diff --git a/library/ssl_tls.c b/library/ssl_tls.c index 5fc5be39b..c02271619 100644 --- a/library/ssl_tls.c +++ b/library/ssl_tls.c @@ -6886,8 +6886,16 @@ int mbedtls_ssl_read( mbedtls_ssl_context *ssl, unsigned char *buf, size_t len ) } /* - * Send application data to be encrypted by the SSL layer, - * taking care of max fragment length and buffer size + * Send application data to be encrypted by the SSL layer, taking care of max + * fragment length and buffer size. + * + * According to RFC 5246 Section 6.2.1: + * + * Zero-length fragments of Application data MAY be sent as they are + * potentially useful as a traffic analysis countermeasure. + * + * Therefore, it is possible that the input message length is 0 and the + * corresponding return code is 0 on success. */ static int ssl_write_real( mbedtls_ssl_context *ssl, const unsigned char *buf, size_t len ) @@ -6915,6 +6923,12 @@ static int ssl_write_real( mbedtls_ssl_context *ssl, if( ssl->out_left != 0 ) { + /* + * The user has previously tried to send the data and + * MBEDTLS_ERR_SSL_WANT_WRITE or the message was only partially + * written. In this case, we expect the high-level write function + * (e.g. mbedtls_ssl_write()) to be called with the same parameters + */ if( ( ret = mbedtls_ssl_flush_output( ssl ) ) != 0 ) { MBEDTLS_SSL_DEBUG_RET( 1, "mbedtls_ssl_flush_output", ret ); @@ -6923,6 +6937,11 @@ static int ssl_write_real( mbedtls_ssl_context *ssl, } else { + /* + * The user is trying to send a message the first time, so we need to + * copy the data into the internal buffers and setup the data structure + * to keep track of partial writes + */ ssl->out_msglen = len; ssl->out_msgtype = MBEDTLS_SSL_MSG_APPLICATION_DATA; memcpy( ssl->out_msg, buf, len );