#region --- License --- /* Copyright (c) 2006, 2007 Stefanos Apostolopoulos * See license.txt for license info * * Contributions by Andy Gill, Georg Wächter. */ #endregion using System; using System.Collections.Generic; using System.Text; using System.Runtime.InteropServices; namespace OpenTK.Math { /// /// Represents a 2D vector. /// /// /// The Vector2 structure is suitable for interoperation with unmanaged code requiring two consecutive floats. /// [Serializable] [StructLayout(LayoutKind.Sequential)] public struct Vector2 : IEquatable { #region Fields /// /// The X component of the Vector2. /// public float X; /// /// The Y component of the Vector2. /// public float Y; public static Vector2 UnitX = new Vector2(1, 0); public static Vector2 UnitY = new Vector2(0, 1); public static Vector2 Zero = new Vector2(0, 0); #endregion #region Constructors /// /// Constructs a new Vector2. /// /// The x coordinate of the net Vector2. /// The y coordinate of the net Vector2. public Vector2(float x, float y) { X = x; Y = y; } /// /// Constructs a new Vector2 from the given Vector2. /// /// The Vector2 to copy components from. public Vector2(Vector2 v) { X = v.X; Y = v.Y; } /// /// Constructs a new Vector2 from the given Vector3. /// /// The Vector3 to copy components from. Z is discarded. public Vector2(Vector3 v) { X = v.X; Y = v.Y; } /// /// Constructs a new Vector2 from the given Vector4. /// /// The Vector4 to copy components from. Z and W are discarded. public Vector2(Vector4 v) { X = v.X; Y = v.Y; } #endregion #region Functions #region public float Length /// /// Gets the length (magnitude) of the vector. /// /// /// public float Length { get { return (float)System.Math.Sqrt(X * X + Y * Y); } } #endregion #region public float LengthFast /// /// Gets an approximation of the vector length (magnitude). /// /// /// This property uses an approximation of the square root function to calculate vector magnitude, with /// an upper error bound of 0.001. /// /// /// /// public float LengthFast { get { return 1.0f / OpenTK.Math.Functions.InverseSqrtFast(X * X + Y * Y); } } #endregion #region public float LengthSquared /// /// Gets the square of the vector length (magnitude). /// /// /// This property avoids the costly square root operation required by the Length property. This makes it more suitable /// for comparisons. /// /// /// public float LengthSquared { get { return X * X + Y * Y; } } #endregion #region public Vector2 PerpendicularRight /// /// Gets the perpendicular vector on the right side of this vector. /// public Vector2 PerpendicularRight { get { return new Vector2(Y, -X); } } #endregion #region public Vector2 PerpendicularLeft /// /// Gets the perpendicular vector on the left side of this vector. /// public Vector2 PerpendicularLeft { get { return new Vector2(-Y, X); } } #endregion #region public void Normalize() /// /// Scales the Vector2 to unit length. /// public void Normalize() { float scale = 1.0f / this.Length; X *= scale; Y *= scale; } #endregion #region public void NormalizeFast() /// /// Scales the Vector2 to approximately unit length. /// public void NormalizeFast() { float scale = Functions.InverseSqrtFast(X * X + Y * Y); X *= scale; Y *= scale; } #endregion #region public void Scale(float sx, float sy) /// /// Scales the current Vector2 by the given amounts. /// /// The scale of the X component. /// The scale of the Y component. public void Scale(float sx, float sy) { this.X = X * sx; this.Y = Y * sy; } #endregion #endregion #region Operator overloads public static Vector2 operator +(Vector2 left, Vector2 right) { left.X += right.X; left.Y += right.Y; return left; } public static Vector2 operator -(Vector2 left, Vector2 right) { left.X -= right.X; left.Y -= right.Y; return left; } public static Vector2 operator -(Vector2 vec) { vec.X = -vec.X; vec.Y = -vec.Y; return vec; } public static Vector2 operator *(Vector2 vec, float f) { vec.X *= f; vec.Y *= f; return vec; } public static Vector2 operator *(float f, Vector2 vec) { vec.X *= f; vec.Y *= f; return vec; } public static Vector2 operator /(Vector2 vec, float f) { float mult = 1.0f / f; vec.X *= mult; vec.Y *= mult; return vec; } public static bool operator ==(Vector2 left, Vector2 right) { return left.Equals(right); } public static bool operator !