mirror of
https://github.com/yuzu-emu/breakpad.git
synced 2025-11-12 04:54:57 +00:00
Pointer authentication codes are used to validate pointers against accidental or malicious modification by storing a hash of the address and a secret value in the pointer's unused, upper bits. The exact bits used may vary by implementation and depend on the size of the virtual address space of the target system, and whether other tagged pointer features are in use. Apple has implemented PACs in the Apple A12. https://developer.apple.com/documentation/security/preparing_your_app_to_work_with_pointer_authentication The documented method of stripping PACs from a pointer is to call ptrauth_strip(), which ultimately emits an `xpaci` instruction, but this option isn't available to the Breakpad processor not running on the device. Instead, this patch selects likely address bits from link register values by examining the address range of loaded modules. Change-Id: I054bd1a03605719937fc85dcc8d8b9fe927f44be Reviewed-on: https://chromium-review.googlesource.com/c/breakpad/breakpad/+/1713650 Reviewed-by: Mark Mentovai <mark@chromium.org>
301 lines
12 KiB
C++
301 lines
12 KiB
C++
// Copyright (c) 2013 Google Inc.
|
|
// All rights reserved.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following disclaimer
|
|
// in the documentation and/or other materials provided with the
|
|
// distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived from
|
|
// this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
// stackwalker_arm64.cc: arm64-specific stackwalker.
|
|
//
|
|
// See stackwalker_arm64.h for documentation.
|
|
//
|
|
// Author: Mark Mentovai, Ted Mielczarek, Jim Blandy, Colin Blundell
|
|
|
|
#include <vector>
|
|
|
|
#include "common/scoped_ptr.h"
|
|
#include "google_breakpad/processor/call_stack.h"
|
|
#include "google_breakpad/processor/memory_region.h"
|
|
#include "google_breakpad/processor/source_line_resolver_interface.h"
|
|
#include "google_breakpad/processor/stack_frame_cpu.h"
|
|
#include "processor/cfi_frame_info.h"
|
|
#include "processor/logging.h"
|
|
#include "processor/stackwalker_arm64.h"
|
|
|
|
namespace google_breakpad {
|
|
|
|
|
|
StackwalkerARM64::StackwalkerARM64(const SystemInfo* system_info,
|
|
const MDRawContextARM64* context,
|
|
MemoryRegion* memory,
|
|
const CodeModules* modules,
|
|
StackFrameSymbolizer* resolver_helper)
|
|
: Stackwalker(system_info, memory, modules, resolver_helper),
|
|
context_(context),
|
|
context_frame_validity_(StackFrameARM64::CONTEXT_VALID_ALL),
|
|
address_range_mask_(0xffffffffffffffff) {
|
|
if (modules && modules->module_count() > 0) {
|
|
// ARM64 supports storing pointer authentication codes in the upper bits of
|
|
// a pointer. Make a best guess at the range of valid addresses based on the
|
|
// range of loaded modules.
|
|
const CodeModule *high_module =
|
|
modules->GetModuleAtSequence(modules->module_count() - 1);
|
|
uint64_t mask = high_module->base_address() + high_module->size();
|
|
mask |= mask >> 1;
|
|
mask |= mask >> 2;
|
|
mask |= mask >> 4;
|
|
mask |= mask >> 8;
|
|
mask |= mask >> 16;
|
|
mask |= mask >> 32;
|
|
address_range_mask_ = mask;
|
|
}
|
|
}
|
|
|
|
uint64_t StackwalkerARM64::PtrauthStrip(uint64_t ptr) {
|
|
uint64_t stripped = ptr & address_range_mask_;
|
|
return modules_ && modules_->GetModuleForAddress(stripped) ? stripped : ptr;
|
|
}
|
|
|
|
StackFrame* StackwalkerARM64::GetContextFrame() {
|
|
if (!context_) {
|
|
BPLOG(ERROR) << "Can't get context frame without context";
|
|
return NULL;
|
|
}
|
|
|
|
StackFrameARM64* frame = new StackFrameARM64();
|
|
|
|
// The instruction pointer is stored directly in a register (x32), so pull it
|
|
// straight out of the CPU context structure.
