#region --- License ---
/* Copyright (c) 2006, 2007 Stefanos Apostolopoulos
* See license.txt for license info
*
* Contributions by Andy Gill, Georg Wächter.
*/
#endregion
using System;
using System.Collections.Generic;
using System.Text;
using System.Runtime.InteropServices;
namespace OpenTK.Math
{
///
/// Represents a 2D vector.
///
///
/// The Vector2 structure is suitable for interoperation with unmanaged code requiring two consecutive floats.
///
[Serializable]
[StructLayout(LayoutKind.Sequential)]
public struct Vector2 : IEquatable
{
#region Fields
///
/// The X component of the Vector2.
///
public float X;
///
/// The Y component of the Vector2.
///
public float Y;
///
/// Defines a unit-length Vector2 that points towards the X-axis.
///
public static Vector2 UnitX = new Vector2(1, 0);
///
/// Defines a unit-length Vector2 that points towards the Y-axis.
///
public static Vector2 UnitY = new Vector2(0, 1);
///
/// Defines a zero-length Vector2.
///
public static Vector2 Zero = new Vector2(0, 0);
///
/// Defines the size of the Vector2 struct in bytes.
///
public static readonly int SizeInBytes = Marshal.SizeOf(new Vector2());
#endregion
#region Constructors
///
/// Constructs a new Vector2.
///
/// The x coordinate of the net Vector2.
/// The y coordinate of the net Vector2.
public Vector2(float x, float y)
{
X = x;
Y = y;
}
///
/// Constructs a new Vector2 from the given Vector2.
///
/// The Vector2 to copy components from.
public Vector2(Vector2 v)
{
X = v.X;
Y = v.Y;
}
///
/// Constructs a new Vector2 from the given Vector3.
///
/// The Vector3 to copy components from. Z is discarded.
public Vector2(Vector3 v)
{
X = v.X;
Y = v.Y;
}
///
/// Constructs a new Vector2 from the given Vector4.
///
/// The Vector4 to copy components from. Z and W are discarded.
public Vector2(Vector4 v)
{
X = v.X;
Y = v.Y;
}
#endregion
#region Functions
#region public float Length
///
/// Gets the length (magnitude) of the vector.
///
///
///
public float Length
{
get
{
return (float)System.Math.Sqrt(X * X + Y * Y);
}
}
#endregion
#region public float LengthFast
///
/// Gets an approximation of the vector length (magnitude).
///
///
/// This property uses an approximation of the square root function to calculate vector magnitude, with
/// an upper error bound of 0.001.
///
///
///
///
public float LengthFast
{
get
{
return 1.0f / OpenTK.Math.Functions.InverseSqrtFast(X * X + Y * Y);
}
}
#endregion
#region public float LengthSquared
///
/// Gets the square of the vector length (magnitude).
///
///
/// This property avoids the costly square root operation required by the Length property. This makes it more suitable
/// for comparisons.
///
///
///
public float LengthSquared
{
get
{
return X * X + Y * Y;
}
}
#endregion
#region public Vector2 PerpendicularRight
///
/// Gets the perpendicular vector on the right side of this vector.
///
public Vector2 PerpendicularRight
{
get
{
return new Vector2(Y, -X);
}
}
#endregion
#region public Vector2 PerpendicularLeft
///
/// Gets the perpendicular vector on the left side of this vector.
///
public Vector2 PerpendicularLeft
{
get
{
return new Vector2(-Y, X);
}
}
#endregion
#region public void Normalize()
///
/// Scales the Vector2 to unit length.
///
public void Normalize()
{
float scale = 1.0f / this.Length;
X *= scale;
Y *= scale;
}
#endregion
#region public void NormalizeFast()
///
/// Scales the Vector2 to approximately unit length.
///
public void NormalizeFast()
{
float scale = Functions.InverseSqrtFast(X * X + Y * Y);
X *= scale;
Y *= scale;
}
#endregion
#region public void Scale(float sx, float sy)
///
/// Scales the current Vector2 by the given amounts.
///
/// The scale of the X component.
