breakpad/src/common/dwarf/dwarf2reader.h
jimblandy 8bfcc2683f Breakpad DWARF Reader: Change LineInfoHandler::AddLine to provide the line's length.
Breakpad's DWARF line number info parser provides a code address,
file, and line number for each code/source pairing, but doesn't
provide the length of the machine code. This makes that change, as
discussed in the following thread:

http://groups.google.com/group/google-breakpad-dev/browse_thread/thread/ed8d2fde79319368p

This patch also makes the corresponding changes to the functioninfo.cc
module, used by the Mac dumper. This patch has no effect on the Mac
dumper's output.

a=jimblandy, r=ccoutant


git-svn-id: http://google-breakpad.googlecode.com/svn/trunk@494 4c0a9323-5329-0410-9bdc-e9ce6186880e
2010-01-22 23:30:36 +00:00

405 lines
16 KiB
C++

// Copyright 2010 Google Inc. All Rights Reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// This file contains definitions related to the DWARF2/3 reader and
// it's handler interfaces.
// The DWARF2/3 specification can be found at
// http://dwarf.freestandards.org and should be considered required
// reading if you wish to modify the implementation.
// Only a cursory attempt is made to explain terminology that is
// used here, as it is much better explained in the standard documents
#ifndef COMMON_DWARF_DWARF2READER_H__
#define COMMON_DWARF_DWARF2READER_H__
#include <list>
#include <map>
#include <string>
#include <utility>
#include <vector>
#include "common/dwarf/dwarf2enums.h"
#include "common/dwarf/types.h"
using namespace std;
namespace dwarf2reader {
struct LineStateMachine;
class ByteReader;
class Dwarf2Handler;
class LineInfoHandler;
// This maps from a string naming a section to a pair containing a
// the data for the section, and the size of the section.
typedef map<string, pair<const char*, uint64> > SectionMap;
typedef list<pair<enum DwarfAttribute, enum DwarfForm> > AttributeList;
typedef AttributeList::iterator AttributeIterator;
typedef AttributeList::const_iterator ConstAttributeIterator;
struct LineInfoHeader {
uint64 total_length;
uint16 version;
uint64 prologue_length;
uint8 min_insn_length; // insn stands for instructin
bool default_is_stmt; // stmt stands for statement
int8 line_base;
uint8 line_range;
uint8 opcode_base;
// Use a pointer so that signalsafe_addr2line is able to use this structure
// without heap allocation problem.
vector<unsigned char> *std_opcode_lengths;
};
class LineInfo {
public:
// Initializes a .debug_line reader. Buffer and buffer length point
// to the beginning and length of the line information to read.
// Reader is a ByteReader class that has the endianness set
// properly.
LineInfo(const char* buffer_, uint64 buffer_length,
ByteReader* reader, LineInfoHandler* handler);
virtual ~LineInfo() {
if (header_.std_opcode_lengths) {
delete header_.std_opcode_lengths;
}
}
// Start processing line info, and calling callbacks in the handler.
// Consumes the line number information for a single compilation unit.
// Returns the number of bytes processed.
uint64 Start();
// Process a single line info opcode at START using the state
// machine at LSM. Return true if we should define a line using the
// current state of the line state machine. Place the length of the
// opcode in LEN.
// If LSM_PASSES_PC is non-NULL, this function also checks if the lsm
// passes the address of PC. In other words, LSM_PASSES_PC will be
// set to true, if the following condition is met.
//
// lsm's old address < PC <= lsm's new address
static bool ProcessOneOpcode(ByteReader* reader,
LineInfoHandler* handler,
const struct LineInfoHeader &header,
const char* start,
struct LineStateMachine* lsm,
size_t* len,
uintptr pc,
bool *lsm_passes_pc);
private:
// Reads the DWARF2/3 header for this line info.
void ReadHeader();
// Reads the DWARF2/3 line information
void ReadLines();
// The associated handler to call processing functions in
LineInfoHandler* handler_;
// The associated ByteReader that handles endianness issues for us
ByteReader* reader_;
// A DWARF2/3 line info header. This is not the same size as
// in the actual file, as the one in the file may have a 32 bit or
// 64 bit lengths
struct LineInfoHeader header_;
// buffer is the buffer for our line info, starting at exactly where
// the line info to read is. after_header is the place right after
// the end of the line information header.
const char* buffer_;
uint64 buffer_length_;
const char* after_header_;
};
// This class is the main interface between the line info reader and
// the client. The virtual functions inside this get called for
// interesting events that happen during line info reading. The
// default implementation does nothing
class LineInfoHandler {
public:
LineInfoHandler() { }
virtual ~LineInfoHandler() { }
