/* BEGIN_HEADER */ #include #include /* * Buffer structure for custom I/O callbacks. */ typedef struct mbedtls_test_buffer { size_t start; size_t content_length; size_t capacity; unsigned char *buffer; } mbedtls_test_buffer; /* * Initialises \p buf. After calling this function it is safe to call * `mbedtls_test_buffer_free()` on \p buf. */ void mbedtls_test_buffer_init( mbedtls_test_buffer *buf ) { memset( buf, 0, sizeof( *buf ) ); } /* * Sets up \p buf. After calling this function it is safe to call * `mbedtls_test_buffer_put()` and `mbedtls_test_buffer_get()` on \p buf. */ int mbedtls_test_buffer_setup( mbedtls_test_buffer *buf, size_t capacity ) { buf->buffer = (unsigned char*) mbedtls_calloc( capacity, sizeof(unsigned char) ); if( NULL == buf->buffer ) return MBEDTLS_ERR_SSL_ALLOC_FAILED; buf->capacity = capacity; return 0; } void mbedtls_test_buffer_free( mbedtls_test_buffer *buf ) { if( buf->buffer != NULL ) mbedtls_free( buf->buffer ); memset( buf, 0, sizeof( *buf ) ); } /* * Puts \p input_len bytes from the \p input buffer into the ring buffer \p buf. * * \p buf must have been initialized and set up by calling * `mbedtls_test_buffer_init()` and `mbedtls_test_buffer_setup()`. * * \retval \p input_len, if the data fits. * \retval 0 <= value < \p input_len, if the data does not fit. * \retval -1, if \p buf is NULL, it hasn't been set up or \p input_len is not * zero and \p input is NULL. */ int mbedtls_test_buffer_put( mbedtls_test_buffer *buf, const unsigned char* input, size_t input_len ) { size_t overflow = 0; if( ( buf == NULL ) || ( buf->buffer == NULL ) ) return -1; /* Reduce input_len to a number that fits in the buffer. */ if ( ( buf->content_length + input_len ) > buf->capacity ) { input_len = buf->capacity - buf->content_length; } if( input == NULL ) { return ( input_len == 0 ) ? 0 : -1; } /* Calculate the number of bytes that need to be placed at lower memory * address */ if( buf->start + buf->content_length + input_len > buf->capacity ) { overflow = ( buf->start + buf->content_length + input_len ) % buf->capacity; } memcpy( buf->buffer + buf->start + buf->content_length, input, input_len - overflow ); memcpy( buf->buffer, input + input_len - overflow, overflow ); buf->content_length += input_len; return input_len; } /* * Gets \p output_len bytes from the \p output buffer into the ring buffer * \p buf. * * \p buf must have been initialized and set up by calling * `mbedtls_test_buffer_init()` and `mbedtls_test_buffer_setup()`. * * \retval \p output_len, if the data is available. * \retval 0 <= value < \p output_len, if the data is not available. * \retval -1, if \buf is NULL, it hasn't been set up or \p output_len is not * zero and \p output is NULL */ int mbedtls_test_buffer_get( mbedtls_test_buffer *buf, unsigned char* output, size_t output_len ) { size_t overflow = 0; if( ( buf == NULL ) || ( buf->buffer == NULL ) ) return -1; if( output == NULL ) { return ( output_len == 0 ) ? 0 : -1; } if( buf->content_length < output_len ) output_len = buf->content_length; /* Calculate the number of bytes that need to be drawn from lower memory * address */ if( buf->start + output_len > buf->capacity ) { overflow = ( buf->start + output_len ) % buf->capacity; } memcpy( output, buf->buffer + buf->start, output_len - overflow ); memcpy( output + output_len - overflow, buf->buffer, overflow ); buf->content_length -= output_len; buf->start = ( buf->start + output_len ) % buf->capacity; return output_len; } /* * Context for the I/O callbacks simulating network connection. */ #define MBEDTLS_MOCK_SOCKET_CONNECTED 1 typedef struct mbedtls_mock_socket { int status; uint32_t blocking_pattern; mbedtls_test_buffer *input; mbedtls_test_buffer *output; struct mbedtls_mock_socket *peer; } mbedtls_mock_socket; /* * Setup and teardown functions for mock sockets. */ void mbedtls_mock_socket_init( mbedtls_mock_socket *socket ) { memset( socket, 0, sizeof( *socket ) ); } /* * Closes the socket \p socket. * * \p socket must have been previously initialized by calling * mbedtls_mock_socket_init(). * * This function frees all allocated resources and both sockets are aware of the * new connection state. * * That is, this function does not simulate half-open TCP connections and the * phenomenon that when closing a UDP connection the peer is not aware of the * connection having been closed. */ void mbedtls_mock_socket_close( mbedtls_mock_socket* socket ) { if( socket == NULL ) return; if( socket->input != NULL ) { mbedtls_test_buffer_free( socket->input ); mbedtls_free( socket->input ); } if( socket->output != NULL ) { mbedtls_test_buffer_free( socket->output ); mbedtls_free( socket->output ); } if( socket->peer != NULL ) memset( socket->peer, 0, sizeof( *socket->peer ) ); memset( socket, 0, sizeof( *socket ) ); } /* * Establishes a connection between \p peer1 and \p peer2. * * \p peer1 and \p peer2 must have been previously initialized by calling * mbedtls_mock_socket_init(). * * The capacites of the internal buffers are set to \p bufsize. Setting this to * the correct value allows for simulation of MTU, sanity testing the mock * implementation and mocking TCP connections with lower memory cost. */ int mbedtls_mock_socket_connect( mbedtls_mock_socket* peer1, mbedtls_mock_socket* peer2, size_t bufsize ) { int ret = -1; peer1->input = peer2->output = (mbedtls_test_buffer*) mbedtls_calloc( 1, sizeof(mbedtls_test_buffer) ); if( peer1->input == NULL ) { ret = MBEDTLS_ERR_SSL_ALLOC_FAILED; goto exit; } mbedtls_test_buffer_init( peer1->input ); if( 0 != ( ret = mbedtls_test_buffer_setup( peer1->input, bufsize ) ) ) { goto exit; } peer1->output = peer2->input = (mbedtls_test_buffer*) mbedtls_calloc( 1, sizeof(mbedtls_test_buffer) ); if( peer1->output == NULL ) { ret = MBEDTLS_ERR_SSL_ALLOC_FAILED; goto exit; } mbedtls_test_buffer_init( peer1->output ); if( 0 != ( ret = mbedtls_test_buffer_setup( peer1->output, bufsize ) ) ) { goto exit; } peer1->peer = peer2; peer2->peer = peer1; peer1->status = peer2->status = MBEDTLS_MOCK_SOCKET_CONNECTED; ret = 0; exit: if( ret != 0 ) { mbedtls_mock_socket_close( peer1 ); mbedtls_mock_socket_close( peer2 ); } return ret; } /* * Set the blocking pattern for the socket. * * For every bit of \p blocking_pattern set to one the socket will simulate a * "would block" event. The bits are processed starting with the least * significant bit and every call to a non-blocking I/O function consumes one. * * The behaviour of blocking I/O functions remains unchanged. */ int mbedtls_mock_socket_set_block( mbedtls_mock_socket* socket, uint32_t blocking_pattern ) { if( socket == NULL ) return -1; socket->blocking_pattern = blocking_pattern; return 0; } /* * Callbacks for simulating blocking I/O over connection-oriented transport. */ int mbedtls_mock_tcp_send_b( void *ctx, const unsigned char *buf, size_t len ) { mbedtls_mock_socket *socket = (mbedtls_mock_socket*) ctx; if( socket == NULL || socket->status != MBEDTLS_MOCK_SOCKET_CONNECTED ) return -1; return mbedtls_test_buffer_put( socket->output, buf, len ); } int mbedtls_mock_tcp_recv_b( void *ctx, unsigned char *buf, size_t len ) { mbedtls_mock_socket *socket = (mbedtls_mock_socket*) ctx; if( socket == NULL || socket->status != MBEDTLS_MOCK_SOCKET_CONNECTED ) return -1; return mbedtls_test_buffer_get( socket->input, buf, len ); } /* * Callbacks