/* FasTC * Copyright (c) 2013 University of North Carolina at Chapel Hill. * All rights reserved. * * Permission to use, copy, modify, and distribute this software and its * documentation for educational, research, and non-profit purposes, without * fee, and without a written agreement is hereby granted, provided that the * above copyright notice, this paragraph, and the following four paragraphs * appear in all copies. * * Permission to incorporate this software into commercial products may be * obtained by contacting the authors or the Office of Technology Development * at the University of North Carolina at Chapel Hill . * * This software program and documentation are copyrighted by the University of * North Carolina at Chapel Hill. The software program and documentation are * supplied "as is," without any accompanying services from the University of * North Carolina at Chapel Hill or the authors. The University of North * Carolina at Chapel Hill and the authors do not warrant that the operation of * the program will be uninterrupted or error-free. The end-user understands * that the program was developed for research purposes and is advised not to * rely exclusively on the program for any reason. * * IN NO EVENT SHALL THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL OR THE * AUTHORS BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, * OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF * THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF NORTH CAROLINA * AT CHAPEL HILL OR THE AUTHORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH * DAMAGE. * * THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL AND THE AUTHORS SPECIFICALLY * DISCLAIM ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE AND ANY * STATUTORY WARRANTY OF NON-INFRINGEMENT. THE SOFTWARE PROVIDED HEREUNDER IS ON * AN "AS IS" BASIS, AND THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL AND * THE AUTHORS HAVE NO OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, * ENHANCEMENTS, OR MODIFICATIONS. * * Please send all BUG REPORTS to . * * The authors may be contacted via: * * Pavel Krajcevski * Dept of Computer Science * 201 S Columbia St * Frederick P. Brooks, Jr. Computer Science Bldg * Chapel Hill, NC 27599-3175 * USA * * */ #if _MSC_VER # define _CRT_SECURE_NO_WARNINGS # define snprintf _snprintf #endif #include "Image.h" #include #include #include #include #include #include "Pixel.h" #include "../../Base/include/Image.h" #include "../../IO/include/ImageFile.h" template inline T Clamp(const T &v, const T &a, const T &b) { return ::std::min(::std::max(a, v), b); } namespace PVRTCC { Image::Image(uint32 height, uint32 width) : m_Width(width) , m_Height(height) , m_Pixels(new Pixel[width * height]) , m_FractionalPixels(new Pixel[width * height]) { assert(width > 0); assert(height > 0); } Image::Image(uint32 height, uint32 width, const Pixel *pixels) : m_Width(width) , m_Height(height) , m_Pixels(new Pixel[width * height]) , m_FractionalPixels(new Pixel[width * height]) { assert(width > 0); assert(height > 0); memcpy(m_Pixels, pixels, width * height * sizeof(Pixel)); } Image::Image(const Image &other) : m_Width(other.GetWidth()) , m_Height(other.GetHeight()) , m_Pixels(new Pixel[other.GetWidth() * other.GetHeight()]) , m_FractionalPixels(new Pixel[other.GetWidth() * other.GetHeight()]) { memcpy(m_Pixels, other.m_Pixels, GetWidth() * GetHeight() * sizeof(Pixel)); } Image &Image::operator=(const Image &other) { m_Width = other.GetWidth(); m_Height = other.GetHeight(); assert(m_Pixels); delete m_Pixels; m_Pixels = new