diff --git a/include/mbedtls/rsa.h b/include/mbedtls/rsa.h index 14cdef8d5..a7e8a3320 100644 --- a/include/mbedtls/rsa.h +++ b/include/mbedtls/rsa.h @@ -96,23 +96,13 @@ extern "C" { * * \return * - 0 if successful. In this case, P and Q constitute a - * factorization of N, and it is guaranteed that D and E - * are indeed modular inverses modulo P-1 and modulo Q-1. - * The values of N, D and E are unchanged. It is checked - * that P, Q are prime if a PRNG is provided. - * - A non-zero error code otherwise. In this case, the values - * of N, D, E are undefined. + * factorization of N. + * - A non-zero error code otherwise. * - * \note The input MPI's are deliberately not declared as constant - * and may therefore be used for in-place calculations by - * the implementation. In particular, their values can be - * corrupted when the function fails. If the user cannot - * tolerate this, he has to make copies of the MPI's prior - * to calling this function. See \c mbedtls_mpi_copy for this. */ -int mbedtls_rsa_deduce_moduli( mbedtls_mpi *N, mbedtls_mpi *D, mbedtls_mpi *E, - int (*f_rng)(void *, unsigned char *, size_t), void *p_rng, - mbedtls_mpi *P, mbedtls_mpi *Q ); +int mbedtls_rsa_deduce_moduli( mbedtls_mpi const *N, mbedtls_mpi const *D, + mbedtls_mpi const *E, int (*f_rng)(void *, unsigned char *, size_t), + void *p_rng, mbedtls_mpi *P, mbedtls_mpi *Q ); /** * \brief Compute RSA private exponent from diff --git a/library/rsa.c b/library/rsa.c index bb456df49..e01397ec9 100644 --- a/library/rsa.c +++ b/library/rsa.c @@ -129,20 +129,11 @@ static void mbedtls_zeroize( void *v, size_t n ) { * of (a) and (b) above to attempt to factor N. * */ -int mbedtls_rsa_deduce_moduli( mbedtls_mpi *N, mbedtls_mpi *D, mbedtls_mpi *E, +int mbedtls_rsa_deduce_moduli( mbedtls_mpi const *N, + mbedtls_mpi const *D, mbedtls_mpi const *E, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng, mbedtls_mpi *P, mbedtls_mpi *Q ) { - /* Implementation note: - * - * Space-efficiency is given preference over time-efficiency here: - * several calculations are done in place and temporarily change - * the values of D and E. - * - * Specifically, D is replaced by the largest odd divisor of DE - 1 - * throughout the calculations. - */ - int ret = 0; uint16_t attempt; /* Number of current attempt */ @@ -151,11 +142,9 @@ int mbedtls_rsa_deduce_moduli( mbedtls_mpi *N, mbedtls_mpi *D, mbedtls_mpi *E, uint16_t bitlen_half; /* Half the bitsize of the modulus N */ uint16_t order; /* Order of 2 in DE - 1 */ - mbedtls_mpi K; /* Temporary used for two purposes: - * - During factorization attempts, stores a random integer - * in the range of [0,..,N] - * - During verification, holding intermediate results. - */ + mbedtls_mpi T; /* Holds largest odd divisor of DE - 1 */ + mbedtls_mpi K; /* During factorization attempts, stores a random integer + * in the range of [0,..,N] */ if( P == NULL || Q == NULL || P->p != NULL || Q->p != NULL ) return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA ); @@ -174,20 +163,20 @@ int mbedtls_rsa_deduce_moduli( mbedtls_mpi *N, mbedtls_mpi *D, mbedtls_mpi *E, */ mbedtls_mpi_init( &K ); + mbedtls_mpi_init( &T ); - /* Replace D by DE - 1 */ - MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( D, D, E ) ); - MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( D, D, 1 ) ); + /* T := DE - 1 */ + MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T, D, E ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &T, &T, 1 ) ); - if( ( order = mbedtls_mpi_lsb( D ) ) == 0 ) + if( ( order = mbedtls_mpi_lsb( &T ) ) == 0 ) { ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA; goto cleanup; } - /* After this operation, D holds the largest odd divisor - * of DE - 1 for the original values of D and E. */ - MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( D, order ) ); + /* After this operation, T holds the largest odd divisor of DE - 1. */ + MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &T, order ) ); /* This is used to generate a few numbers around N / 2 * if no PRNG is provided. */ @@ -220,9 +209,9 @@ int mbedtls_rsa_deduce_moduli( mbedtls_mpi *N, mbedtls_mpi *D, mbedtls_mpi *E, if( mbedtls_mpi_cmp_int( P, 1 ) != 0 ) continue; - /* Go through K^X + 1, K^(2X) + 1, K^(4X) + 1, ... + /* Go through K^T + 1, K^(2T) + 1, K^(4T) + 1, ... * and check whether they have nontrivial GCD with N. */ - MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &K, &K, D, N, + MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &K, &K, &T, N, Q /* temporarily use Q for storing Montgomery * multiplication helper values */ ) ); @@ -239,14 +228,7 @@ int mbedtls_rsa_deduce_moduli( mbedtls_mpi *N, mbedtls_mpi *D, mbedtls_mpi *E, * Set Q := N / P. */ - MBEDTLS_MPI_CHK( mbedtls_mpi_div_mpi( Q, &K, N, P ) ); - - /* Restore D */ - - MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( D, order ) ); - MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( D, D, 1 ) ); - MBEDTLS_MPI_CHK( mbedtls_mpi_div_mpi( D, NULL, D, E ) ); - + MBEDTLS_MPI_CHK( mbedtls_mpi_div_mpi( Q, NULL, N, P ) ); goto cleanup; } @@ -261,6 +243,7 @@ int mbedtls_rsa_deduce_moduli( mbedtls_mpi *N, mbedtls_mpi *D, mbedtls_mpi *E, cleanup: mbedtls_mpi_free( &K ); + mbedtls_mpi_free( &T ); return( ret ); }