=(Vector2 left, Vector2 right) { return !left.Equals(right); } [CLSCompliant(false)] unsafe public static explicit operator float*(Vector2 v) { return &v.X; } public static explicit operator IntPtr(Vector2 v) { unsafe { return (IntPtr)(&v.X); } } #endregion #region Static functions #region Add /// /// Add two Vectors /// /// First operand /// Second operand /// Result of addition public static Vector2 Add(Vector2 a, Vector2 b) { a.X += b.X; a.Y += b.Y; return a; } /// /// Add two Vectors /// /// First operand /// Second operand /// Result of addition public static void Add(ref Vector2 a, ref Vector2 b, out Vector2 result) { result.X = a.X + b.X; result.Y = a.Y + b.Y; } #endregion #region Sub /// /// Subtract one Vector from another /// /// First operand /// Second operand /// Result of subtraction public static Vector2 Sub(Vector2 a, Vector2 b) { a.X -= b.X; a.Y -= b.Y; return a; } /// /// Subtract one Vector from another /// /// First operand /// Second operand /// Result of subtraction public static void Sub(ref Vector2 a, ref Vector2 b, out Vector2 result) { result.X = a.X - b.X; result.Y = a.Y - b.Y; } #endregion #region Mult /// /// Multiply a vector and a scalar /// /// Vector operand /// Scalar operand /// Result of the multiplication public static Vector2 Mult(Vector2 a, float f) { a.X *= f; a.Y *= f; return a; } /// /// Multiply a vector and a scalar /// /// Vector operand /// Scalar operand /// Result of the multiplication public static void Mult(ref Vector2 a, float f, out Vector2 result) { result.X = a.X * f; result.Y = a.Y * f; } #endregion #region Div /// /// Divide a vector by a scalar /// /// Vector operand /// Scalar operand /// Result of the division public static Vector2 Div(Vector2 a, float f) { float mult = 1.0f / f; a.X *= mult; a.Y *= mult; return a; } /// /// Divide a vector by a scalar /// /// Vector operand /// Scalar operand /// Result of the division public static void Div(ref Vector2 a, float f, out Vector2 result) { float mult = 1.0f / f; result.X = a.X * mult; result.Y = a.Y * mult; } #endregion #region Min /// /// Calculate the component-wise minimum of two vectors /// /// First operand /// Second operand /// The component-wise minimum public static Vector2 Min(Vector2 a, Vector2 b) { a.X = a.X < b.X ? a.X : b.X; a.Y = a.Y < b.Y ? a.Y : b.Y; return a; } /// /// Calculate the component-wise minimum of two vectors /// /// First operand /// Second operand /// The component-wise minimum public static void Min(ref Vector2 a, ref Vector2 b, out Vector2 result) { result.X = a.X < b.X ? a.X : b.X; result.Y = a.Y < b.Y ? a.Y : b.Y; } #endregion #region Max /// /// Calculate the component-wise maximum of two vectors /// /// First operand /// Second operand /// The component-wise maximum public static Vector2 Max(Vector2 a, Vector2 b) { a.X = a.X > b.X ? a.X : b.X; a.Y = a.Y > b.Y ? a.Y : b.Y; return a; } /// /// Calculate the component-wise maximum of two vectors /// /// First operand /// Second operand /// The component-wise maximum public static void Max(ref Vector2 a, ref Vector2 b, out Vector2 result) { result.X = a.X > b.X ? a.X : b.X; result.Y = a.Y > b.Y ? a.Y : b.Y; } #endregion #region Clamp /// /// Clamp a vector to the given minimum and maximum vectors /// /// Input vector /// Minimum vector /// Maximum vector /// The clamped vector public static Vector2 Clamp(Vector2 vec, Vector2 min, Vector2 max) { vec.X = vec.X < min.X ? min.X : vec.X > max.X ? max.X : vec.X; vec.Y = vec.Y < min.Y ? min.Y : vec.Y > max.Y ? max.Y : vec.Y; return vec; } /// /// Clamp a vector to the given minimum and maximum vectors /// /// Input vector /// Minimum vector /// Maximum vector /// The clamped vector public static void Clamp(ref Vector2 vec, ref Vector2 min, ref Vector2 max, out Vector2 result) { result.X = vec.X < min.X ? min.X : vec.X > max.X ? max.X : vec.X; result.Y = vec.Y < min.Y ? min.Y : vec.Y > max.Y ? max.Y : vec.Y; } #endregion #region Normalize /// /// Scale a vector to unit length /// /// The input vector /// The normalized vector public static Vector2 Normalize(Vector2 vec) { float scale = 1.0f / vec.Length; vec.X *= scale; vec.Y *= scale; return vec; } /// /// Scale a vector to unit length /// /// The input vector /// The normalized vector public static void Normalize(ref Vector2 vec, out Vector2 result) { float scale = 1.0f / vec.Length; result.X = vec.X * scale; result.Y = vec.Y * scale; } #endregion #region NormalizeFast /// /// Scale a vector to approximately unit length /// /// The input vector /// The normalized vector public static Vector2 NormalizeFast(Vector2 vec) { float scale = Functions.InverseSqrtFast(vec.X * vec.X + vec.Y * vec.Y); vec.X *= scale; vec.Y *= scale; return vec; } /// /// Scale a vector to approximately unit length /// /// The input vector /// The normalized vector public static void NormalizeFast(ref Vector2 vec, out Vector2 result) { float scale = Functions.InverseSqrtFast(vec.X * vec.X + vec.Y * vec.Y); result.X = vec.X * scale; result.Y = vec.Y * scale; } #endregion #region Dot /// /// Caclulate the dot (scalar) product of two vectors /// /// First operand /// Second operand /// The dot product of the two inputs public static float Dot(Vector2 left, Vector2 right) { return left.X * right.X + left.Y * right.Y; } #endregion #region Lerp /// /// Returns a new Vector that is the linear blend of the 2 given Vectors /// /// First input vector /// Second input vector /// The blend factor /// a when blend=0, b when blend=1, and a linear combination otherwise public static Vector2 Lerp(Vector2 a, Vector2 b, float blend) { a.X = blend * (b.X - a.X) + a.X; a.Y = blend * (b.Y - a.Y) + a.Y; return a; } #endregion #region Barycentric /// /// Interpolate 3 Vectors using Barycentric coordinates /// /// First input Vector /// Second input Vector /// Third input Vector /// First Barycentric Coordinate /// Second Barycentric Coordinate /// a when u=v=0, b when u=1,v=0, c when u=0,v=1, and a linear combination of a,b,c otherwise public static Vector2 BaryCentric(Vector2 a, Vector2 b, Vector2 c, float u, float v) { return a + u * (b - a) + v * (c - a); } #endregion #endregion #region public override string ToString() /// /// Returns a System.String that represents the current Vector2. /// /// public override string ToString() { return String.Format("({0}, {1})", X, Y); } #endregion #region public override int GetHashCode() /// /// Returns the hashcode for this instance. /// /// A System.Int32 containing the unique hashcode for this instance. public override int GetHashCode() { return X.GetHashCode() ^ Y.GetHashCode(); } #endregion #region public override bool Equals(object obj) /// /// Indicates whether this instance and a specified object are equal. /// /// The object to compare to. /// True if the instances are equal; false otherwise. public override bool Equals(object obj) { if (!(obj is Vector2)) return false; return this.Equals((Vector2)obj); } #endregion #region IEquatable Members /// Indicates whether the current vector is equal to another vector. /// A vector to compare with this vector. /// true if the current vector is equal to the vector parameter; otherwise, false. public bool Equals(Vector2 other) { return X == other.X && Y == other.Y; } #endregion } }