/* FasTC * Copyright (c) 2014 University of North Carolina at Chapel Hill. * All rights reserved. * * Permission to use, copy, modify, and distribute this software and its * documentation for educational, research, and non-profit purposes, without * fee, and without a written agreement is hereby granted, provided that the * above copyright notice, this paragraph, and the following four paragraphs * appear in all copies. * * Permission to incorporate this software into commercial products may be * obtained by contacting the authors or the Office of Technology Development * at the University of North Carolina at Chapel Hill . * * This software program and documentation are copyrighted by the University of * North Carolina at Chapel Hill. The software program and documentation are * supplied "as is," without any accompanying services from the University of * North Carolina at Chapel Hill or the authors. The University of North * Carolina at Chapel Hill and the authors do not warrant that the operation of * the program will be uninterrupted or error-free. The end-user understands * that the program was developed for research purposes and is advised not to * rely exclusively on the program for any reason. * * IN NO EVENT SHALL THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL OR THE * AUTHORS BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, * OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF * THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF NORTH CAROLINA * AT CHAPEL HILL OR THE AUTHORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH * DAMAGE. * * THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL AND THE AUTHORS SPECIFICALLY * DISCLAIM ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE AND ANY * STATUTORY WARRANTY OF NON-INFRINGEMENT. THE SOFTWARE PROVIDED HEREUNDER IS ON * AN "AS IS" BASIS, AND THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL AND * THE AUTHORS HAVE NO OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, * ENHANCEMENTS, OR MODIFICATIONS. * * Please send all BUG REPORTS to . * * The authors may be contacted via: * * Pavel Krajcevski * Dept of Computer Science * 201 S Columbia St * Frederick P. Brooks, Jr. Computer Science Bldg * Chapel Hill, NC 27599-3175 * USA * * */ // The original lisence from the code available at the following location: // http://software.intel.com/en-us/vcsource/samples/fast-texture-compression // // This code has been modified significantly from the original. //------------------------------------------------------------------------------ // Copyright 2011 Intel Corporation // All Rights Reserved // // Permission is granted to use, copy, distribute and prepare derivative works // of this software for any purpose and without fee, provided, that the above // copyright notice and this statement appear in all copies. Intel makes no // representations about the suitability of this software for any purpose. THIS // SOFTWARE IS PROVIDED "AS IS." INTEL SPECIFICALLY DISCLAIMS ALL WARRANTIES, // EXPRESS OR IMPLIED, AND ALL LIABILITY, INCLUDING CONSEQUENTIAL AND OTHER // INDIRECT DAMAGES, FOR THE USE OF THIS SOFTWARE, INCLUDING LIABILITY FOR // INFRINGEMENT OF ANY PROPRIETARY RIGHTS, AND INCLUDING THE WARRANTIES OF // MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Intel does not assume // any responsibility for any errors which may appear in this software nor any // responsibility to update it. // //------------------------------------------------------------------------------ #ifndef BPTCENCODER_SRC_BPTCCOMPRESSIONMODE_H_ #define BPTCENCODER_SRC_BPTCCOMPRESSIONMODE_H_ #include "RGBAEndpoints.h" namespace FasTC { class BitStream; } // namespace FasTC namespace BPTCC { // Forward Declarations struct VisitedState; const int kMaxEndpoints = 3; static const int kPBits[4][2] = { { 0, 0 }, { 0, 1 }, { 1, 0 }, { 1, 1 } }; class CompressionMode { public: static const uint32 kMaxNumSubsets = 3; static const uint32 kNumModes = 