using System; using System.Diagnostics; using System.Collections.Generic; using System.Runtime.InteropServices; using System.Text.RegularExpressions; namespace OpenTK.Math { /// A 4-dimensional vector using double-precision floating point numbers. [Serializable] [StructLayout(LayoutKind.Sequential)] public struct Vector4d : IEquatable, IComparer, IComparable { #region Fields & Access /// The X coordinate of the vector. public double X; /// The Y coordinate of the vector. public double Y; /// The Z coordinate of the vector. public double Z; /// The W coordinate of the vector. public double W; /// The coordinate at the index of the vector. public double this[int index] { get { switch( index ) { case 0: return X; case 1: return Y; case 2: return Z; case 3: return W; } throw new IndexOutOfRangeException(); } set { switch( index ) { case 0: X = value; return; case 1: Y = value; return; case 2: Z = value; return; case 3: W = value; return; } throw new IndexOutOfRangeException(); } } /// Converts the vector into an array of double-precision floating point numbers. /// The vector being converted. /// An array of double-precision floating point numbers representing the vector coordinates. public static explicit operator double[](Vector4d vector) { return new double[4]{vector.X, vector.Y, vector.Z, vector.W}; } /// Converts the vector into left double-precision floating point number pointer. /// The vector being converted. /// A double-precision floating point number pointer to the vector coordinates. //unsafe public static explicit operator double*(Vector4d vector) //{ // return &vector.X; //} /// Converts the vector into an IntPtr. /// The vector being converted. /// An IntPtr to the vector coordinates. //public static explicit operator IntPtr(Vector4d vector) //{ // unsafe // { // return (IntPtr)(&vector.X); // } //} #endregion #region Constructors /// Constructs left vector with the given coordinates. /// The X coordinate. /// The Y coordinate. /// The Z coordinate. /// The W coordinate. public Vector4d(double x, double y, double z, double w) { this.X = x; this.Y = y; this.Z = z; this.W = w; } /// Constructs left vector with the same coordinates as the given vector. /// The vector whose coordinates to copy. public Vector4d(ref Vector2d vector) { this.X = vector.X; this.Y = vector.Y; this.Z = 0; this.W = 0; } /// Constructs left vector with the same coordinates as the given vector. /// The vector whose coordinates to copy. public Vector4d(ref Vector3d vector) { this.X = vector.X; this.Y = vector.Y; this.Z = vector.Z; this.W = 0; } /// Constructs left vector with the same coordinates as the given vector. /// The vector whose coordinates to copy. public Vector4d(ref Vector4d vector) { this.X = vector.X; this.Y = vector.Y; this.Z = vector.Z; this.W = vector.W; } /// Constructs left vector from the given array of double-precision floating point numbers. /// The array of doubles for the coordinates of the vector. public Vector4d(double[] coordinateArray) { if( coordinateArray == null || coordinateArray.GetLength(0) < 4 ) throw new Exception("Invalid parameter."); this.X = coordinateArray[0]; this.Y = coordinateArray[1]; this.Z = coordinateArray[2]; this.W = coordinateArray[3]; } #endregion #region Equality /// Indicates whether the current vector is equal to another vector. /// An vector to compare with this vector. /// true if the current vector is equal to the vector parameter; otherwise, false. [CLSCompliant(false)] public bool Equals(Vector4d vector) { return X == vector.X && Y == vector.Y && Z == vector.Z && W == vector.W; } /// Indicates whether the current vector is equal to another vector. /// An vector to compare with this vector. /// true if the current vector is equal to the vector parameter; otherwise, false. public bool Equals(ref Vector4d vector) { return X == vector.X && Y == vector.Y && Z == vector.Z && W == vector.W; } /// Indicates whether two vectors are approximately equal to each other. /// The first vector. /// The second vector. /// true if the vectors are approximately equal; otherwise, false. public static bool Equals(ref Vector4d left, ref Vector4d right) { return left.X == right.X && left.Y == right.Y && left.Z == right.Z && left.W == right.W; } /// Indicates