|
|
frame->context = *context_;
|
|
frame->context_validity = context_frame_validity_;
|
|
frame->trust = StackFrame::FRAME_TRUST_CONTEXT;
|
|
frame->instruction = frame->context.iregs[MD_CONTEXT_ARM64_REG_PC];
|
|
frame->context.iregs[MD_CONTEXT_ARM64_REG_LR] =
|
|
PtrauthStrip(frame->context.iregs[MD_CONTEXT_ARM64_REG_LR]);
|
|
|
|
return frame;
|
|
}
|
|
|
|
StackFrameARM64* StackwalkerARM64::GetCallerByCFIFrameInfo(
|
|
const vector<StackFrame*> &frames,
|
|
CFIFrameInfo* cfi_frame_info) {
|
|
StackFrameARM64* last_frame = static_cast<StackFrameARM64*>(frames.back());
|
|
|
|
static const char* register_names[] = {
|
|
"x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7",
|
|
"x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15",
|
|
"x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23",
|
|
"x24", "x25", "x26", "x27", "x28", "x29", "x30", "sp",
|
|
"pc", NULL
|
|
};
|
|
|
|
// Populate a dictionary with the valid register values in last_frame.
|
|
CFIFrameInfo::RegisterValueMap<uint64_t> callee_registers;
|
|
for (int i = 0; register_names[i]; i++) {
|
|
if (last_frame->context_validity & StackFrameARM64::RegisterValidFlag(i))
|
|
callee_registers[register_names[i]] = last_frame->context.iregs[i];
|
|
}
|
|
|
|
// Use the STACK CFI data to recover the caller's register values.
|
|
CFIFrameInfo::RegisterValueMap<uint64_t> caller_registers;
|
|
if (!cfi_frame_info->FindCallerRegs(callee_registers, *memory_,
|
|
&caller_registers)) {
|
|
return NULL;
|
|
}
|
|
// Construct a new stack frame given the values the CFI recovered.
|
|
scoped_ptr<StackFrameARM64> frame(new StackFrameARM64());
|
|
for (int i = 0; register_names[i]; i++) {
|
|
CFIFrameInfo::RegisterValueMap<uint64_t>::iterator entry =
|
|
caller_registers.find(register_names[i]);
|
|
if (entry != caller_registers.end()) {
|
|
// We recovered the value of this register; fill the context with the
|
|
// value from caller_registers.
|
|
frame->context_validity |= StackFrameARM64::RegisterValidFlag(i);
|
|
frame->context.iregs[i] = entry->second;
|
|
} else if (19 <= i && i <= 29 && (last_frame->context_validity &
|
|
StackFrameARM64::RegisterValidFlag(i))) {
|
|
// If the STACK CFI data doesn't mention some callee-saves register, and
|
|
// it is valid in the callee, assume the callee has not yet changed it.
|
|
// Registers r19 through r29 are callee-saves, according to the Procedure
|
|
// Call Standard for the ARM AARCH64 Architecture, which the Linux ABI
|
|
// follows.
|
|
frame->context_validity |= StackFrameARM64::RegisterValidFlag(i);
|
|
frame->context.iregs[i] = last_frame->context.iregs[i];
|
|
}
|
|
}
|
|
// If the CFI doesn't recover the PC explicitly, then use .ra.
|
|
if (!(frame->context_validity & StackFrameARM64::CONTEXT_VALID_PC)) {
|
|
CFIFrameInfo::RegisterValueMap<uint64_t>::iterator entry =
|
|
caller_registers.find(".ra");
|
|
if (entry != caller_registers.end()) {
|
|
frame->context_validity |= StackFrameARM64::CONTEXT_VALID_PC;
|
|
frame->context.iregs[MD_CONTEXT_ARM64_REG_PC] = entry->second;
|
|
}
|
|
}
|
|
// If the CFI doesn't recover the SP explicitly, then use .cfa.
