#region --- License --- /* Copyright (c) 2006 - 2008 The Open Toolkit library. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #endregion using System; using System.Runtime.InteropServices; namespace OpenTK.Math { /// A 2-dimensional vector using double-precision floating point numbers. [Serializable] [StructLayout(LayoutKind.Sequential)] public struct Vector2d : IEquatable { #region Fields /// The X coordinate of this instance. public double X; /// The Y coordinate of this instance. public double Y; /// /// Defines a unit-length Vector2d that points towards the X-axis. /// public static Vector2d UnitX = new Vector2d(1, 0); /// /// Defines a unit-length Vector2d that points towards the Y-axis. /// public static Vector2d UnitY = new Vector2d(0, 1); /// /// Defines a zero-length Vector2d. /// public static Vector2d Zero = new Vector2d(0, 0); /// /// Defines the size of the Vector2d struct in bytes. /// public static readonly int SizeInBytes = Marshal.SizeOf(new Vector2d()); #endregion #region Constructors /// Constructs left vector with the given coordinates. /// The X coordinate. /// The Y coordinate. public Vector2d(double x, double y) { this.X = x; this.Y = y; } #endregion #region Public Members #region Instance #region public double Length /// /// Gets the length (magnitude) of the vector. /// /// public double Length { get { return (float)System.Math.Sqrt(X * X + Y * Y); } } #endregion #region public double LengthSquared /// /// Gets the square of the vector length (magnitude). /// /// /// This property avoids the costly square root operation required by the Length property. This makes it more suitable /// for comparisons. /// /// /// public double LengthSquared { get { return X * X + Y * Y; } } #endregion #region public Vector2d PerpendicularRight /// /// Gets the perpendicular vector on the right side of this vector. /// public Vector2d PerpendicularRight { get { return new Vector2d(Y, -X); } } #endregion #region public Vector2d PerpendicularLeft /// /// Gets the perpendicular vector on the left side of this vector. /// public Vector2d PerpendicularLeft { get { return new Vector2d(-Y, X); } } #endregion #region public void Normalize() /// /// Scales the Vector2 to unit length. /// public void Normalize() { double scale = 1.0f / Length; X *= scale; Y *= scale; } #endregion #region public void Scale(double sx, double sy) /// /// Scales the current Vector2 by the given amounts. /// /// The scale of the X component. /// The scale of the Y component. public void Scale(double sx, double sy) { X *= sx; Y *= sy; } #endregion #endregion #region Static #region Add /// /// Add two Vectors /// /// First operand /// Second operand /// Result of addition public static Vector2d Add(Vector2d a, Vector2d b) { a.X += b.X; a.Y += b.Y; return a; } /// /// Add two Vectors /// /// First operand /// Second operand /// Result of addition public static void Add(ref Vector2d a, ref Vector2d b, out Vector2d result) { result.X = a.X + b.X; result.Y = a.Y + b.Y; } #endregion #region Sub /// /// Subtract one Vector from another /// /// First operand /// Second operand /// Result of subtraction public static Vector2d Sub(Vector2d a, Vector2d b) { a.X -= b.X; a.Y -= b.Y; return a; } /// /// Subtract one Vector from another /// /// First operand /// Second operand /// Result of subtraction public static void Sub(ref Vector2d a, ref Vector2d b, out Vector2d result) { result.X = a.X - b.X; result.Y = a.Y - b.Y; } #endregion #region Mult /// /// Multiply a vector and a scalar /// /// Vector operand /// Scalar operand /// Result of the multiplication public static Vector2d Mult(Vector2d a, double d) { a.X *= d; a.Y *= d; return a; } /// /// Multiply a vector and a scalar /// /// Vector operand /// Scalar operand /// Result of the multiplication public static void Mult(ref Vector2d a, double d, out Vector2d result) { result.X = a.X * d; result.Y = a.Y * d; } #endregion #region Div /// /// Divide a vector by a scalar /// /// Vector operand /// Scalar operand /// Result of the division public static Vector2d Div(Vector2d a, double d) { double mult = 1.0 / d; a.X *= mult; a.Y *= mult; return a; } /// /// Divide a vector by a scalar /// /// Vector operand /// Scalar operand /// Result of the division public static void Div(ref Vector2d a, double d, out Vector2d result) { double mult = 1.0 / d; result.X = a.X * mult; result.Y = a.Y * mult; } #endregion #region Min /// /// Calculate the component-wise minimum of two vectors /// /// First operand /// Second operand /// The component-wise minimum public static Vector2d Min(Vector2d a, Vector2d b) { a.X = a.X < b.X ? a.X : b.X; a.Y = a.Y < b.Y ? a.Y : b.Y; return a; } /// /// Calculate the component-wise minimum of two vectors /// /// First operand /// Second operand /// The component-wise minimum public static void Min(ref Vector2d a, ref Vector2d b, out Vector2d result) { result.X = a.X < b.X ? a.X : b.X; result.Y = a.Y < b.Y ? a.Y : b.Y; } #endregion #region Max /// /// Calculate the component-wise maximum of two vectors /// /// First operand /// Second operand /// The component-wise maximum public static Vector2d Max(Vector2d a, Vector2d b) { a.X = a.X > b.X ? a.X : b.X; a.Y = a.Y > b.Y ? a.Y : b.Y; return a; } /// /// Calculate the component-wise maximum