diff --git a/Base/include/MatrixSquare.h b/Base/include/MatrixSquare.h index 7fdfb48..8c20752 100644 --- a/Base/include/MatrixSquare.h +++ b/Base/include/MatrixSquare.h @@ -35,11 +35,58 @@ namespace FasTC { // Constructors MatrixSquare() { } - MatrixSquare(const MatrixBase &other) { - for(int i = 0; i < kNumElements; i++) { - mat[i] = other[i]; + MatrixSquare(const MatrixSquare &other) + : MatrixBase(other) { } + MatrixSquare(const MatrixBase &other) + : MatrixBase(other) { } + + // Does power iteration to determine the principal eigenvector and eigenvalue. + // Returns them in eigVec and eigVal after kMaxNumIterations + int PowerMethod(VectorBase &eigVec, T *eigVal = NULL, + const int kMaxNumIterations = 200) { + int numIterations = 0; + + // !SPEED! Find eigenvectors by using the power method. This is good because the + // matrix is only 4x4, which allows us to use SIMD... + VectorBase b; + for(int i = 0; i < N; i++) + b[i] = T(1.0); + + b /= b.Length(); + + bool fixed = false; + numIterations = 0; + while(!fixed && ++numIterations < kMaxNumIterations) { + + VectorBase newB = (*this).operator*(b); + + // !HACK! If the principal eigenvector of the covariance matrix + // converges to zero, that means that the points lie equally + // spaced on a sphere in this space. In this (extremely rare) + // situation, just choose a point and use it as the principal + // direction. + const float newBlen = newB.Length(); + if(newBlen < 1e-10) { + eigVec = b; + if(eigVal) *eigVal = 0.0; + return numIterations; + } + + T len = newB.Length(); + newB /= len; + if(eigVal) + *eigVal = len; + + if(fabs(1.0f - (b.Dot(newB))) < 1e-5) + fixed = true; + + b = newB; } + + eigVec = b; + return numIterations; } + }; };