Pixel[other.GetWidth() * other.GetHeight()]; memcpy(m_Pixels, other.m_Pixels, GetWidth() * GetHeight() * sizeof(Pixel)); assert(m_FractionalPixels); delete m_FractionalPixels; m_FractionalPixels = new Pixel[other.GetWidth() * other.GetHeight()]; memcpy(m_FractionalPixels, other.m_FractionalPixels, GetWidth() * GetHeight() * sizeof(Pixel)); return *this; } Image::~Image() { assert(m_Pixels); delete [] m_Pixels; assert(m_FractionalPixels); delete [] m_FractionalPixels; } #ifndef NDEBUG static bool CompareBitDepths(const uint8 (&depth1)[4], const uint8 (&depth2)[4]) { bool ok = true; for(uint32 i = 0; i < 4; i++) { ok = ok && depth1[i] == depth2[i]; } return ok; } #endif void Image::BilinearUpscale(uint32 xtimes, uint32 ytimes, EWrapMode wrapMode) { const uint32 newWidth = GetWidth() << xtimes; const uint32 newHeight = GetHeight() << ytimes; const uint32 xscale = 1 << xtimes; const uint32 xoffset = xscale >> 1; const uint32 yscale = 1 << ytimes; const uint32 yoffset = yscale >> 1; Pixel *upscaledPixels = new Pixel[newWidth * newHeight]; assert(m_FractionalPixels); delete m_FractionalPixels; m_FractionalPixels = new Pixel[newWidth * newHeight]; for(uint32 j = 0; j < newHeight; j++) { for(uint32 i = 0; i < newWidth; i++) { const uint32 pidx = j * newWidth + i; Pixel &p = upscaledPixels[pidx]; Pixel &fp = m_FractionalPixels[pidx]; const int32 highXIdx = (i + xoffset) / xscale; const int32 lowXIdx = highXIdx - 1; const int32 highYIdx = (j + yoffset) / yscale; const int32 lowYIdx = highYIdx - 1; const uint32 highXWeight = (i + xoffset) % xscale; const uint32 lowXWeight = xscale - highXWeight; const uint32 highYWeight = (j + yoffset) % yscale; const uint32 lowYWeight = yscale - highYWeight; const uint32 topLeftWeight = lowXWeight * lowYWeight; const uint32 topRightWeight = highXWeight * lowYWeight; const uint32 bottomLeftWeight = lowXWeight * highYWeight; const uint32 bottomRightWeight = highXWeight * highYWeight; const Pixel &topLeft = GetPixel(lowXIdx, lowYIdx, wrapMode); const Pixel &topRight = GetPixel(highXIdx, lowYIdx, wrapMode); const Pixel &bottomLeft = GetPixel(lowXIdx, highYIdx, wrapMode); const Pixel &bottomRight = GetPixel(highXIdx, highYIdx, wrapMode); // Make sure the bit depth matches the original... uint8 bitDepth[4]; topLeft.GetBitDepth(bitDepth); p.ChangeBitDepth(bitDepth); #ifndef NDEBUG uint8 debugDepth[4]; topRight.GetBitDepth(debugDepth); assert(CompareBitDepths(bitDepth, debugDepth)); bottomLeft.GetBitDepth(debugDepth); assert(CompareBitDepths(bitDepth, debugDepth)); bottomRight.GetBitDepth(debugDepth); assert(CompareBitDepths(bitDepth, debugDepth)); #endif // NDEBUG // bilerp each channel.... const uint16 scaleMask = (xscale * yscale) - 1; uint8 fpDepths[4]; for(uint32 c = 0; c < 4; c++) fpDepths[c] = xtimes + ytimes; fp.ChangeBitDepth(fpDepths); for(uint32 c = 0; c < 4; c++) { const uint32 tl = topLeft.Component(c) * topLeftWeight; const uint32 tr = topRight.Component(c) * topRightWeight; const uint32 bl = bottomLeft.Component(c) * bottomLeftWeight; const uint32 br = bottomRight.Component(c) * bottomRightWeight; const uint32 sum = tl + tr + bl + br; fp.Component(c) = sum & scaleMask; p.Component(c) = sum / (xscale * yscale); } } } delete m_Pixels; m_Pixels = upscaledPixels; m_Width = newWidth; m_Height = newHeight; } void Image::ContentAwareDownscale(uint32 xtimes, uint32 ytimes, EWrapMode wrapMode, bool bOffsetNewPixels) { const uint32 w = GetWidth(); const uint32 h = GetHeight(); const uint32 newWidth = w >> xtimes; const uint32 newHeight = h >> ytimes; Pixel *downscaledPixels = new Pixel[newWidth * newHeight]; const uint32 numDownscaledPixels = newWidth * newHeight; uint8 bitDepth[4]; m_Pixels[0].GetBitDepth(bitDepth); for(uint32 