/// The scale of the Y component.
public void Scale(float sx, float sy)
{
this.X = X * sx;
this.Y = Y * sy;
}
#endregion
#endregion
#region Operator overloads
public static Vector2 operator +(Vector2 left, Vector2 right)
{
left.X += right.X;
left.Y += right.Y;
return left;
}
public static Vector2 operator -(Vector2 left, Vector2 right)
{
left.X -= right.X;
left.Y -= right.Y;
return left;
}
public static Vector2 operator -(Vector2 vec)
{
vec.X = -vec.X;
vec.Y = -vec.Y;
return vec;
}
public static Vector2 operator *(Vector2 vec, float f)
{
vec.X *= f;
vec.Y *= f;
return vec;
}
public static Vector2 operator *(float f, Vector2 vec)
{
vec.X *= f;
vec.Y *= f;
return vec;
}
public static Vector2 operator /(Vector2 vec, float f)
{
float mult = 1.0f / f;
vec.X *= mult;
vec.Y *= mult;
return vec;
}
public static bool operator ==(Vector2 left, Vector2 right)
{
return left.Equals(right);
}
public static bool operator !=(Vector2 left, Vector2 right)
{
return !left.Equals(right);
}
[CLSCompliant(false)]
unsafe public static explicit operator float*(Vector2 v)
{
return &v.X;
}
public static explicit operator IntPtr(Vector2 v)
{
unsafe
{
return (IntPtr)(&v.X);
}
}
#endregion
#region Static functions
#region Add
///
/// Add two Vectors
///
/// First operand
/// Second operand
/// Result of addition
public static Vector2 Add(Vector2 a, Vector2 b)
{
a.X += b.X;
a.Y += b.Y;
return a;
}
///
/// Add two Vectors
///
/// First operand
/// Second operand
/// Result of addition
public static void Add(ref Vector2 a, ref Vector2 b, out Vector2 result)
{
result.X = a.X + b.X;
result.Y = a.Y + b.Y;
}
#endregion
#region Sub
///
/// Subtract one Vector from another
///
/// First operand
/// Second operand
/// Result of subtraction
public static Vector2 Sub(Vector2 a, Vector2 b)
{
a.X -= b.X;
a.Y -= b.Y;
return a;
}
///
/// Subtract one Vector from another
///
/// First operand
/// Second operand
/// Result of subtraction
public static void Sub(ref Vector2 a, ref Vector2 b, out Vector2 result)
{
result.X = a.X - b.X;
result.Y = a.Y - b.Y;
}
#endregion
#region Mult
///
/// Multiply a vector and a scalar
///
/// Vector operand
/// Scalar operand
/// Result of the multiplication
public static Vector2 Mult(Vector2 a, float f)
{
a.X *= f;
a.Y *= f;
return a;
}
///
/// Multiply a vector and a scalar
///
/// Vector operand
/// Scalar operand
/// Result of the multiplication
public static void Mult(ref Vector2 a, float f, out Vector2 result)
{
result.X = a.X * f;
result.Y = a.Y * f;
}
#endregion
#region Div
///
/// Divide a vector by a scalar
///
/// Vector operand
/// Scalar operand
/// Result of the division
public static Vector2 Div(Vector2 a, float f)
{
float mult = 1.0f / f;
a.X *= mult;
a.Y *= mult;
return a;
}
///
/// Divide a vector by a scalar
///
/// Vector operand
/// Scalar operand
/// Result of the division
public static void Div(ref Vector2 a, float f, out Vector2 result)
{
float mult = 1.0f / f;
result.X = a.X * mult;
result.Y = a.Y * mult;
}
#endregion
#region Min
///
/// Calculate the component-wise minimum of two vectors
///
/// First operand
/// Second operand
/// The component-wise minimum
public static Vector2 Min(Vector2 a, Vector2 b)
{
a.X = a.X < b.X ? a.X : b.X;
a.Y = a.Y < b.Y ? a.Y : b.Y;
return a;
}
///
/// Calculate the component-wise minimum of two vectors
///
/// First operand
/// Second operand
/// The component-wise minimum
public static void Min(ref Vector2 a, ref Vector2 b, out Vector2 result)
{
result.X = a.X < b.X ? a.X : b.X;
result.Y = a.Y < b.Y ? a.Y : b.Y;
}
#endregion
#region Max
///
/// Calculate the component-wise maximum of two vectors
///
/// First operand
/// Second operand
/// The component-wise maximum
public static Vector2 Max(Vector2 a, Vector2 b)
{
a.X = a.X > b.X ? a.X : b.X;
a.Y = a.Y > b.Y ? a.Y : b.Y;
return a;
}
///
/// Calculate the component-wise maximum of two vectors
///
/// First operand
/// Second operand
/// The component-wise maximum
public static void Max(ref Vector2 a, ref Vector2 b, out Vector2 result)
{
result.X = a.X > b.X ? a.X : b.X;
result.Y = a.Y > b.Y ? a.Y : b.Y;
}