// Called when we define a directory. NAME is the directory name,
// DIR_NUM is the directory number
virtual void DefineDir(const string& name, uint32 dir_num) { }
// Called when we define a filename. NAME is the filename, FILE_NUM
// is the file number which is -1 if the file index is the next
// index after the last numbered index (this happens when files are
// dynamically defined by the line program), DIR_NUM is the
// directory index for the directory name of this file, MOD_TIME is
// the modification time of the file, and LENGTH is the length of
// the file
virtual void DefineFile(const string& name, int32 file_num,
uint32 dir_num, uint64 mod_time,
uint64 length) { }
// Called when the line info reader has a new line, address pair
// ready for us. ADDRESS is the address of the code, LENGTH is the
// length of its machine code in bytes, FILE_NUM is the file number
// containing the code, LINE_NUM is the line number in that file for
// the code, and COLUMN_NUM is the column number the code starts at,
// if we know it (0 otherwise).
virtual void AddLine(uint64 address, uint64 length,
uint32 file_num, uint32 line_num, uint32 column_num) { }
};
// The base of DWARF2/3 debug info is a DIE (Debugging Information
// Entry.
// DWARF groups DIE's into a tree and calls the root of this tree a
// "compilation unit". Most of the time, there is one compilation
// unit in the .debug_info section for each file that had debug info
// generated.
// Each DIE consists of
// 1. a tag specifying a thing that is being described (ie
// DW_TAG_subprogram for functions, DW_TAG_variable for variables, etc
// 2. attributes (such as DW_AT_location for location in memory,
// DW_AT_name for name), and data for each attribute.
// 3. A flag saying whether the DIE has children or not
// In order to gain some amount of compression, the format of
// each DIE (tag name, attributes and data forms for the attributes)
// are stored in a separate table called the "abbreviation table".
// This is done because a large number of DIEs have the exact same tag
// and list of attributes, but different data for those attributes.
// As a result, the .debug_info section is just a stream of data, and
// requires reading of the .debug_abbrev section to say what the data
// means.
// As a warning to the user, it should be noted that the reason for
// using absolute offsets from the beginning of .debug_info is that
// DWARF2/3 supports referencing DIE's from other DIE's by their offset
// from either the current compilation unit start, *or* the beginning
// of the .debug_info section. This means it is possible to reference
// a DIE in one compilation unit from a DIE in another compilation
// unit. This style of reference is usually used to eliminate
// duplicated information that occurs across compilation
// units, such as base types, etc. GCC 3.4+ support this with
// -feliminate-dwarf2-dups. Other toolchains will sometimes do
// duplicate elimination in the linker.
class CompilationUnit {
public:
// Initialize a compilation unit. This requires a map of sections,
// the offset of this compilation unit in the .debug_info section, a
// ByteReader, and a Dwarf2Handler class to call callbacks in.
CompilationUnit(const SectionMap& sections, uint64 offset,
ByteReader* reader, Dwarf2Handler* handler);
virtual ~CompilationUnit() {
if (abbrevs_) delete abbrevs_;
}
// Begin reading a Dwarf2 compilation unit, and calling the
// callbacks in the Dwarf2Handler
// Return the full length of the compilation unit, including
// headers. This plus the starting offset passed to the constructor
// is the offset of the end of the compilation unit --- and the
// start of the next compilation unit, if there is one.
uint64 Start();
private:
// This struct represents a single DWARF2/3 abbreviation
// The abbreviation tells how to read a DWARF2/3 DIE, and consist of a
// tag and a list of attributes, as well as the data form of each attribute.
struct Abbrev {
uint32 number;
enum DwarfTag tag;
bool has_children;
AttributeList attributes;
};
// A DWARF2/3 compilation unit header. This is not the same size as
// in the actual file, as the one in the file may have a 32 bit or
// 64 bit length.
struct CompilationUnitHeader {
uint64 length;
uint16 version;
uint64 abbrev_offset;
uint8 address_size;
} header_;
// Reads the DWARF2/3 header for this compilation unit.
void ReadHeader();
// Reads the DWARF2/3 abbreviations for this compilation unit
void ReadAbbrevs();
// Processes a single DIE for this compilation unit and return a new
// pointer just past the end of it
const char* ProcessDIE(uint64 dieoffset,
const char* start,
const Abbrev& abbrev);
// Processes a single attribute and return a new pointer just past the
// end of it
const char* ProcessAttribute(uint64 dieoffset,
const char* start,