8; // This initializes the compression variables used in order to compress a list // of clusters. We can increase the speed a tad by specifying whether or not // the block is opaque or not. explicit CompressionMode(int mode) : m_IsOpaque(mode < 4) , m_Attributes(&(kModeAttributes[mode])) , m_RotateMode(0) , m_IndexMode(0) { } ~CompressionMode() { } // These are all of the parameters required to define the data in a compressed // BPTC block. The mode determines how these parameters will be translated // into actual bits. struct Params { RGBAVector m_P1[kMaxNumSubsets], m_P2[kMaxNumSubsets]; uint8 m_Indices[kMaxNumSubsets][kMaxNumDataPoints]; uint8 m_AlphaIndices[kMaxNumDataPoints]; uint8 m_PbitCombo[kMaxNumSubsets]; int8 m_RotationMode; int8 m_IndexMode; const uint16 m_ShapeIdx; explicit Params(uint32 shape) : m_RotationMode(-1), m_IndexMode(-1), m_ShapeIdx(shape) { memset(m_Indices, 0xFF, sizeof(m_Indices)); memset(m_AlphaIndices, 0xFF, sizeof(m_AlphaIndices)); memset(m_PbitCombo, 0xFF, sizeof(m_PbitCombo)); } }; // This outputs the parameters to the given bitstream based on the current // compression mode. The first argument is not const because the mode and // the value of the first index determines whether or not the indices need to // be swapped. The final output bits will always be a valid BPTC block. void Pack(Params ¶ms, FasTC::BitStream &stream) const; // This function compresses a group of clusters into the passed bitstream. The // size of the clusters array is determined by the BC7 compression mode. double Compress(FasTC::BitStream &stream, const int shapeIdx, const RGBACluster *clusters); // This switch controls the quality of the simulated annealing optimizer. We // will not make more than this many steps regardless of how bad the error is. // Higher values will produce better quality results but will run slower. // Default is 20. static int MaxAnnealingIterations; // This is a setting static const int kMaxAnnealingIterations = 256; // This is a limit // P-bits are low-order bits that are shared across color channels. This enum // says whether or not both endpoints share a p-bit or whether or not they // even have a p-bit. enum EPBitType { ePBitType_Shared, ePBitType_NotShared, ePBitType_None }; // These are all the per-mode attributes that can be set. They are specified // in a table and we access them through the private m_Attributes variable. static struct Attributes { int modeNumber; int numPartitionBits; int numSubsets; int numBitsPerIndex; int numBitsPerAlpha; int colorChannelPrecision; int alphaChannelPrecision; bool hasRotation; bool hasIdxMode; EPBitType pbitType; } kModeAttributes[kNumModes]; // This returns the above attributes structure for the given mode. static const Attributes *GetAttributesForMode(int mode) { if(mode < 0 || mode >= 8) return NULL; return &kModeAttributes[mode]; } private: const double m_IsOpaque; const Attributes *const m_Attributes; int m_RotateMode; int m_IndexMode; void SetIndexMode(int mode) { m_IndexMode = mode; } void SetRotationMode(int mode) { m_RotateMode = mode; } int GetRotationMode() const { return m_Attributes->hasRotation? m_RotateMode : 0; } int GetModeNumber() const { return m_Attributes->modeNumber; } int GetNumberOfPartitionBits() const { return m_Attributes->numPartitionBits; } int GetNumberOfSubsets() const { return m_Attributes->numSubsets; } int GetNumberOfBitsPerIndex(int8 indexMode = -1) const { if(indexMode < 0) indexMode = m_IndexMode; if(indexMode == 0) return m_Attributes->numBitsPerIndex; else return m_Attributes->numBitsPerAlpha; } int GetNumberOfBitsPerAlpha(int8 indexMode = -1) const { if(indexMode < 0) indexMode = m_IndexMode; if(indexMode == 0) return m_Attributes->numBitsPerAlpha; else return m_Attributes->numBitsPerIndex; } // If we handle alpha separately, then we will consider the alpha channel // to be not used whenever we do any calculations... int GetAlphaChannelPrecision() const { return m_Attributes->alphaChannelPrecision; } // This