vector4 result )
{
result.X = vec.X * mat.Row0.X +
vec.Y * mat.Row1.X +
vec.Z * mat.Row2.X +
vec.W * mat.Row3.X;
result.Y = vec.X * mat.Row0.Y +
vec.Y * mat.Row1.Y +
vec.Z * mat.Row2.Y +
vec.W * mat.Row3.Y;
result.Z = vec.X * mat.Row0.Z +
vec.Y * mat.Row1.Z +
vec.Z * mat.Row2.Z +
vec.W * mat.Row3.Z;
result.W = vec.X * mat.Row0.W +
vec.Y * mat.Row1.W +
vec.Z * mat.Row2.W +
vec.W * mat.Row3.W;
}
#endregion
#endregion
#region Swizzle
///
/// Gets or sets an OpenTK.Vector2 with the X and Y components of this instance.
///
[XmlIgnore]
public Vector2 Xy { get { return new Vector2(X, Y); } set { X = value.X; Y = value.Y; } }
///
/// Gets or sets an OpenTK.Vector3 with the X, Y and Z components of this instance.
///
[XmlIgnore]
public Vector3 Xyz { get { return new Vector3(X, Y, Z); } set { X = value.X; Y = value.Y; Z = value.Z; } }
#endregion
#region Operators
public static Vector4 operator +(Vector4 left, Vector4 right)
{
left.X += right.X;
left.Y += right.Y;
left.Z += right.Z;
left.W += right.W;
return left;
}
public static Vector4 operator -(Vector4 left, Vector4 right)
{
left.X -= right.X;
left.Y -= right.Y;
left.Z -= right.Z;
left.W -= right.W;
return left;
}
public static Vector4 operator -(Vector4 vec)
{
vec.X = -vec.X;
vec.Y = -vec.Y;
vec.Z = -vec.Z;
vec.W = -vec.W;
return vec;
}
public static Vector4 operator *(Vector4 vec, float f)
{
vec.X *= f;
vec.Y *= f;
vec.Z *= f;
vec.W *= f;
return vec;
}
public static Vector4 operator *(float f, Vector4 vec)
{
vec.X *= f;
vec.Y *= f;
vec.Z *= f;
vec.W *= f;
return vec;
}
public static Vector4 operator /(Vector4 vec, float f)
{
float mult = 1.0f / f;
vec.X *= mult;
vec.Y *= mult;
vec.Z *= mult;
vec.W *= mult;
return vec;
}
public static bool operator ==(Vector4 left, Vector4 right)
{
return left.Equals(right);
}
public static bool operator !=(Vector4 left, Vector4 right)
{
return !left.Equals(right);
}
[CLSCompliant(false)]
unsafe public static explicit operator float*(Vector4 v)
{
return &v.X;
}
public static explicit operator IntPtr(Vector4 v)
{
unsafe
{
return (IntPtr)(&v.X);
}
}
#endregion
#region Overrides
#region public override string ToString()
///
/// Returns a System.String that represents the current Vector4.
///
///
public override string ToString()
{
return String.Format("({0}, {1}, {2}, {3})", X, Y, Z, W);
}
#endregion
#region public override int GetHashCode()
///
/// Returns the hashcode for this instance.
///
/// A System.Int32 containing the unique hashcode for this instance.
public override int GetHashCode()
{
return X.GetHashCode() ^ Y.GetHashCode() ^ Z.GetHashCode() ^ W.GetHashCode();
}
#endregion
#region public override bool Equals(object obj)
///
/// Indicates whether this instance and a specified object are equal.
///
/// The object to compare to.
/// True if the instances are equal; false otherwise.
public override bool Equals(object obj)
{
if (!(obj is Vector4))
return false;
return this.Equals((Vector4)obj);
}
#endregion
#endregion
#endregion
#region IEquatable Members
/// Indicates whether the current vector is equal to another vector.
/// A vector to compare with this vector.
/// true if the current vector is equal to the vector parameter; otherwise, false.
public bool Equals(Vector4 other)
{
return
X == other.X &&
Y == other.Y &&
Z == other.Z &&
W == other.W;
}
#endregion
}
}