of two vectors /// /// First operand /// Second operand /// The component-wise maximum public static void Max(ref Vector2d a, ref Vector2d b, out Vector2d result) { result.X = a.X > b.X ? a.X : b.X; result.Y = a.Y > b.Y ? a.Y : b.Y; } #endregion #region Clamp /// /// Clamp a vector to the given minimum and maximum vectors /// /// Input vector /// Minimum vector /// Maximum vector /// The clamped vector public static Vector2d Clamp(Vector2d vec, Vector2d min, Vector2d max) { vec.X = vec.X < min.X ? min.X : vec.X > max.X ? max.X : vec.X; vec.Y = vec.Y < min.Y ? min.Y : vec.Y > max.Y ? max.Y : vec.Y; return vec; } /// /// Clamp a vector to the given minimum and maximum vectors /// /// Input vector /// Minimum vector /// Maximum vector /// The clamped vector public static void Clamp(ref Vector2d vec, ref Vector2d min, ref Vector2d max, out Vector2d result) { result.X = vec.X < min.X ? min.X : vec.X > max.X ? max.X : vec.X; result.Y = vec.Y < min.Y ? min.Y : vec.Y > max.Y ? max.Y : vec.Y; } #endregion #region Normalize /// /// Scale a vector to unit length /// /// The input vector /// The normalized vector public static Vector2d Normalize(Vector2d vec) { double scale = 1.0f / vec.Length; vec.X *= scale; vec.Y *= scale; return vec; } /// /// Scale a vector to unit length /// /// The input vector /// The normalized vector public static void Normalize(ref Vector2d vec, out Vector2d result) { double scale = 1.0f / vec.Length; result.X = vec.X * scale; result.Y = vec.Y * scale; } #endregion #region NormalizeFast /// /// Scale a vector to approximately unit length /// /// The input vector /// The normalized vector public static Vector2d NormalizeFast(Vector2d vec) { double scale = Functions.InverseSqrtFast(vec.X * vec.X + vec.Y * vec.Y); vec.X *= scale; vec.Y *= scale; return vec; } /// /// Scale a vector to approximately unit length /// /// The input vector /// The normalized vector public static void NormalizeFast(ref Vector2d vec, out Vector2d result) { double scale = Functions.InverseSqrtFast(vec.X * vec.X + vec.Y * vec.Y); result.X = vec.X * scale; result.Y = vec.Y * scale; } #endregion #region Dot /// /// Caclulate the dot (scalar) product of two vectors /// /// First operand /// Second operand /// The dot product of the two inputs public static double Dot(Vector2d left, Vector2d right) { return left.X * right.X + left.Y * right.Y; } #endregion #region Lerp /// /// Returns a new Vector that is the linear blend of the 2 given Vectors /// /// First input vector /// Second input vector /// The blend factor /// a when blend=0, b when blend=1, and a linear combination otherwise public static Vector2d Lerp(Vector2d a, Vector2d b, double blend) { a.X = blend * (b.X - a.X) + a.X; a.Y = blend * (b.Y - a.Y) + a.Y; return a; } #endregion #region Barycentric /// /// Interpolate 3 Vectors using Barycentric coordinates /// /// First input Vector /// Second input Vector /// Third input Vector /// First Barycentric Coordinate /// Second Barycentric Coordinate /// a when u=v=0, b when u=1,v=0, c when u=0,v=1, and a linear combination of a,b,c otherwise public static Vector2d BaryCentric(Vector2d a, Vector2d b, Vector2d c, double u, double v) { return a + u * (b - a) + v * (c - a); } #endregion #endregion #region Operators public static Vector2d operator +(Vector2d left, Vector2d right) { left.X += right.X; left.Y += right.Y; return left; } public static Vector2d operator -(Vector2d left, Vector2d right) { left.X -= right.X; left.Y -= right.Y; return left; } public static Vector2d operator -(Vector2d vec) { vec.X = -vec.X; vec.Y = -vec.Y; return vec; } public static Vector2d operator *(Vector2d vec, double f) { vec.X *= f; vec.Y *= f; return vec; } public static Vector2d operator *(double f, Vector2d vec) { vec.X *= f; vec.Y *= f; return vec; } public static Vector2d operator /(Vector2d vec, double f) { double mult = 1.0f / f; vec.X *= mult; vec.Y *= mult; return vec; } public static bool operator ==(Vector2d left, Vector2d right) { return left.Equals(right); } public static bool operator !=(Vector2d left, Vector2d right) { return !left.Equals(right); } #endregion #region Overrides #region public override string ToString() /// /// Returns a System.String that represents the current instance. /// /// public override string ToString() { return String.Format("({0}, {1})", X, Y); } #endregion #region public override int GetHashCode() /// /// Returns the hashcode for this instance. /// /// A System.Int32 containing the unique hashcode for this instance. public override int GetHashCode() { return X.GetHashCode() ^ Y.GetHashCode(); } #endregion #region public override bool Equals(object obj) /// /// Indicates whether this instance and a specified object are equal. /// /// The object to compare to. /// True if the instances are equal; false otherwise. public override bool Equals(object obj) { if (!(obj is Vector2d)) return false; return this.Equals((Vector2d)obj); } #endregion #endregion #endregion #region IEquatable Members /// Indicates whether the current vector is equal to another vector. /// A vector to compare with this vector. /// true if the current vector is equal to the vector parameter; otherwise, false. public bool Equals(Vector2d other) { return X == other.X && Y == other.Y; } #endregion } }