using System;
using System.Collections;
using System.Collections.Generic;
using System.Diagnostics.CodeAnalysis;
namespace Ryujinx.Common.Collections
{
///
/// Dictionary that provides the ability for O(logN) Lookups for keys that exist in the Dictionary, and O(logN) lookups for keys immediately greater than or less than a specified key.
///
/// Key
/// Value
public class TreeDictionary : IntrusiveRedBlackTreeImpl>, IDictionary where K : IComparable
{
#region Public Methods
///
/// Returns the value of the node whose key is , or the default value if no such node exists.
///
/// Key of the node value to get
/// Value associated w/
/// is null
public V Get(K key)
{
ArgumentNullException.ThrowIfNull(key);
Node node = GetNode(key);
if (node == null)
{
return default;
}
return node.Value;
}
///
/// Adds a new node into the tree whose key is key and value is .
///
/// Note: Adding the same key multiple times will cause the value for that key to be overwritten.
///
/// Key of the node to add
/// Value of the node to add
/// or are null
public void Add(K key, V value)
{
ArgumentNullException.ThrowIfNull(key);
ArgumentNullException.ThrowIfNull(value);
Insert(key, value);
}
///
/// Removes the node whose key is from the tree.
///
/// Key of the node to remove
/// is null
public void Remove(K key)
{
ArgumentNullException.ThrowIfNull(key);
if (Delete(key) != null)
{
Count--;
}
}
///
/// Returns the value whose key is equal to or immediately less than .
///
/// Key for which to find the floor value of
/// Key of node immediately less than
/// is null
public K Floor(K key)
{
Node node = FloorNode(key);
if (node != null)
{
return node.Key;
}
return default;
}
///
/// Returns the node whose key is equal to or immediately greater than .
///
/// Key for which to find the ceiling node of
/// Key of node immediately greater than
/// is null
public K Ceiling(K key)
{
Node node = CeilingNode(key);
if (node != null)
{
return node.Key;
}
return default;
}
///
/// Finds the value whose key is immediately greater than .
///
/// Key to find the successor of
/// Value
public K SuccessorOf(K key)
{
Node node = GetNode(key);
if (node != null)
{
Node successor = SuccessorOf(node);
return successor != null ? successor.Key : default;
}
return default;
}
///
/// Finds the value whose key is immediately less than .
///
/// Key to find the predecessor of
/// Value
public K PredecessorOf(K key)
{
Node node = GetNode(key);
if (node != null)
{
Node predecessor = PredecessorOf(node);
return predecessor != null ? predecessor.Key : default;
}
return default;
}
///
/// Adds all the nodes in the dictionary as key/value pairs into .
///
/// The key/value pairs will be added in Level Order.
///
/// List to add the tree pairs into
public List> AsLevelOrderList()
{
List> list = new List>();
Queue> nodes = new Queue>();
if (this.Root != null)
{
nodes.Enqueue(this.Root);
}
while (nodes.TryDequeue(out Node node))
{
list.Add(new KeyValuePair(node.Key, node.Value));
if (node.Left != null)
{
nodes.Enqueue(node.Left);
}
if (node.Right != null)
{
nodes.Enqueue(node.Right);
}
}
return list;
}
///
/// Adds all the nodes in the dictionary into .
///
/// A list of all KeyValuePairs sorted by Key Order
public List> AsList()
{
List> list = new List>();
AddToList(Root, list);
return list;
}
#endregion
#region Private Methods (BST)
///
/// Adds all nodes that are children of or contained within into , in Key Order.
///
/// The node to search for nodes within
/// The list to add node to
private void AddToList(Node node, List> list)
{
if (node == null)
{
return;
}
AddToList(node.Left, list);
list.Add(new KeyValuePair(node.Key, node.Value));
AddToList(node.Right, list);
}
///
/// Retrieve the node reference whose key is , or null if no such node exists.