returns the proper error metric even if we have rotation bits set RGBAVector GetErrorMetric() const { const float *w = BPTCC::GetErrorMetric(); switch(GetRotationMode()) { default: case 0: return RGBAVector(w[0], w[1], w[2], w[3]); case 1: return RGBAVector(w[3], w[1], w[2], w[0]); case 2: return RGBAVector(w[0], w[3], w[2], w[1]); case 3: return RGBAVector(w[0], w[1], w[3], w[2]); } } EPBitType GetPBitType() const { return m_Attributes->pbitType; } // This function creates an integer that represents the maximum values in each // channel. We can use this to figure out the proper endpoint values for a // given mode. unsigned int GetQuantizationMask() const { const int maskSeed = 0x80000000; const uint32 alphaPrec = GetAlphaChannelPrecision(); const uint32 cbits = m_Attributes->colorChannelPrecision - 1; const uint32 abits = GetAlphaChannelPrecision() - 1; if(alphaPrec > 0) { return ( (maskSeed >> (24 + cbits) & 0xFF) | (maskSeed >> (16 + cbits) & 0xFF00) | (maskSeed >> (8 + cbits) & 0xFF0000) | (maskSeed >> abits & 0xFF000000) ); } else { return ( ((maskSeed >> (24 + cbits) & 0xFF) | (maskSeed >> (16 + cbits) & 0xFF00) | (maskSeed >> (8 + cbits) & 0xFF0000)) & (0x00FFFFFF) ); } } int GetNumPbitCombos() const { switch(GetPBitType()) { case ePBitType_Shared: return 2; case ePBitType_NotShared: return 4; default: case ePBitType_None: return 1; } } const int *GetPBitCombo(int idx) const { switch(GetPBitType()) { case ePBitType_Shared: return (idx)? kPBits[3] : kPBits[0]; case ePBitType_NotShared: return kPBits[idx % 4]; default: case ePBitType_None: return kPBits[0]; } } // This performs simulated annealing on the endpoints p1 and p2 based on the // current MaxAnnealingIterations. This is set by calling the function // SetQualityLevel double OptimizeEndpointsForCluster( const RGBACluster &cluster, RGBAVector &p1, RGBAVector &p2, uint8 *bestIndices, uint8 &bestPbitCombo ) const; // This function performs the heuristic to choose the "best" neighboring // endpoints to p1 and p2 based on the compression mode (index precision, // endpoint precision etc) void PickBestNeighboringEndpoints( const RGBACluster &cluster, const RGBAVector &p1, const RGBAVector &p2, const int curPbitCombo, RGBAVector &np1, RGBAVector &np2, int &nPbitCombo, const VisitedState *visitedStates, int nVisited, float stepSz = 1.0f ) const; // This is used by simulated annealing to determine whether or not the // newError (from the neighboring endpoints) is sufficient to continue the // annealing process from these new endpoints based on how good the oldError // was, and how long we've been annealing (t) bool AcceptNewEndpointError(double newError, double oldError, float t) const; // This function figures out the best compression for the single color p, and // places the endpoints in p1 and p2. If the compression mode supports p-bits, // then we choose the best p-bit combo and return it as well. double CompressSingleColor(const RGBAVector &p, RGBAVector &p1, RGBAVector &p2, uint8 &bestPbitCombo) const; // Compress the cluster using a generalized cluster fit. This figures out the // proper endpoints assuming that we have no alpha. double CompressCluster(const RGBACluster &cluster, RGBAVector &p1, RGBAVector &p2, uint8 *bestIndices, uint8 &bestPbitCombo) const; // Compress the non-opaque cluster using a generalized cluster fit, and place // the endpoints within p1 and p2. The color indices and alpha indices are // computed as well. double CompressCluster(const RGBACluster &cluster, RGBAVector &p1, RGBAVector &p2, uint8 *bestIndices, uint8 *alphaIndices) const; // This function takes two endpoints in the continuous domain (as floats) and // clamps them to the nearest grid points based on the compression mode (and // possible pbit values) void ClampEndpointsToGrid(RGBAVector &p1, RGBAVector &p2, uint8 &bestPBitCombo) const; }; extern const uint32 kInterpolationValues[4][16][2]; } // namespace BPTCC { #endif // BPTCENCODER_SRC_BPTCCOMPRESSIONMODE_H_