enum DwarfAttribute attr,
enum DwarfForm form);
// Processes all DIEs for this compilation unit
void ProcessDIEs();
// Skips the die with attributes specified in ABBREV starting at
// START, and return the new place to position the stream to.
const char* SkipDIE(const char* start,
const Abbrev& abbrev);
// Skips the attribute starting at START, with FORM, and return the
// new place to position the stream to.
const char* SkipAttribute(const char* start,
enum DwarfForm form);
// Offset from section start is the offset of this compilation unit
// from the beginning of the .debug_info section.
uint64 offset_from_section_start_;
// buffer is the buffer for our CU, starting at .debug_info + offset
// passed in from constructor.
// after_header points to right after the compilation unit header.
const char* buffer_;
uint64 buffer_length_;
const char* after_header_;
// The associated ByteReader that handles endianness issues for us
ByteReader* reader_;
// The map of sections in our file to buffers containing their data
const SectionMap& sections_;
// The associated handler to call processing functions in
Dwarf2Handler* handler_;
// Set of DWARF2/3 abbreviations for this compilation unit. Indexed
// by abbreviation number, which means that abbrevs_[0] is not
// valid.
vector<Abbrev>* abbrevs_;
// String section buffer and length, if we have a string section.
// This is here to avoid doing a section lookup for strings in
// ProcessAttribute, which is in the hot path for DWARF2 reading.
const char* string_buffer_;
uint64 string_buffer_length_;
};
// This class is the main interface between the reader and the
// client. The virtual functions inside this get called for
// interesting events that happen during DWARF2 reading.
// The default implementation skips everything.
class Dwarf2Handler {
public:
Dwarf2Handler() { }
virtual ~Dwarf2Handler() { }
// Start to process a compilation unit at OFFSET from the beginning of the
// .debug_info section. Return false if you would like to skip this
// compilation unit.
virtual bool StartCompilationUnit(uint64 offset, uint8 address_size,
uint8 offset_size, uint64 cu_length,
uint8 dwarf_version) { return false; }
// Start to process a DIE at OFFSET from the beginning of the .debug_info
// section. Return false if you would like to skip this DIE.
virtual bool StartDIE(uint64 offset, enum DwarfTag tag,
const AttributeList& attrs) { return false; }
// Called when we have an attribute with unsigned data to give to our
// handler. The attribute is for the DIE at OFFSET from the beginning of the
// .debug_info section. Its name is ATTR, its form is FORM, and its value is
// DATA.
virtual void ProcessAttributeUnsigned(uint64 offset,
enum DwarfAttribute attr,
enum DwarfForm form,
uint64 data) { }
// Called when we have an attribute with signed data to give to our handler.
// The attribute is for the DIE at OFFSET from the beginning of the
// .debug_info section. Its name is ATTR, its form is FORM, and its value is
// DATA.
virtual void ProcessAttributeSigned(uint64 offset,
enum DwarfAttribute attr,
enum DwarfForm form,
int64 data) { }
// Called when we have an attribute whose value is a reference to
// another DIE. The attribute belongs to the DIE at OFFSET from the
// beginning of the .debug_info section. Its name is ATTR, its form
// is FORM, and the offset of the DIE being referred to from the
// beginning of the .debug_info section is DATA.
virtual void ProcessAttributeReference(uint64 offset,
enum DwarfAttribute attr,
enum DwarfForm form,
uint64 data) { }
// Called when we have an attribute with a buffer of data to give to our
// handler. The attribute is for the DIE at OFFSET from the beginning of the
// .debug_info section. Its name is ATTR, its form is FORM, DATA points to
// the buffer's contents, and its length in bytes is LENGTH. The buffer is
// owned by the caller, not the callee, and may not persist for very long.
// If you want the data to be available later, it needs to be copied.
virtual void ProcessAttributeBuffer(uint64 offset,
enum DwarfAttribute attr,
enum DwarfForm form,
const char* data,
uint64 len) { }
// Called when we have an attribute with string data to give to our handler.
// The attribute is for the DIE at OFFSET from the beginning of the
// .debug_info section. Its name is ATTR, its form is FORM, and its value is
// DATA.
virtual void ProcessAttributeString(uint64 offset,
enum DwarfAttribute attr,
enum DwarfForm form,
const string& data) { }
// Called when finished processing the DIE at OFFSET.
// Because DWARF2/3 specifies a tree of DIEs, you may get starts
// before ends of the previous DIE, as we process children before
// ending the parent.
virtual void EndDIE(uint64 offset) { }
};
} // namespace dwarf2reader
#endif // UTIL_DEBUGINFO_DWARF2READER_H__