|
|
if (!(frame->context_validity & StackFrameARM64::CONTEXT_VALID_SP)) {
|
|
CFIFrameInfo::RegisterValueMap<uint64_t>::iterator entry =
|
|
caller_registers.find(".cfa");
|
|
if (entry != caller_registers.end()) {
|
|
frame->context_validity |= StackFrameARM64::CONTEXT_VALID_SP;
|
|
frame->context.iregs[MD_CONTEXT_ARM64_REG_SP] = entry->second;
|
|
}
|
|
}
|
|
|
|
// If we didn't recover the PC and the SP, then the frame isn't very useful.
|
|
static const uint64_t essentials = (StackFrameARM64::CONTEXT_VALID_SP
|
|
| StackFrameARM64::CONTEXT_VALID_PC);
|
|
if ((frame->context_validity & essentials) != essentials)
|
|
return NULL;
|
|
|
|
frame->trust = StackFrame::FRAME_TRUST_CFI;
|
|
return frame.release();
|
|
}
|
|
|
|
StackFrameARM64* StackwalkerARM64::GetCallerByStackScan(
|
|
const vector<StackFrame*> &frames) {
|
|
StackFrameARM64* last_frame = static_cast<StackFrameARM64*>(frames.back());
|
|
uint64_t last_sp = last_frame->context.iregs[MD_CONTEXT_ARM64_REG_SP];
|
|
uint64_t caller_sp, caller_pc;
|
|
|
|
if (!ScanForReturnAddress(last_sp, &caller_sp, &caller_pc,
|
|
frames.size() == 1 /* is_context_frame */)) {
|
|
// No plausible return address was found.
|
|
return NULL;
|
|
}
|
|
|
|
// ScanForReturnAddress found a reasonable return address. Advance
|
|
// %sp to the location above the one where the return address was
|
|
// found.
|
|
caller_sp += 8;
|
|
|
|
// Create a new stack frame (ownership will be transferred to the caller)
|
|
// and fill it in.
|
|
StackFrameARM64* frame = new StackFrameARM64();
|
|
|
|
frame->trust = StackFrame::FRAME_TRUST_SCAN;
|
|
frame->context = last_frame->context;
|
|
frame->context.iregs[MD_CONTEXT_ARM64_REG_PC] = caller_pc;
|
|
frame->context.iregs[MD_CONTEXT_ARM64_REG_SP] = caller_sp;
|
|
frame->context_validity = StackFrameARM64::CONTEXT_VALID_PC |
|
|
StackFrameARM64::CONTEXT_VALID_SP;
|
|
|
|
return frame;
|
|
}
|
|
|
|
StackFrameARM64* StackwalkerARM64::GetCallerByFramePointer(
|
|
const vector<StackFrame*> &frames) {
|
|
StackFrameARM64* last_frame = static_cast<StackFrameARM64*>(frames.back());
|
|
|
|
uint64_t last_fp = last_frame->context.iregs[MD_CONTEXT_ARM64_REG_FP];
|
|
|
|
uint64_t caller_fp = 0;
|
|
if (last_fp && !memory_->GetMemoryAtAddress(last_fp, &caller_fp)) {
|
|
BPLOG(ERROR) << "Unable to read caller_fp from last_fp: 0x"
|
|
<< std::hex << last_fp;
|
|
return NULL;
|
|
}
|
|
|
|
uint64_t caller_lr = 0;
|
|
if (last_fp && !memory_->GetMemoryAtAddress(last_fp + 8, &caller_lr)) {
|
|
BPLOG(ERROR) << "Unable to read caller_lr from last_fp + 8: 0x"
|
|
<< std::hex << (last_fp + 8);
|
|
return NULL;
|
|
}
|
|
|
|
caller_lr = PtrauthStrip(caller_lr);
|
|
|
|
uint64_t caller_sp = last_fp ? last_fp + 16 :
|
|
last_frame->context.iregs[MD_CONTEXT_ARM64_REG_SP];
|
|
|
|
// Create a new stack frame (ownership will be transferred to the caller)
|
|
// and fill it in.