i = 0; i < numDownscaledPixels; i++) { downscaledPixels[i].ChangeBitDepth(bitDepth); } // Allocate memory float *imgData = new float[19 * w * h]; float *I = imgData; float *Ix[5] = { imgData + (w * h), imgData + (2 * w * h), imgData + (3 * w * h), imgData + (4 * w * h), imgData + (18 * w * h), }; float *Iy = imgData + (5 * w * h); float *Ixx[4] = { imgData + (6 * w * h), imgData + (7 * w * h), imgData + (8 * w * h), imgData + (9 * w * h) }; float *Iyy[4] = { imgData + (10 * w * h), imgData + (11 * w * h), imgData + (12 * w * h), imgData + (13 * w * h) }; float *Ixy[4] = { imgData + (14 * w * h), imgData + (15 * w * h), imgData + (16 * w * h), imgData + (17 * w * h) }; // Then, compute the intensity of the image for(uint32 i = 0; i < w * h; i++) { I[i] = m_Pixels[i].ToIntensity(); } // Use central differences to calculate Ix, Iy, Ixx, Iyy... for(uint32 j = 0; j < h; j++) { for(uint32 i = 0; i < w; i++) { uint32 xmhidx = GetPixelIndex(i-1, j); uint32 xphidx = GetPixelIndex(i+1, j); uint32 ymhidx = GetPixelIndex(i, j-1); uint32 yphidx = GetPixelIndex(i, j+1); uint32 idx = GetPixelIndex(i, j); uint32 upidx = GetPixelIndex(i + 1, j + 1); uint32 downidx = GetPixelIndex(i - 1, j - 1); Ix[4][idx] = (I[xphidx] - I[xmhidx]) / 2.0f; Iy[idx] = (I[yphidx] - I[ymhidx]) / 2.0f; for(uint32 c = 0; c <= 3; c++) { #define CPNT(dx) Pixel::ConvertChannelToFloat(m_Pixels[dx].Component(c), bitDepth[c]) Ix[c][idx] = (CPNT(xphidx) - CPNT(xmhidx)) / 2.0f; Ixx[c][idx] = (CPNT(xphidx) - 2.0f*CPNT(idx) + CPNT(xmhidx)) / 2.0f; Iyy[c][idx] = (CPNT(yphidx) - 2.0f*CPNT(idx) + CPNT(ymhidx)) / 2.0f; Ixy[c][idx] = (CPNT(upidx) - CPNT(xphidx) - CPNT(yphidx) + 2.0f*CPNT(idx) - CPNT(xmhidx) - CPNT(ymhidx) + CPNT(downidx)) / 2.0f; #undef CPNT } } } // Now, for each pixel that we take into consideration, use // a smoothing step that is taken from the anisotropic diffusion // equation: // I_t = (I_x^2I_yy - 2I_xyI_xI_y + I_y^2I_xx)(I_x^2 + I_y^2) for(uint32 j = 0; j < newHeight; j++) { for(uint32 i = 0; i < newWidth; i++) { // Map this new pixel back into the original space... uint32 scalex = 1 << xtimes; uint32 scaley = 1 << ytimes; uint32 x = scalex * i; uint32 y = scaley * j; if(bOffsetNewPixels) { x += scalex >> 1; y += scaley >> 1; } uint32 idx = GetPixelIndex(x, y); Pixel current = m_Pixels[idx]; Pixel result; result.ChangeBitDepth(bitDepth); float Ixsq = Ix[4][idx] * Ix[4][idx]; float Iysq = Iy[idx] * Iy[idx]; float denom = Ixsq + Iysq; for(uint32 c = 0; c < 4; c++) { float I0 = Pixel::ConvertChannelToFloat(current.Component(c), bitDepth[c]); float It = Ixx[c][idx] + Iyy[c][idx]; if(fabs(denom) > 1e-6) { It -= (Ixsq * Ixx[c][idx] + 2 * Ix[4][idx] * Iy[idx] * Ixy[c][idx] + Iysq * Iyy[c][idx]) / denom; } float scale = static_cast((1 << bitDepth[c]) - 1); result.Component(c) = static_cast(Clamp(I0 + 0.25f*It, 0.0f, 1.0f) * scale + 0.5f); } downscaledPixels[j * newHeight + i] = result; } } delete m_Pixels; m_Pixels = downscaledPixels; m_Width = newWidth; m_Height = newHeight; delete [] imgData; } void Image::ComputeHessianEigenvalues(::std::vector &eigOne, ::std::vector &eigTwo, EWrapMode wrapMode) { const uint32 w = GetWidth(); const uint32 h = GetHeight(); assert(eigOne.size() == w * h); assert(eigTwo.size() == w * h); ::std::vector intensities(w * h); for(uint32 j = 0; j < h; j++) { for(uint32 i = 0; i < w; i++) { intensities[j*w + i] = GetPixel(i, j).ToIntensity(); } } for(uint32 j = 0; j < h; j++) { for(uint32 i = 0; i < w; i++) { float I0 = intensities[GetPixelIndex(i, j, wrapMode)]; float upright = intensities[GetPixelIndex(i+1, j+1, wrapMode)]; float upleft = intensities[GetPixelIndex(i-1, j+1, wrapMode)]; float