///
/// Key of the node to get
/// Node reference in the tree
/// is null
private Node GetNode(K key)
{
ArgumentNullException.ThrowIfNull(key);
Node node = Root;
while (node != null)
{
int cmp = key.CompareTo(node.Key);
if (cmp < 0)
{
node = node.Left;
}
else if (cmp > 0)
{
node = node.Right;
}
else
{
return node;
}
}
return null;
}
///
/// Inserts a new node into the tree whose key is and value is .
///
/// Adding the same key multiple times will overwrite the previous value.
///
/// Key of the node to insert
/// Value of the node to insert
private void Insert(K key, V value)
{
Node newNode = BSTInsert(key, value);
RestoreBalanceAfterInsertion(newNode);
}
///
/// Insertion Mechanism for a Binary Search Tree (BST).
///
/// Iterates the tree starting from the root and inserts a new node where all children in the left subtree are less than , and all children in the right subtree are greater than .
///
/// Note: If a node whose key is already exists, it's value will be overwritten.
///
/// Key of the node to insert
/// Value of the node to insert
/// The inserted Node
private Node BSTInsert(K key, V value)
{
Node parent = null;
Node node = Root;
while (node != null)
{
parent = node;
int cmp = key.CompareTo(node.Key);
if (cmp < 0)
{
node = node.Left;
}
else if (cmp > 0)
{
node = node.Right;
}
else
{
node.Value = value;
return node;
}
}
Node newNode = new Node(key, value, parent);
if (newNode.Parent == null)
{
Root = newNode;
}
else if (key.CompareTo(parent.Key) < 0)
{
parent.Left = newNode;
}
else
{
parent.Right = newNode;
}
Count++;
return newNode;
}
///
/// Removes from the dictionary, if it exists.
///
/// Key of the node to delete
/// The deleted Node
private Node Delete(K key)
{
// O(1) Retrieval
Node nodeToDelete = GetNode(key);
if (nodeToDelete == null) return null;
Node replacementNode;
if (LeftOf(nodeToDelete) == null || RightOf(nodeToDelete) == null)
{
replacementNode = nodeToDelete;
}
else
{
replacementNode = PredecessorOf(nodeToDelete);
}
Node tmp = LeftOf(replacementNode) ?? RightOf(replacementNode);
if (tmp != null)
{
tmp.Parent = ParentOf(replacementNode);
}
if (ParentOf(replacementNode) == null)
{
Root = tmp;
}
else if (replacementNode == LeftOf(ParentOf(replacementNode)))
{
ParentOf(replacementNode).Left = tmp;
}
else
{
ParentOf(replacementNode).Right = tmp;
}
if (replacementNode != nodeToDelete)
{
nodeToDelete.Key = replacementNode.Key;
nodeToDelete.Value = replacementNode.Value;
}
if (tmp != null && ColorOf(replacementNode) == Black)
{
RestoreBalanceAfterRemoval(tmp);
}
return replacementNode;
}
///
/// Returns the node whose key immediately less than or equal to .
///
/// Key for which to find the floor node of
/// Node whose key is immediately less than or equal to , or null if no such node is found.
/// is null
private Node FloorNode(K key)
{
ArgumentNullException.ThrowIfNull(key);
Node tmp = Root;
while (tmp != null)
{
int cmp = key.CompareTo(tmp.Key);
if (cmp > 0)
{
if (tmp.Right != null)
{
tmp = tmp.Right;
}
else
{
return tmp;
}
}
else if (cmp < 0)
{
if (tmp.Left != null)
{
tmp = tmp.Left;
}
else
{
Node parent = tmp.Parent;
Node ptr = tmp;
while (parent != null && ptr == parent.Left)
{
ptr = parent;
parent = parent.Parent;
}
return parent;
}
}
else
{
return tmp;
}
}
return null;
}
///
/// Returns the node whose key is immediately greater than or equal to than .