#endregion
#region Clamp
///
/// Clamp a vector to the given minimum and maximum vectors
///
/// Input vector
/// Minimum vector
/// Maximum vector
/// The clamped vector
public static Vector2 Clamp(Vector2 vec, Vector2 min, Vector2 max)
{
vec.X = vec.X < min.X ? min.X : vec.X > max.X ? max.X : vec.X;
vec.Y = vec.Y < min.Y ? min.Y : vec.Y > max.Y ? max.Y : vec.Y;
return vec;
}
///
/// Clamp a vector to the given minimum and maximum vectors
///
/// Input vector
/// Minimum vector
/// Maximum vector
/// The clamped vector
public static void Clamp(ref Vector2 vec, ref Vector2 min, ref Vector2 max, out Vector2 result)
{
result.X = vec.X < min.X ? min.X : vec.X > max.X ? max.X : vec.X;
result.Y = vec.Y < min.Y ? min.Y : vec.Y > max.Y ? max.Y : vec.Y;
}
#endregion
#region Normalize
///
/// Scale a vector to unit length
///
/// The input vector
/// The normalized vector
public static Vector2 Normalize(Vector2 vec)
{
float scale = 1.0f / vec.Length;
vec.X *= scale;
vec.Y *= scale;
return vec;
}
///
/// Scale a vector to unit length
///
/// The input vector
/// The normalized vector
public static void Normalize(ref Vector2 vec, out Vector2 result)
{
float scale = 1.0f / vec.Length;
result.X = vec.X * scale;
result.Y = vec.Y * scale;
}
#endregion
#region NormalizeFast
///
/// Scale a vector to approximately unit length
///
/// The input vector
/// The normalized vector
public static Vector2 NormalizeFast(Vector2 vec)
{
float scale = Functions.InverseSqrtFast(vec.X * vec.X + vec.Y * vec.Y);
vec.X *= scale;
vec.Y *= scale;
return vec;
}
///
/// Scale a vector to approximately unit length
///
/// The input vector
/// The normalized vector
public static void NormalizeFast(ref Vector2 vec, out Vector2 result)
{
float scale = Functions.InverseSqrtFast(vec.X * vec.X + vec.Y * vec.Y);
result.X = vec.X * scale;
result.Y = vec.Y * scale;
}
#endregion
#region Dot
///
/// Caclulate the dot (scalar) product of two vectors
///
/// First operand
/// Second operand
/// The dot product of the two inputs
public static float Dot(Vector2 left, Vector2 right)
{
return left.X * right.X + left.Y * right.Y;
}
#endregion
#region Lerp
///
/// Returns a new Vector that is the linear blend of the 2 given Vectors
///
/// First input vector
/// Second input vector
/// The blend factor
/// a when blend=0, b when blend=1, and a linear combination otherwise
public static Vector2 Lerp(Vector2 a, Vector2 b, float blend)
{
a.X = blend * (b.X - a.X) + a.X;
a.Y = blend * (b.Y - a.Y) + a.Y;
return a;
}
#endregion
#region Barycentric
///
/// Interpolate 3 Vectors using Barycentric coordinates
///
/// First input Vector
/// Second input Vector
/// Third input Vector
/// First Barycentric Coordinate
/// Second Barycentric Coordinate
/// a when u=v=0, b when u=1,v=0, c when u=0,v=1, and a linear combination of a,b,c otherwise
public static Vector2 BaryCentric(Vector2 a, Vector2 b, Vector2 c, float u, float v)
{
return a + u * (b - a) + v * (c - a);
}
#endregion
#endregion
#region public override string ToString()
///
/// Returns a System.String that represents the current Vector2.
///
///
public override string ToString()
{
return String.Format("({0}, {1})", X, Y);
}
#endregion
#region public override int GetHashCode()
///
/// Returns the hashcode for this instance.
///
/// A System.Int32 containing the unique hashcode for this instance.
public override int GetHashCode()
{
return X.GetHashCode() ^ Y.GetHashCode();
}
#endregion
#region public override bool Equals(object obj)
///
/// Indicates whether this instance and a specified object are equal.
///
/// The object to compare to.
/// True if the instances are equal; false otherwise.
public override bool Equals(object obj)
{
if (!(obj is Vector2))
return false;
return this.Equals((Vector2)obj);
}
#endregion
#region IEquatable Members
/// Indicates whether the current vector is equal to another vector.
/// A vector to compare with this vector.
/// true if the current vector is equal to the vector parameter; otherwise, false.
public bool Equals(Vector2 other)
{
return
X == other.X &&
Y == other.Y;
}
#endregion
}
}