namespace OpenTK.Tests open Xunit open FsCheck open FsCheck.Xunit open System open OpenTK module Vector2 = [ |])>] module Constructors = // [] let ``Single value constructor sets all components to the same value`` (f : float32) = let v = Vector2(f) Assert.Equal(f,v.X) Assert.Equal(f,v.Y) [] let ``Two value constructor sets all components correctly`` (x,y) = let v = Vector2(x,y) Assert.Equal(x,v.X) Assert.Equal(y,v.Y) //[] // disabled - behaviour needs discussion let ``Clamping works for each component`` (a : Vector2,b : Vector2,c : Vector2) = let inline clamp (value : float32) minV maxV = MathHelper.Clamp(value,minV,maxV) let r = Vector2.Clamp(a,b,c) Assert.Equal(clamp a.X b.X c.X,r.X) Assert.Equal(clamp a.Y b.Y c.Y,r.Y) [] let ``Length is always >= 0`` (a : Vector2) = // Assert.True(a.Length >= 0.0f) [ |])>] module Length = // [] let ``Length method works`` (a, b) = let v = Vector2(a, b) let l = System.Math.Sqrt((float)(a * a + b * b)) Assert.Equal((float32)l, v.Length) [] let ``Fast length method works`` (a, b) = let v = Vector2(a, b) let l = 1.0f / MathHelper.InverseSqrtFast(a * a + b * b) Assert.Equal(l, v.LengthFast) [] let ``Length squared method works`` (a, b) = let v = Vector2(a, b) let lsq = a * a + b * b Assert.Equal(lsq, v.LengthSquared) [ |])>] module ``Unit vectors and perpendicularity`` = // [] let ``Perpendicular vector to the right is correct`` (a, b) = let v = Vector2(a, b) let perp = Vector2(a, -b) Assert.Equal(perp, v.PerpendicularRight) [] let ``Perpendicular vector to the left is correct`` (a, b) = let v = Vector2(a, b) let perp = Vector2(-a, b) Assert.Equal(perp, v.PerpendicularLeft) [ |])>] module Indexing = // [] let ``Index operators work for the correct components`` (x,y) = let v = Vector2(x,y) Assert.Equal(v.[0],v.X) Assert.Equal(v.[1],v.Y) [] let ``Vector indexing throws index out of range exception correctly`` (x, y) = let mutable v = Vector2(x, y) let invalidIndexingAccess = fun() -> v.[2] |> ignore Assert.Throws(invalidIndexingAccess) |> ignore let invalidIndexingAssignment = (fun() -> v.[2] <- x) Assert.Throws(invalidIndexingAssignment) |> ignore [] let ``Component assignment by indexing works`` (x, y) = let mutable v = Vector2() v.[0] <- x v.[1] <- y Assert.Equal(x, v.X) Assert.Equal(y, v.Y) [ |])>] module ``Simple Properties`` = // [] let ``Vector equality is by component`` (a : Vector2,b : Vector2) = // Assert.Equal((a.X = b.X && a.Y = b.Y),(a = b)) [] let ``Vector length is always >= 0`` (a : Vector2) = // Assert.True(a.Length >= 0.0f) [ |])>] module Addition = // [] let ``Vector addition is the same as component addition`` (a : Vector2,b : Vector2) = let c = a + b Assert.ApproximatelyEqual(a.X + b.X,c.X) Assert.ApproximatelyEqual(a.Y + b.Y,c.Y) [] let ``Vector addition is commutative`` (a : Vector2,b : Vector2) = let c = a + b let c2 = b + a Assert.ApproximatelyEqual(c,c2) [] let ``Vector addition is associative`` (a : Vector2,b : Vector2,c : Vector2) = let r1 = (a + b) + c let r2 = a + (b + c) Assert.ApproximatelyEqual(r1,r2) [ |])>] module Multiplication = // [] let ``Vector2 multiplication is the same as component multiplication`` (a : Vector2, b : Vector2) = let c = a * b Assert.Equal(a.X * b.X,c.X) Assert.Equal(a.Y * b.Y,c.Y) [] let ``Vector2 multiplication is commutative`` (a : Vector2, b : Vector2) = let r1 = a * b let r2 = b * a Assert.Equal(r1,r2) [] let ``Vector2-float multiplication is the same as component-float multiplication`` (a : Vector2, f : float32) = let r = a * f Assert.Equal(a.X * f,r.X) Assert.Equal(a.Y * f,r.Y) // Inverse direction let r = f * a Assert.Equal(a.X * f,r.X) Assert.Equal(a.Y * f,r.Y) [ |])>] module Subtraction = // [] let ``Vector2 subtraction is the same as component subtraction`` (a : Vector2, b : Vector2) = let c = a - b Assert.Equal(a.X - b.X,c.X) Assert.Equal(a.Y - b.Y,c.Y) [ |])>] module Division = // [] let ``Vector2-float division is the same as component-float division`` (a : Vector2, f : float32) = if not (approxEq f 0.0f) then // we don't support diving by zero. let r = a / f Assert.ApproximatelyEqual(a.X / f,r.X) Assert.ApproximatelyEqual(a.Y / f,r.Y) [ |])>] module Negation = // [] let ``Vector negation operator works`` (x, y) = let v = Vector2(x, y) let vNeg = -v Assert.Equal(-x, vNeg.X) Assert.Equal(-y, vNeg.Y) [ |])>] module Equality = // [] let ``Vector equality operator works`` (x, y) = let v1 = Vector2(x, y) let v2 = Vector2(x, y) let equality = v1 = v2 Assert.True(equality) [] let ``Vector inequality operator works`` (x, y) = let v1 = Vector2(x, y) let v2 = Vector2(x + (float32)1 , y + (float32)1) let inequality = v1 <> v2 Assert.True(inequality) [] let ``Vector equality method works`` (x, y) = let v1 = Vector2(x, y) let v2 = Vector2(x, y) let notVector = Matrix2() let equality = v1.Equals(v2) let inequalityByOtherType = v1.Equals(notVector) Assert.True(equality) Assert.False(inequalityByOtherType) [ |])>] module Swizzling = // [] let ``Vector swizzling works`` (x, y) = let v1 = Vector2(x, y) let v2 = Vector2(y, x) let v1yx = v1.Yx; Assert.Equal(v2, v1yx); [ |])>] module Interpolation = // [] let ``Linear interpolation works`` (a : Vector2, b : Vector2, q) = let blend = q let rX = blend * (b.X - a.X) + a.X let rY = blend * (b.Y - a.Y) + a.Y let vExp = Vector2(rX, rY) Assert.Equal(vExp, Vector2.Lerp(a, b, q)) let vRes = Vector2.Lerp(ref a, ref b, q) Assert.Equal(vExp, vRes) [] let ``Barycentric interpolation works`` (a : Vector2, b : Vector2, c : Vector2, u, v) = let r = a + u * (b - a) + v * (c - a) Assert.Equal(r, Vector2.BaryCentric(a, b, c, u, v)) let vRes = Vector2.BaryCentric(ref a, ref b, ref c, u, v) Assert.Equal(r, vRes) [ |])>] module ``Vector products`` = // [] let ``Dot product works`` (a : Vector2, b : Vector2) = let dot = a.X * b.X + a.Y * b.Y Assert.Equal(dot, Vector2.Dot(a, b)); let vRes = Vector2.Dot(ref a, ref b) Assert.Equal(dot, vRes) [] let ``Perpendicular dot product works`` (a : Vector2, b : Vector2) = let dot = a.X * b.Y - a.Y * b.X Assert.Equal(dot, Vector2.PerpDot(a, b)); let vRes = Vector2.PerpDot(ref a, ref b) Assert.Equal(dot, vRes) [ |])>] module Normalization = // [] let ``Normalization of instance, creating a new vector, works`` (a, b) = let v = Vector2(a, b) let l = v.Length // Dividing by zero is not supported if not (approxEq l 0.0f) then let norm = v.Normalized() Assert.ApproximatelyEqual(v.X / l, norm.X) Assert.ApproximatelyEqual(v.Y / l, norm.Y) [] let ``Normalization of instance works`` (a, b) = let v = Vector2(a, b) let l = v.Length if not (approxEq l 0.0f) then let norm = Vector2(a, b) norm.Normalize() Assert.ApproximatelyEqual(v.X / l, norm.X) Assert.ApproximatelyEqual(v.Y / l, norm.Y) [] let ``Fast approximate normalization of instance works`` (a, b) = let v = Vector2(a, b) let norm = Vector2(a, b) norm.NormalizeFast() let scale = MathHelper.InverseSqrtFast(a * a + b * b) Assert.ApproximatelyEqual(v.X * scale, norm.X) Assert.ApproximatelyEqual(v.Y * scale, norm.Y) [] let ``Normalization by reference works`` (a : Vector2) = if not (approxEq a.Length 0.0f) then let scale = 1.0f / a.Length let norm = Vector2(a.X * scale, a.Y * scale) let vRes = Vector2.Normalize(ref a) Assert.ApproximatelyEqual(norm, vRes) [] let ``Normalization works`` (a : Vector2) = if not (approxEq a.Length 0.0f) then let scale = 1.0f / a.Length let norm = Vector2(a.X * scale, a.Y * scale) Assert.ApproximatelyEqual(norm, Vector3.Normalize(a)); [] let ``Fast approximate normalization by reference works`` (a : Vector2) = let scale = MathHelper.InverseSqrtFast(a.X * a.X + a.Y * a.Y) let norm = Vector2(a.X * scale, a.Y * scale) let vRes = Vector2.NormalizeFast(ref a) Assert.ApproximatelyEqual(norm, vRes) [] let ``Fast approximate normalization works`` (a : Vector2) = let scale = MathHelper.InverseSqrtFast(a.X * a.X + a.Y * a.Y) let norm = Vector2(a.X * scale, a.Y * scale) Assert.ApproximatelyEqual(norm, Vector2.NormalizeFast(a));