///
/// Key for which to find the ceiling node of
/// Node whose key is immediately greater than or equal to , or null if no such node is found.
/// is null
private Node CeilingNode(K key)
{
ArgumentNullException.ThrowIfNull(key);
Node tmp = Root;
while (tmp != null)
{
int cmp = key.CompareTo(tmp.Key);
if (cmp < 0)
{
if (tmp.Left != null)
{
tmp = tmp.Left;
}
else
{
return tmp;
}
}
else if (cmp > 0)
{
if (tmp.Right != null)
{
tmp = tmp.Right;
}
else
{
Node parent = tmp.Parent;
Node ptr = tmp;
while (parent != null && ptr == parent.Right)
{
ptr = parent;
parent = parent.Parent;
}
return parent;
}
}
else
{
return tmp;
}
}
return null;
}
#endregion
#region Interface Implementations
// Method descriptions are not provided as they are already included as part of the interface.
public bool ContainsKey(K key)
{
ArgumentNullException.ThrowIfNull(key);
return GetNode(key) != null;
}
bool IDictionary.Remove(K key)
{
int count = Count;
Remove(key);
return count > Count;
}
public bool TryGetValue(K key, [MaybeNullWhen(false)] out V value)
{
ArgumentNullException.ThrowIfNull(key);
Node node = GetNode(key);
value = node != null ? node.Value : default;
return node != null;
}
public void Add(KeyValuePair item)
{
ArgumentNullException.ThrowIfNull(item.Key);
Add(item.Key, item.Value);
}
public bool Contains(KeyValuePair item)
{
if (item.Key == null)
{
return false;
}
Node node = GetNode(item.Key);
if (node != null)
{
return node.Key.Equals(item.Key) && node.Value.Equals(item.Value);
}
return false;
}
public void CopyTo(KeyValuePair[] array, int arrayIndex)
{
if (arrayIndex < 0 || array.Length - arrayIndex < this.Count)
{
throw new ArgumentOutOfRangeException(nameof(arrayIndex));
}
SortedList list = GetKeyValues();
int offset = 0;
for (int i = arrayIndex; i < array.Length && offset < list.Count; i++)
{
array[i] = new KeyValuePair(list.Keys[i], list.Values[i]);
offset++;
}
}
public bool Remove(KeyValuePair item)
{
Node node = GetNode(item.Key);
if (node == null)
{
return false;
}
if (node.Value.Equals(item.Value))
{
int count = Count;
Remove(item.Key);
return count > Count;
}
return false;
}
public IEnumerator> GetEnumerator()
{
return GetKeyValues().GetEnumerator();
}
IEnumerator IEnumerable.GetEnumerator()
{
return GetKeyValues().GetEnumerator();
}
public ICollection Keys => GetKeyValues().Keys;
public ICollection Values => GetKeyValues().Values;
public bool IsReadOnly => false;
public V this[K key]
{
get => Get(key);
set => Add(key, value);
}
#endregion
#region Private Interface Helper Methods
///
/// Returns a sorted list of all the node keys / values in the tree.
///
/// List of node keys
private SortedList GetKeyValues()
{
SortedList set = new SortedList();
Queue> queue = new Queue>();
if (Root != null)
{
queue.Enqueue(Root);
}
while (queue.TryDequeue(out Node node))
{
set.Add(node.Key, node.Value);
if (null != node.Left)
{
queue.Enqueue(node.Left);
}
if (null != node.Right)
{
queue.Enqueue(node.Right);
}
}
return set;
}
#endregion
}
///
/// Represents a node in the TreeDictionary which contains a key and value of generic type K and V, respectively.
///
/// Key of the node
/// Value of the node
public class Node : IntrusiveRedBlackTreeNode> where K : IComparable
{
internal K Key;
internal V Value;
internal Node(K key, V value, Node parent)
{
Key = key;
Value = value;
Parent = parent;
}
}
}