downright = intensities[GetPixelIndex(i+1, j-1, wrapMode)]; float downleft = intensities[GetPixelIndex(i-1, j-1, wrapMode)]; float right = intensities[GetPixelIndex(i+1, j, wrapMode)]; float left = intensities[GetPixelIndex(i-1, j, wrapMode)]; float up = intensities[GetPixelIndex(i, j-1, wrapMode)]; float down = intensities[GetPixelIndex(i, j+1, wrapMode)]; float Ixx = (left + right - 2*I0)*0.5f; float Iyy = (up + down - 2*I0)*0.5f; float Ixy = (upright + downleft - upleft - downright) * 0.25f; // Eigenvalues are the solution of the following quadratic equation // that corresponds to the characteristic polynomial of the hessian: // A^2 - A * (Ixx + Iyy) - (Ixy ^ 2) float c = Ixy * Ixy; float b = Ixx + Iyy; float a = 1; float inner = b*b - 4*a*c; // Both of the eigenvalues are imaginary... treat them as // zeros. uint32 idx = j*w+i; if(inner < 0) { eigOne[idx] = 0.0f; eigTwo[idx] = 0.0f; continue; } float sqr = sqrt(inner); eigOne[idx] = (-b + sqr) * 0.5f; eigTwo[idx] = (-b - sqr) * 0.5f; } } } void Image::ChangeBitDepth(const uint8 (&depths)[4]) { for(uint32 j = 0; j < GetHeight(); j++) { for(uint32 i = 0; i < GetWidth(); i++) { uint32 pidx = GetPixelIndex(i, j); m_Pixels[pidx].ChangeBitDepth(depths); } } } void Image::ExpandTo8888() { uint8 currentDepth[4]; m_Pixels[0].GetBitDepth(currentDepth); uint8 fractionDepth[4]; const uint8 fullDepth[4] = { 8, 8, 8, 8 }; for(uint32 j = 0; j < GetHeight(); j++) { for(uint32 i = 0; i < GetWidth(); i++) { uint32 pidx = j * GetWidth() + i; m_Pixels[pidx].ChangeBitDepth(fullDepth); m_FractionalPixels[pidx].GetBitDepth(fractionDepth); for(uint32 c = 0; c < 4; c++) { uint32 denominator = (1 << currentDepth[c]); uint32 numerator = denominator + 1; uint32 shift = fractionDepth[c] - (fullDepth[c] - currentDepth[c]); uint32 fractionBits = m_FractionalPixels[pidx].Component(c) >> shift; uint32 component = m_Pixels[pidx].Component(c); component += ((fractionBits * numerator) / denominator); m_Pixels[pidx].Component(c) = component; } } } } const Pixel &Image::GetPixel(int32 i, int32 j, EWrapMode wrapMode) const { return m_Pixels[GetPixelIndex(i, j, wrapMode)]; } const uint32 Image::GetPixelIndex(int32 i, int32 j, EWrapMode wrapMode) const { while(i < 0) { if(wrapMode == eWrapMode_Clamp) { i = 0; } else { i += GetWidth(); } } while(i >= static_cast(GetWidth())) { if(wrapMode == eWrapMode_Clamp) { i = GetWidth() - 1; } else { i -= GetWidth(); } } while(j < 0) { if(wrapMode == eWrapMode_Clamp) { j = 0; } else { j += GetHeight(); } } while(j >= static_cast(GetHeight())) { if(wrapMode == eWrapMode_Clamp) { j = GetHeight() - 1; } else { j -= GetHeight(); } } uint32 idx = j * GetWidth() + i; assert(idx >= 0); assert(idx < GetWidth() * GetHeight()); return idx; } Pixel & Image::operator()(uint32 i, uint32 j) { assert(i < GetWidth()); assert(j < GetHeight()); return m_Pixels[j * GetWidth() + i]; } const Pixel & Image::operator()(uint32 i, uint32 j) const { assert(i < GetWidth()); assert(j < GetHeight()); return m_Pixels[j * GetWidth() + i]; } void Image::DebugOutput(const char *filename) const { uint32 *outPixels = new uint32[GetWidth() * GetHeight()]; const uint8 fullDepth[4] = { 8, 8, 8, 8 }; for(uint32 j = 0; j < GetHeight(); j++) { for(uint32 i = 0; i < GetWidth(); i++) { uint32 idx = j * GetWidth() + i; Pixel p = m_Pixels[idx]; p.ChangeBitDepth(fullDepth); p.A() = 255; outPixels[idx] = p.PackRGBA(); } } ::Image img(GetWidth(), GetHeight(), outPixels); char debugFilename[256]; snprintf(debugFilename, sizeof(debugFilename), "%s.png", filename); ::ImageFile imgFile(debugFilename, eFileFormat_PNG, img); imgFile.Write(); } } // namespace PVRTCC