whether the current vector is equal to another vector. /// An vector to compare with this vector. /// true if the current vector is equal to the vector parameter; otherwise, false. public bool EqualsApprox(ref Vector4d vector, double tolerance) { return System.Math.Abs(X - vector.X) <= tolerance && System.Math.Abs(Y - vector.Y) <= tolerance && System.Math.Abs(Z - vector.Z) <= tolerance && System.Math.Abs(W - vector.W) <= tolerance; } /// Indicates whether two vectors are approximately equal to each other within left given tolerance. /// The first vector. /// The second vector. /// The tolerance for the approximation. /// true if the vectors are approximately equal; otherwise, false. public static bool EqualsApprox(ref Vector4d left, ref Vector4d right, double tolerance) { return System.Math.Abs(left.X - right.X) <= tolerance && System.Math.Abs(left.Y - right.Y) <= tolerance && System.Math.Abs(left.Z - right.Z) <= tolerance && System.Math.Abs(left.W - right.W) <= tolerance; } #endregion #region IComparer /// Compares two vectors and returns left value indicating whether one is less than, equal to, or greater than the other. public int Compare(Vector4d left, Vector4d right) { if (left.X != right.X) { if (left.X < right.X) return -1; else return 1; } else if (left.Y != right.Y) { if (left.Y < right.Y) return -1; else return 1; } else if (left.Z != right.Z) { if (left.Z < right.Z) return -1; else return 1; } else if (left.W != right.W) { if (left.W < right.W) return -1; else return 1; } return 0; } #endregion #region IComparable /// Compares the vector with another vector and returns left value indicating whether it is less than, equal to, or greater than the other vector. public int CompareTo(Vector4d vector) { return Compare(this, vector); } #endregion #region Length /// Gets the length of the vector. public double Length { get { double lengthSquared = LengthSquared; if (lengthSquared == 1) { return 1; } else { return System.Math.Sqrt(lengthSquared); } } } /// Gets the squared length of the vector. public double LengthSquared { get { return X * X + Y * Y + Z * Z + W * W; } } /// Gets the approimate length of the vector. public double LengthApprox { get { return 1.0d / Functions.InverseSqrtFast(X * X + Y * Y + Z * Z + W * W); } } #endregion #region Distance /// Gets the distance from this vector to the given vector. /// The vector to which to find the distance. /// The distance from this vector to the given vector. public double DistanceTo(ref Vector4d vector) { double deltaX = vector.X - X; double deltaY = vector.Y - Y; double deltaZ = vector.Z - Z; double deltaW = vector.W - W; return System.Math.Sqrt(deltaX * deltaX + deltaY * deltaY + deltaZ * deltaZ + deltaW * deltaW); } /// Gets the squared distance from this vector to the given vector. /// The vector to which to find the squared distance. /// The squared distance from this vector to the given vector. public double DistanceSquaredTo(ref Vector4d vector) { double deltaX = vector.X - X; double deltaY = vector.Y - Y; double deltaZ = vector.Z - Z; double deltaW = vector.W - W; return deltaX * deltaX + deltaY * deltaY + deltaZ * deltaZ + deltaW * deltaW; } /// Gets the approximate distance from this vector to the given vector. /// The vector to which to find the approximate distance. /// The approximate distance from this vector to the given vector. public double DistanceApproxTo(ref Vector4d vector) { double deltaX = vector.X - X; double deltaY = vector.Y - Y; double deltaZ = vector.Z - Z; double deltaW = vector.W - W; return 1.0d / Functions.InverseSqrtFast(deltaX * deltaX + deltaY * deltaY + deltaZ * deltaZ + deltaW * deltaW); } #endregion #region Normalize /// Normalize this vector. public void Normalize() { double lengthSquared = LengthSquared; if (lengthSquared != 1 && lengthSquared != 0) { double length = System.Math.Sqrt(lengthSquared); X = X / length; Y = Y / length; Z = Z / length; W = W / length; } } /// Get the normalized version of this vector. /// The resulting normalized vector. public void Normalize(out Vector4d result) { double lengthSquared = LengthSquared; if (lengthSquared == 1) { result.X = X; result.Y = Y; result.Z = Z; result.W = W; } else if (lengthSquared == 0) { result.X = 0; result.Y = 0; result.Z = 0; result.W = 0; } else { double length = System.Math.Sqrt(lengthSquared); result.X = X / length; result.Y = Y / length; result.Z = Z / length; result.W = W / length; } } public static void Normalize(ref Vector4d vector, out Vector4d result) { double lengthSquared = vector.LengthSquared; if (lengthSquared == 1) { result.X = vector.X; result.Y = vector.Y; result.Z = vector.Z; result.W = vector.W; } else if (lengthSquared == 0) { result.X = 0; result.Y = 0; result.Z = 0; result.W = 0; } else { double length = System.Math.Sqrt(lengthSquared); result.X = vector.X / length; result.Y = vector.Y / length; result.Z = vector.Z / length; result.W = vector.W / length; } } public void NormalizeApprox() { double inverseSquare = Functions.InverseSqrtFast(X * X + Y * Y + Z * Z + W * W); X = X * inverseSquare; Y = Y * inverseSquare; Z = Z * inverseSquare; W = W * inverseSquare; } /// Gets left approximately normalized vector of the vector. public void NormalizedApprox(out Vector4d result) { double inverseSquare = Functions.InverseSqrtFast(X * X + Y * Y + Z * Z + W * W); result.X = X * inverseSquare; result.Y = Y * inverseSquare; result.Z = Z * inverseSquare; result.W = W * inverseSquare; } public static void NormalizeApprox(ref Vector4d vector, out Vector4d result) { double inverseSquare = Functions.InverseSqrtFast(vector.X * vector.X + vector.Y * vector.Y + vector.Z * vector.Z + vector.W * vector.W); result.X = vector.X * inverseSquare; result.Y = vector.Y * inverseSquare; result.Z = vector.Z * inverseSquare; result.W = vector.W * inverseSquare; } #endregion /// Gets the dot product of two vectors. /// The first vector. /// The second vector. /// The dot product of two vectors. public static double DotProduct(ref Vector4d left, ref Vector4d right) { return left.X * right.X + left.Y * right.Y + left.Z * right.Z + left.W * right.W; } #region Abs public void Abs() { X = System.Math.Abs(X); Y = System.Math.Abs(Y); Z = System.Math.Abs(Z); W = System.Math.Abs(W); } public void Abs(out Vector4d result) { result.X = System.Math.Abs(X); result.Y = System.Math.Abs(Y); result.Z = System.Math.Abs(Z); result.W = System.Math.Abs(W); } public static void Abs(ref Vector4d vector, out Vector4d result) { result.X = System.Math.Abs(vector.X); result.Y = System.Math.Abs(vector.Y); result.Z = System.Math.Abs(vector.Z); result.W = System.Math.Abs(vector.W); } #endregion #region Inverse public void Inverse() { X = -X; Y = -Y; Z = -Z; W = -W; } public void Inverse(out Vector4d result) { result.X = -X; result.Y = -Y; result.Z = -Z; result.W = -W; } public static void Inverse(ref Vector4d vector, out Vector4d result) { result.X = -vector.X; result.Y = -vector.Y; result.Z = -vector.Z; result.W = -vector.W; } #endregion #region Arithmatic public void Add(ref Vector4d vector) { X = X + vector.X; Y = Y + vector.Y; Z = Z + vector.Z; W = W + vector.W; } public void Add(ref Vector4d vector, out Vector4d result) { result.X = X + vector.X; result.Y = Y + vector.Y; result.Z = Z + vector.Z; result.W = W + vector.W; } public static void Add(ref Vector4d left, ref Vector4d right, out Vector4d result) { result.X = left.X + right.X; result.Y = left.Y + right.Y; result.Z = left.Z + right.Z; result.W = left.W + right.W; } public void Add(double x, double y, double z, double w) { X = X + x; Y = Y + y; Z = Z + z; W = W + w; } public void Add(double x, double y, double z, double w, out Vector4d result) { result.X = X + x; result.Y = Y + y; result.Z = Z + z; result.W = W + w; } public static void Add(ref Vector4d vector, double x, double y, double z, double w, out Vector4d result) { result.X = vector.X + x; result.Y = vector.Y + y; result.Z = vector.Z + z; result.W = vector.W + w; } public void Subtract(ref Vector4d vector) { X = X - vector.X; Y = Y - vector.Y; Z = Z - vector.Z; W = W - vector.W; } public void Subtract(ref Vector4d vector, out Vector4d result) { result.X = X - vector.X; result.Y = Y - vector.Y; result.Z = Z - vector.Z; result.W = W - vector.W; } public static void Subtract(ref Vector4d left, ref Vector4d right, out Vector4d result) { result.X = left.X - right.X; result.Y = left.Y - right.Y; result.Z = left.Z - right.Z; result.W = left.W - right.W; } public void Subtract(double x, double