using Ryujinx.Graphics.Gpu.State;
using System.IO;
namespace Ryujinx.Graphics.Gpu
{
///
/// GPU commands FIFO.
///
class NvGpuFifo
{
private const int MacrosCount = 0x80;
private const int MacroIndexMask = MacrosCount - 1;
// Note: The size of the macro memory is unknown, we just make
// a guess here and use 256kb as the size. Increase if needed.
private const int MmeWords = 256 * 256;
private GpuContext _context;
///
/// Cached GPU macro program.
///
private struct CachedMacro
{
///
/// Word offset of the code on the code memory.
///
public int Position { get; }
private bool _executionPending;
private int _argument;
private MacroInterpreter _interpreter;
///
/// Creates a new instance of the GPU cached macro program.
///
/// Macro code start position
public CachedMacro(int position)
{
Position = position;
_executionPending = false;
_argument = 0;
_interpreter = new MacroInterpreter();
}
///
/// Sets the first argument for the macro call.
///
/// First argument
public void StartExecution(int argument)
{
_argument = argument;
_executionPending = true;
}
///
/// Starts executing the macro program code.
///
/// Program code
/// Current GPU state
public void Execute(int[] mme, ShadowRamControl shadowCtrl, GpuState state)
{
if (_executionPending)
{
_executionPending = false;
_interpreter?.Execute(mme, Position, _argument, shadowCtrl, state);
}
}
///
/// Pushes an argument to the macro call argument FIFO.
///
/// Argument to be pushed
public void PushArgument(int argument)
{
_interpreter?.Fifo.Enqueue(argument);
}
}
private ShadowRamControl _shadowCtrl;
private CachedMacro[] _macros;
private int[] _mme;
///
/// GPU sub-channel information.
///
private class SubChannel
{
///
/// Sub-channel GPU state.
///
public GpuState State { get; }
///
/// Engine bound to the sub-channel.
///
public ClassId Class { get; set; }
///
/// Creates a new instance of the GPU sub-channel.
///
public SubChannel()
{
State = new GpuState();
}
}
private SubChannel[] _subChannels;
private SubChannel _fifoChannel;
///
/// Creates a new instance of the GPU commands FIFO.
///
/// GPU emulation context
public NvGpuFifo(GpuContext context)
{
_context = context;
_macros = new CachedMacro[MacrosCount];
_mme = new int[MmeWords];
_fifoChannel = new SubChannel();
_context.Methods.RegisterCallbacksForFifo(_fifoChannel.State);
_subChannels = new SubChannel[8];
for (int index = 0; index < _subChannels.Length; index++)
{
_subChannels[index] = new SubChannel();
_context.Methods.RegisterCallbacks(_subChannels[index].State);
}
}
///
/// Send macro code/data to the MME
///
/// The index in the MME
/// The data to use
public void SendMacroCodeData(int index, int data)
{
_mme[index] = data;
}
///
/// Bind a macro index to a position for the MME
///
/// The macro index
/// The position of the macro
public void BindMacro(int index, int position)
{
_macros[index] = new CachedMacro(position);
}
///
/// Change the shadow RAM setting
///
/// The new Shadow RAM setting
public void SetMmeShadowRamControl(ShadowRamControl shadowCtrl)
{
_shadowCtrl = shadowCtrl;
}
///
/// Calls a GPU method.
///
/// GPU method call parameters
public void CallMethod(MethodParams meth)
{
if ((MethodOffset)meth.Method == MethodOffset.BindChannel)
{
_subChannels[meth.SubChannel] = new SubChannel
{
Class = (ClassId)meth.Argument
};
_context.Methods.RegisterCallbacks(_subChannels[meth.SubChannel].State);
}
else if (meth.Method < 0x60)
{
// TODO: check if macros are shared between subchannels or not. For now let's assume they are.
_fifoChannel.State.CallMethod(meth, _shadowCtrl);
}
else if (meth.Method < 0xe00)
{
_subChannels[meth.SubChannel].State.CallMethod(meth, _shadowCtrl);
}
else
{
int macroIndex = (meth.Method >> 1) & MacroIndexMask;
if ((meth.Method & 1) != 0)
{
_macros[macroIndex].PushArgument(meth.Argument);
}
else
{
_macros[macroIndex].StartExecution(meth.Argument);
}
if (meth.IsLastCall)
{
_macros[macroIndex].Execute(_mme, _shadowCtrl, _subChannels[meth.SubChannel].State);
_context.Methods.PerformDeferredDraws();
}
}
}
}
}