|
|
StackFrameARM64* frame = new StackFrameARM64();
|
|
|
|
frame->trust = StackFrame::FRAME_TRUST_FP;
|
|
frame->context = last_frame->context;
|
|
frame->context.iregs[MD_CONTEXT_ARM64_REG_FP] = caller_fp;
|
|
frame->context.iregs[MD_CONTEXT_ARM64_REG_SP] = caller_sp;
|
|
frame->context.iregs[MD_CONTEXT_ARM64_REG_PC] =
|
|
last_frame->context.iregs[MD_CONTEXT_ARM64_REG_LR];
|
|
frame->context.iregs[MD_CONTEXT_ARM64_REG_LR] = caller_lr;
|
|
frame->context_validity = StackFrameARM64::CONTEXT_VALID_PC |
|
|
StackFrameARM64::CONTEXT_VALID_LR |
|
|
StackFrameARM64::CONTEXT_VALID_FP |
|
|
StackFrameARM64::CONTEXT_VALID_SP;
|
|
return frame;
|
|
}
|
|
|
|
StackFrame* StackwalkerARM64::GetCallerFrame(const CallStack* stack,
|
|
bool stack_scan_allowed) {
|
|
if (!memory_ || !stack) {
|
|
BPLOG(ERROR) << "Can't get caller frame without memory or stack";
|
|
return NULL;
|
|
}
|
|
|
|
const vector<StackFrame*> &frames = *stack->frames();
|
|
StackFrameARM64* last_frame = static_cast<StackFrameARM64*>(frames.back());
|
|
scoped_ptr<StackFrameARM64> frame;
|
|
|
|
// See if there is DWARF call frame information covering this address.
|
|
scoped_ptr<CFIFrameInfo> cfi_frame_info(
|
|
frame_symbolizer_->FindCFIFrameInfo(last_frame));
|
|
if (cfi_frame_info.get())
|
|
frame.reset(GetCallerByCFIFrameInfo(frames, cfi_frame_info.get()));
|
|
|
|
// If CFI failed, or there wasn't CFI available, fall back to frame pointer.
|
|
if (!frame.get())
|
|
frame.reset(GetCallerByFramePointer(frames));
|
|
|
|
// If everything failed, fall back to stack scanning.
|
|
if (stack_scan_allowed && !frame.get())
|
|
frame.reset(GetCallerByStackScan(frames));
|
|
|
|
// If nothing worked, tell the caller.
|
|
if (!frame.get())
|
|
return NULL;
|
|
|
|
// Should we terminate the stack walk? (end-of-stack or broken invariant)
|
|
if (TerminateWalk(frame->context.iregs[MD_CONTEXT_ARM64_REG_PC],
|
|
frame->context.iregs[MD_CONTEXT_ARM64_REG_SP],
|
|
last_frame->context.iregs[MD_CONTEXT_ARM64_REG_SP],
|
|
frames.size() == 1)) {
|
|
return NULL;
|
|
}
|
|
|
|
// The new frame's context's PC is the return address, which is one
|
|
// instruction past the instruction that caused us to arrive at the callee.
|
|
// ARM64 instructions have a uniform 4-byte encoding, so subtracting 4 off
|
|
// the return address gets back to the beginning of the call instruction.
|
|
// Callers that require the exact return address value may access
|
|
// frame->context.iregs[MD_CONTEXT_ARM64_REG_PC].
|
|
frame->instruction = frame->context.iregs[MD_CONTEXT_ARM64_REG_PC] - 4;
|
|
|
|
return frame.release();
|
|
}
|
|
|
|
|
|
} // namespace google_breakpad
|