y, double z, double w) { X = X - x; Y = Y - y; Z = Z - z; W = W - w; } public void Subtract(double x, double y, double z, double w, out Vector4d result) { result.X = X - x; result.Y = Y - y; result.Z = Z - z; result.W = W - w; } public static void Subtract(ref Vector4d vector, double x, double y, double z, double w, out Vector4d result) { result.X = vector.X - x; result.Y = vector.Y - y; result.Z = vector.Z - z; result.W = vector.W - w; } public void Multiply(double scalar) { X = X * scalar; Y = Y * scalar; Z = Z * scalar; W = W * scalar; } public void Multiply(double scalar, out Vector4d result) { result.X = X * scalar; result.Y = Y * scalar; result.Z = Z * scalar; result.W = W * scalar; } public static void Multiply(ref Vector4d vector, double scalar, out Vector4d result) { result.X = vector.X * scalar; result.Y = vector.Y * scalar; result.Z = vector.Z * scalar; result.W = vector.W * scalar; } public void Multiply(ref Vector4d vector) { X = X * vector.X; Y = Y * vector.Y; Z = Z * vector.Z; W = W * vector.W; } public void Multiply(ref Vector4d vector, out Vector4d result) { result.X = X * vector.X; result.Y = Y * vector.Y; result.Z = Z * vector.Z; result.W = W * vector.W; } public static void Multiply(ref Vector4d left, ref Vector4d right, out Vector4d result) { result.X = left.X * right.X; result.Y = left.Y * right.Y; result.Z = left.Z * right.Z; result.W = left.W * right.W; } public void Multiply(double x, double y, double z, double w) { X = X * x; Y = Y * y; Z = Z * z; W = W * w; } public void Multiply(double x, double y, double z, double w, out Vector4d result) { result.X = X * x; result.Y = Y * y; result.Z = Z * z; result.W = W * w; } public static void Multiply(ref Vector4d vector, double x, double y, double z, double w, out Vector4d result) { result.X = vector.X * x; result.Y = vector.Y * y; result.Z = vector.Z * z; result.W = vector.W * w; } public void Divide(double scalar) { X = X / scalar; Y = Y / scalar; Z = X / scalar; W = W / scalar; } public void Divide(double scalar, out Vector4d result) { result.X = X / scalar; result.Y = Y / scalar; result.Z = X / scalar; result.W = W / scalar; } public static void Divide(ref Vector4d vector, double scalar, out Vector4d result) { result.X = vector.X / scalar; result.Y = vector.Y / scalar; result.Z = vector.Z / scalar; result.W = vector.W / scalar; } public void Divide(ref Vector4d vector) { X = X / vector.X; Y = Y / vector.Y; Z = Z / vector.Z; W = W / vector.W; } public void Divide(ref Vector4d vector, out Vector4d result) { result.X = X / vector.X; result.Y = Y / vector.Y; result.Z = Z / vector.Z; result.W = W / vector.W; } public static void Divide(ref Vector4d left, ref Vector4d right, out Vector4d result) { result.X = left.X / right.X; result.Y = left.Y / right.Y; result.Z = left.Z / right.Z; result.W = left.W / right.W; } public void Divide(double x, double y, double z, double w) { X = X / x; Y = Y / y; Z = Z / z; W = W / w; } public void Divide(double x, double y, double z, double w, out Vector4d result) { result.X = X / x; result.Y = Y / y; result.Z = Z / z; result.W = W / w; } public static void Divide(ref Vector4d vector, double x, double y, double z, double w, out Vector4d result) { result.X = vector.X / x; result.Y = vector.Y / y; result.Z = vector.Z / z; result.W = vector.W / w; } #endregion #region Transformations public void Transform(ref Matrix4d matrix) { double x = matrix.R0C0 * X + matrix.R0C1 * Y + matrix.R0C2 * Z + matrix.R0C3 * W; double y = matrix.R1C0 * X + matrix.R1C1 * Y + matrix.R1C2 * Z + matrix.R1C3 * W; double z = matrix.R2C0 * X + matrix.R2C1 * Y + matrix.R2C2 * Z + matrix.R2C3 * W; W = matrix.R3C0 * X + matrix.R3C1 * Y + matrix.R3C2 * Z + matrix.R3C3 * W; X = x; Y = y; Z = z; } public void Transform(ref Matrix4d matrix, out Vector4d result) { result.X = matrix.R0C0 * X + matrix.R0C1 * Y + matrix.R0C2 * Z + matrix.R0C3 * W; result.Y = matrix.R1C0 * X + matrix.R1C1 * Y + matrix.R1C2 * Z + matrix.R1C3 * W; result.Z = matrix.R2C0 * X + matrix.R2C1 * Y + matrix.R2C2 * Z + matrix.R2C3 * W; result.W = matrix.R3C0 * X + matrix.R3C1 * Y + matrix.R3C2 * Z + matrix.R3C3 * W; } public static void Transform(ref Vector4d vector, ref Matrix4d matrix, out Vector4d result) { result.X = matrix.R0C0 * vector.X + matrix.R0C1 * vector.Y + matrix.R0C2 * vector.Z + matrix.R0C3 * vector.W; result.Y = matrix.R1C0 * vector.X + matrix.R1C1 * vector.Y + matrix.R1C2 * vector.Z + matrix.R1C3 * vector.W; result.Z = matrix.R2C0 * vector.X + matrix.R2C1 * vector.Y + matrix.R2C2 * vector.Z + matrix.R2C3 * vector.W; result.W = matrix.R3C0 * vector.X + matrix.R3C1 * vector.Y + matrix.R3C2 * vector.Z + matrix.R3C3 * vector.W; } public void Translate(ref Vector4d vector) { X = X + vector.X; Y = Y + vector.Y; Z = Z + vector.Z; W = W + vector.W; } public void Translate(ref Vector4d vector, out Vector4d result) { result.X = X + vector.X; result.Y = Y + vector.Y; result.Z = Z + vector.Z; result.W = W + vector.W; } public static void Translate(ref Vector4d left, ref Vector4d right, out Vector4d result) { result.X = left.X + right.X; result.Y = left.Y + right.Y; result.Z = left.Z + right.Z; result.W = left.W + right.W; } public void Translate(double x, double y, double z, double w) { X = X + x; Y = Y + y; Z = Z + z; W = W + w; } public void Translate(double x, double y, double z, double w, out Vector4d result) { result.X = X + x; result.Y = Y + y; result.Z = Z + z; result.W = W + w; } public static void Translate(ref Vector4d vector, double x, double y, double z, double w, out Vector4d result) { result.X = vector.X + x; result.Y = vector.Y + y; result.Z = vector.Z + z; result.W = vector.W + w; } public void Scale(ref Vector4d vector) { X = X * vector.X; Y = Y * vector.Y; Z = Z * vector.Z; W = W * vector.W; } public void Scale(ref Vector4d vector, out Vector4d result) { result.X = X * vector.X; result.Y = Y * vector.Y; result.Z = Z * vector.Z; result.W = W * vector.W; } public static void Scale(ref Vector4d left, ref Vector4d right, out Vector4d result) { result.X = left.X * right.X; result.Y = left.Y * right.Y; result.Z = left.Z * right.Z; result.W = left.W * right.W; } public void Scale(double x, double y, double z, double w) { X = X * x; Y = Y * y; Z = Z * z; W = W * w; } public void Scale(double x, double y, double z, double w, out Vector4d result) { result.X = X * x; result.Y = Y * y; result.Z = Z * z; result.W = W * w; } public static void Scale(ref Vector4d vector, double x, double y, double z, double w, out Vector4d result) { result.X = vector.X * x; result.Y = vector.Y * y; result.Z = vector.Z * z; result.W = vector.W * w; } public void RotateX(double angle) { double angleRadians = Functions.DTOR * angle; double sin = (double)System.Math.Sin(angleRadians); double cos = (double)System.Math.Cos(angleRadians); double y = cos * Y + sin * Z; Z = cos * Z - sin * Y; Y = y; } public void RotateX(double angle, out Vector4d result) { double angleRadians = Functions.DTOR * angle; double sin = (double)System.Math.Sin(angleRadians); double cos = (double)System.Math.Cos(angleRadians); result.X = X; result.Y = cos * Y + sin * Z; result.Z = cos * Z - sin * Y; result.W = W; } public static void RotateX(ref Vector4d vector, double angle, out Vector4d result) { double angleRadians = Functions.DTOR * angle; double sin = (double)System.Math.Sin(angleRadians); double cos = (double)System.Math.Cos(angleRadians); result.X = vector.X; result.Y = cos * vector.Y + sin * vector.Z; result.Z = cos * vector.Z - sin * vector.Y; result.W = vector.W; } public void RotateY(double angle) { double angleRadians = Functions.DTOR * angle; double sin = (double)System.Math.Sin(angleRadians); double cos = (double)System.Math.Cos(angleRadians); double x = cos * X - sin * Z; Z = sin * X + cos * Z; X = x; } public void RotateY(double angle, out Vector4d result) { double angleRadians = Functions.DTOR * angle; double sin = (double)System.Math.Sin(angleRadians); double cos = (double)System.Math.Cos(angleRadians); result.X = cos * X - sin * Z; result.Y = Y; result.Z = sin * Y + cos * Z; result.W = W; } public static void RotateY(ref Vector4d vector, double angle, out Vector4d result) { double angleRadians = Functions.DTOR * angle; double sin = (double)System.Math.Sin(angleRadians); double cos = (double)System.Math.Cos(angleRadians); result.X = cos * vector.X - sin * vector.Z; result.Y = vector.Y; result.Z = sin * vector.Y + cos * vector.Z; result.W = vector.W; } public void RotateZ(double angle) { double angleRadians = Functions.DTOR * angle; double sin = (double)System.Math.Sin(angleRadians); double cos = (double)System.Math.Cos(angleRadians); double x = cos * X + sin * Y; Y = cos * Y - sin * X; X = x; } public void RotateZ(double angle, out Vector4d result) { double angleRadians = Functions.DTOR * angle; double sin = (double)System.Math.Sin(angleRadians); double cos = (double)System.Math.Cos(angleRadians); result.X = cos * X + sin * Y; result.Y = cos * Y - sin * X; result.Z = Z; result.W = W; } public static void RotateZ(ref Vector4d vector, double angle, out Vector4d result) { double angleRadians = Functions.DTOR * angle; double sin = (double)System.Math.Sin(angleRadians); double cos = (double)System.Math.Cos(angleRadians); result.X = cos * vector.X + sin * vector.Y; result.Y = cos * vector.Y - sin * vector.X; result.Z = vector.Z; result.W = vector.W; } public void Rotate(ref Vector3d axis, double angle) { Vector3d axisNormalized; axis.Normalize(out axisNormalized); double x = axisNormalized.X; double y = axisNormalized.Y; double z = axisNormalized.Z; double angleRadians = Functions.DTOR * angle; double cos = (double)System.Math.Cos(angleRadians); double sin = (double)System.Math.Sin(angleRadians); double oneMinusCos = 1 - cos; double xOneMinusCos = x * oneMinusCos; double yOneMinusCos = y * oneMinusCos; double zOneMinusCos = z * oneMinusCos; double xxOneMinusCos = x * xOneMinusCos; double xyOneMinusCos = x * yOneMinusCos; double xzOneMinusCos = x * zOneMinusCos; double yyOneMinusCos = y * yOneMinusCos; double yzOneMinusCos = y * zOneMinusCos; double zzOneMinusCos = z * zOneMinusCos; double xSin = x * sin; double ySin = y * sin; double zSin = z * sin; double tx = (xxOneMinusCos + cos) * X + (xyOneMinusCos + zSin) * Y + (xzOneMinusCos - ySin) * Z; double ty = (xyOneMinusCos - zSin) * X + (yyOneMinusCos + cos) * Y + (yzOneMinusCos + xSin) * Z; Z = (xzOneMinusCos + ySin) * X + (yzOneMinusCos - xSin) * Y + (zzOneMinusCos + cos) * Z; X = tx; Y = ty; } public void Rotate(ref Vector3d axis, double angle, out Vector4d result) { Vector3d axisNormalized; axis.Normalize(out axisNormalized); double x = axisNormalized.X; double y = axisNormalized.Y; double z = axisNormalized.Z; double angleRadians = Functions.DTOR * angle; double cos = (double)System.Math.Cos(angleRadians); double sin = (double)System.Math.Sin(angleRadians); double oneMinusCos = 1 - cos; double xOneMinusCos = x * oneMinusCos; double yOneMinusCos = y * oneMinusCos; double zOneMinusCos = z * oneMinusCos; double xxOneMinusCos = x * xOneMinusCos; double xyOneMinusCos = x * yOneMinusCos; double xzOneMinusCos = x * zOneMinusCos; double yyOneMinusCos = y * yOneMinusCos; double yzOneMinusCos = y * zOneMinusCos; double zzOneMinusCos = z * zOneMinusCos; double xSin = x * sin; double ySin = y * sin; double zSin = z * sin; result.X = (xxOneMinusCos + cos) * X + (xyOneMinusCos + zSin) * Y + (xzOneMinusCos - ySin) * Z; result.Y = (xyOneMinusCos - zSin) * X + (yyOneMinusCos + cos) * Y + (yzOneMinusCos + xSin) * Z; result.Z = (xzOneMinusCos + ySin) * X + (yzOneMinusCos - xSin) * Y + (zzOneMinusCos + cos) * Z; result.W = W; } public static void Rotate(ref Vector4d vector, ref Vector3d axis, double angle, out Vector4d result) { Vector3d axisNormalized; axis.Normalize(out axisNormalized); double x = axisNormalized.X; double y = axisNormalized.Y; double z = axisNormalized.Z; double angleRadians = Functions.DTOR * angle; double cos = (double)System.Math.Cos(angleRadians); double sin = (double)System.Math.Sin(angleRadians); double oneMinusCos = 1 - cos; double xOneMinusCos = x * oneMinusCos; double yOneMinusCos = y * oneMinusCos; double zOneMinusCos = z * oneMinusCos; double xxOneMinusCos = x * xOneMinusCos; double xyOneMinusCos = x * yOneMinusCos; double xzOneMinusCos = x * zOneMinusCos; double yyOneMinusCos = y * yOneMinusCos; double yzOneMinusCos = y * zOneMinusCos; double zzOneMinusCos = z * zOneMinusCos; double xSin = x * sin; double ySin = y * sin; double zSin = z * sin; result.X = (xxOneMinusCos + cos ) * vector.X + (xyOneMinusCos + zSin) * vector.Y + (xzOneMinusCos - ySin) * vector.Z; result.Y = (xyOneMinusCos - zSin) * vector.X + (yyOneMinusCos + cos) * vector.Y + (yzOneMinusCos + xSin) * vector.Z; result.Z = (xzOneMinusCos + ySin) * vector.X + (yzOneMinusCos - xSin) * vector.Y + (zzOneMinusCos + cos ) * vector.Z; result.W = vector.W; } #endregion #region Min & Max public void Min(ref Vector4d vector) { double lengthSquared = X * X + Y * Y + Z * Z + W * W; double vectorLengthSquared = vector.X * vector.X + vector.Y * vector.Y + vector.Z * vector.Z + vector.W * vector.W; if (vectorLengthSquared < lengthSquared) { X = vector.X; Y = vector.Y; Z = vector.Z; W = vector.W; } } public void Min(ref Vector4d vector, out Vector4d result) { double lengthSquared = X * X + Y * Y + Z * Z + W * W; double vectorLengthSquared = vector.X * vector.X + vector.Y * vector.Y + vector.Z * vector.Z + vector.W * vector.W; if (vectorLengthSquared < lengthSquared) { result.X = vector.X; result.Y = vector.Y; result.Z = vector.Z; result.W = vector.W; } else { result.X = X; result.Y = Y; result.Z = Z; result.W = W; } } public static void Min(ref Vector4d left, ref Vector4d right, out Vector4d result) { double leftLengthSquared = left.X * left.X + left.Y * left.Y + left.Z * left.Z + left.W * left.W; double rightLengthSquared = right.X * right.X + right.Y * right.Y + right.Z * right.Z + right.W * right.W; if (rightLengthSquared < leftLengthSquared) { result.X = right.X; result.Y = right.Y; result.Z = right.Z; result.W = right.W; } else { result.X = left.X; result.Y = left.Y; result.Z = left.Z; result.W = left.W; } } public void Max(ref Vector4d vector) { double lengthSquared = X * X + Y * Y + Z * Z + W * W; double vectorLengthSquared = vector.X * vector.X + vector.Y * vector.Y + vector.Z * vector.Z + vector.W * vector.W; if (vectorLengthSquared > lengthSquared) { X = vector.X; Y = vector.Y; Z = vector.Z; W = vector.W; } } public void Max(ref Vector4d vector, out Vector4d result) { double lengthSquared = X * X + Y * Y + Z * Z + W * W; double vectorLengthSquared = vector.X * vector.X + vector.Y * vector.Y + vector.Z * vector.Z + vector.W * vector.W; if (vectorLengthSquared > lengthSquared) { result.X = vector.X; result.Y = vector.Y; result.Z = vector.Z; result.W = vector.W; } else { result.X = X; result.Y = Y; result.Z = Z; result.W = W; } } public static void Max(ref Vector4d left, ref Vector4d right, out Vector4d result) { double leftLengthSquared = left.X * left.X + left.Y * left.Y + left.Z * left.Z + left.W * left.W; double rightLengthSquared = right.X * right.X + right.Y * right.Y + right.Z * right.Z + right.W * right.W; if (rightLengthSquared > leftLengthSquared) { result.X = right.X; result.Y = right.Y; result.Z = right.Z; result.W = right.W; } else { result.X = left.X; result.Y = left.Y; result.Z = left.Z; result.W = left.W; } } public void CoordinateMin(ref Vector4d vector) { X = System.Math.Min(X, vector.X); Y = System.Math.Min(Y, vector.Y); Z = System.Math.Min(Z, vector.Z); W = System.Math.Min(W, vector.W); } public void CoordinateMin(ref Vector4d vector, out Vector4d result) { result.X = System.Math.Min(X, vector.X); result.Y = System.Math.Min(Y, vector.Y); result.Z = System.Math.Min(Z, vector.Z); result.W = System.Math.Min(W, vector.W); } public static void CoordinateMin(ref Vector4d left, ref Vector4d right, out Vector4d result) { result.X = System.Math.Min(left.X, right.X); result.Y = System.Math.Min(left.Y, right.Y); result.Z = System.Math.Min(left.Z, right.Z); result.W = System.Math.Min(left.W, right.W); } public void CoordinateMax(ref Vector4d vector) { X = System.Math.Max(X, vector.X); Y = System.Math.Max(Y, vector.Y); Z = System.Math.Max(Z, vector.Z); W = System.Math.Max(W, vector.W); } public void CoordinateMax(ref Vector4d vector, out Vector4d result) { result.X = System.Math.Max(X, vector.X); result.Y = System.Math.Max(Y, vector.Y); result.Z = System.Math.Max(Z, vector.Z); result.W = System.Math.Max(W, vector.W); } public static void CoordinateMax(ref Vector4d left, ref Vector4d right, out Vector4d result) { result.X = System.Math.Max(left.X, right.X); result.Y = System.Math.Max(left.Y, right.Y); result.Z = System.Math.Max(left.Z, right.Z); result.W = System.Math.Max(left.W, right.W); } public void Clamp(ref Vector4d min, ref Vector4d max) { X = System.Math.Max(System.Math.Min(X, min.X), max.X); Y = System.Math.Max(System.Math.Min(Y, min.Y), max.Y); Z = System.Math.Max(System.Math.Min(Z, min.Z), max.Z); W = System.Math.Max(System.Math.Min(W, min.W), max.W); } public void Clamp(ref Vector4d min, ref Vector4d max, out Vector4d result) { result.X = System.Math.Max(System.Math.Min(X, min.X), max.X); result.Y = System.Math.Max(System.Math.Min(Y, min.Y), max.Y); result.Z = System.Math.Max(System.Math.Min(Z, min.Z), max.Z); result.W = System.Math.Max(System.Math.Min(W, min.W), max.W); } public static void Clamp(ref Vector4d vector, ref Vector4d min, ref Vector4d max, out Vector4d result) { result.X = System.Math.Max(System.Math.Min(vector.X, min.X), max.X); result.Y = System.Math.Max(System.Math.Min(vector.Y, min.Y), max.Y); result.Z = System.Math.Max(System.Math.Min(vector.Z, min.Z), max.Z); result.W = System.Math.Max(System.Math.Min(vector.W, min.W), max.W); } #endregion #region Interpolation public void Lerp(ref Vector4d end, double blend) { X = X + (end.X - X) * blend; Y = Y + (end.Y - Y) * blend; Z = Z + (end.Z - Z) * blend; W = W + (end.W - W) * blend; } public void Lerp(ref Vector4d end, double blend, out Vector4d result) { result.X = X + (end.X - X) * blend; result.Y = Y + (end.Y - Y) * blend; result.Z = Z + (end.Z - Z) * blend; result.W = W + (end.W - W) * blend; } public static void Lerp(ref Vector4d start, ref Vector4d end, double blend, out Vector4d result) { result.X = start.X + (end.X - start.X) * blend; result.Y = start.Y + (end.Y - start.Y) * blend; result.Z = start.Z + (end.Z - start.Z) * blend; result.W = start.W + (end.W - start.W) * blend; } public void BaryCentric(ref Vector4d endU, ref Vector4d endV, double u, double v) { X = X + (endU.X - X) * u + (endV.X - X) * v; Y = Y + (endU.Y - Y) * u + (endV.Y - Y) * v; Z = Z + (endU.Z - Z) * u + (endV.Z - Z) * v; W = W + (endU.W - W) * u + (endV.W - W) * v; } public void BaryCentric(ref Vector4d endU, ref Vector4d endV, double u, double v, out Vector4d result) { result.X = X + (endU.X - X) * u + (endV.X - X) * v; result.Y = Y + (endU.Y - Y) * u + (endV.Y - Y) * v; result.Z = Z + (endU.Z - Z) * u + (endV.Z - Z) * v; result.W = W + (endU.W - W) * u + (endV.W - W) * v; } public static void BaryCentric(ref Vector4d start, ref Vector4d endU, ref Vector4d endV, double u, double v, out Vector4d result) { result.X = start.X + (endU.X - start.X) * u + (endV.X - start.X) * v; result.Y = start.Y + (endU.Y - start.Y) * u + (endV.Y - start.Y) * v; result.Z = start.Z + (endU.Z - start.Z) * u + (endV.Z - start.Z) * v; result.W = start.W + (endU.W - start.W) * u + (endV.W - start.W) * v; } #endregion #region String and Parse /// Returns the fully qualified type name of this instance. /// A System.String containing left fully qualified type name. public override string ToString() { return String.Format("{0} {1} {2} {3}", X, Y, Z, W); } /// Parse left string to convert it to left vector. /// The string to parse. /// The vector represented by the string. public static void Parse(string str, out Vector4d result) { Match match = new Regex(@"(?.*) (?.*) (?.*) (?.*)", RegexOptions.None).Match(str); if (!match.Success) throw new Exception("Parse failed!"); result.X = double.Parse(match.Result("${x}")); result.Y = double.Parse(match.Result("${y}")); result.Z = double.Parse(match.Result("${z}")); result.W = double.Parse(match.Result("${w}")); } #endregion #region HashCode /// Returns the hash code for this instance. /// A 32-bit signed integer that is the hash code for this instance. public override int GetHashCode() { return X.GetHashCode() ^ Y.GetHashCode() ^ Z.GetHashCode() ^ W.GetHashCode(); } #endregion #region Constants /// A vector representing left zero vector. public static readonly Vector4d Zero = new Vector4d(0, 0, 0, 0); /// A vector with all coordinates set to one. public static readonly Vector4d One = new Vector4d(1, 1, 1, 1); /// A unit normal vector representing the positive X Axis. public static readonly Vector4d XAxis = new Vector4d(1, 0, 0, 0); /// A unit normal vector representing the positive Y Axis. public static readonly Vector4d YAxis = new Vector4d(0, 1, 0, 0); /// A unit normal vector representing the positive Z Axis. public static readonly Vector4d ZAxis = new Vector4d(0, 0, 1, 0); /// A unit normal vector representing the positive W Axis. public static readonly Vector4d WAxis = new Vector4d(0, 0, 0, 1); #endregion } }