for simulating non-blocking I/O over connection-oriented transport. */ int mbedtls_mock_tcp_send_nb( void *ctx, const unsigned char *buf, size_t len ) { mbedtls_mock_socket *socket = (mbedtls_mock_socket*) ctx; if( socket == NULL || socket->status != MBEDTLS_MOCK_SOCKET_CONNECTED ) return -1; if( socket->blocking_pattern & 1 ) { socket->blocking_pattern >>= 1; return MBEDTLS_ERR_SSL_WANT_WRITE; } socket->blocking_pattern >>= 1; return mbedtls_test_buffer_put( socket->output, buf, len ); } int mbedtls_mock_tcp_recv_nb( void *ctx, unsigned char *buf, size_t len ) { mbedtls_mock_socket *socket = (mbedtls_mock_socket*) ctx; if( socket == NULL || socket->status != MBEDTLS_MOCK_SOCKET_CONNECTED ) return -1; if( socket->blocking_pattern & 1 ) { socket->blocking_pattern >>= 1; return MBEDTLS_ERR_SSL_WANT_READ; } socket->blocking_pattern >>= 1; return mbedtls_test_buffer_get( socket->input, buf, len ); } /* * Helper function setting up inverse record transformations * using given cipher, hash, EtM mode, authentication tag length, * and version. */ #define CHK( x ) \ do \ { \ if( !( x ) ) \ { \ ret = -1; \ goto cleanup; \ } \ } while( 0 ) #if MBEDTLS_SSL_CID_OUT_LEN_MAX > MBEDTLS_SSL_CID_IN_LEN_MAX #define SSL_CID_LEN_MIN MBEDTLS_SSL_CID_IN_LEN_MAX #else #define SSL_CID_LEN_MIN MBEDTLS_SSL_CID_OUT_LEN_MAX #endif static int build_transforms( mbedtls_ssl_transform *t_in, mbedtls_ssl_transform *t_out, int cipher_type, int hash_id, int etm, int tag_mode, int ver, size_t cid0_len, size_t cid1_len ) { mbedtls_cipher_info_t const *cipher_info; int ret = 0; size_t keylen, maclen, ivlen; unsigned char *key0 = NULL, *key1 = NULL; unsigned char iv_enc[16], iv_dec[16]; #if defined(MBEDTLS_SSL_DTLS_CONNECTION_ID) unsigned char cid0[ SSL_CID_LEN_MIN ]; unsigned char cid1[ SSL_CID_LEN_MIN ]; rnd_std_rand( NULL, cid0, sizeof( cid0 ) ); rnd_std_rand( NULL, cid1, sizeof( cid1 ) ); #else ((void) cid0_len); ((void) cid1_len); #endif /* MBEDTLS_SSL_DTLS_CONNECTION_ID */ maclen = 0; /* Pick cipher */ cipher_info = mbedtls_cipher_info_from_type( cipher_type ); CHK( cipher_info != NULL ); CHK( cipher_info->iv_size <= 16 ); CHK( cipher_info->key_bitlen % 8 == 0 ); /* Pick keys */ keylen = cipher_info->key_bitlen / 8; /* Allocate `keylen + 1` bytes to ensure that we get * a non-NULL pointers from `mbedtls_calloc` even if * `keylen == 0` in the case of the NULL cipher. */ CHK( ( key0 = mbedtls_calloc( 1, keylen + 1 ) ) != NULL ); CHK( ( key1 = mbedtls_calloc( 1, keylen + 1 ) ) != NULL ); memset( key0, 0x1, keylen ); memset( key1, 0x2, keylen ); /* Setup cipher contexts */ CHK( mbedtls_cipher_setup( &t_in->cipher_ctx_enc, cipher_info ) == 0 ); CHK( mbedtls_cipher_setup( &t_in->cipher_ctx_dec, cipher_info ) == 0 ); CHK( mbedtls_cipher_setup( &t_out->cipher_ctx_enc, cipher_info ) == 0 ); CHK( mbedtls_cipher_setup( &t_out->cipher_ctx_dec, cipher_info ) == 0 ); #if defined(MBEDTLS_CIPHER_MODE_CBC) if( cipher_info->mode == MBEDTLS_MODE_CBC ) { CHK( mbedtls_cipher_set_padding_mode( &t_in->cipher_ctx_enc, MBEDTLS_PADDING_NONE ) == 0 ); CHK( mbedtls_cipher_set_padding_mode( &t_in->cipher_ctx_dec, MBEDTLS_PADDING_NONE ) == 0 ); CHK( mbedtls_cipher_set_padding_mode( &t_out->cipher_ctx_enc, MBEDTLS_PADDING_NONE ) == 0 ); CHK( mbedtls_cipher_set_padding_mode( &t_out->cipher_ctx_dec, MBEDTLS_PADDING_NONE ) == 0 ); } #endif /* MBEDTLS_CIPHER_MODE_CBC */ CHK( mbedtls_cipher_setkey( &t_in->cipher_ctx_enc, key0, keylen << 3, MBEDTLS_ENCRYPT ) == 0 ); CHK( mbedtls_cipher_setkey( &t_in->cipher_ctx_dec, key1, keylen << 3, MBEDTLS_DECRYPT ) == 0 ); CHK( mbedtls_cipher_setkey( &t_out->cipher_ctx_enc, key1, keylen << 3, MBEDTLS_ENCRYPT ) == 0 ); CHK( mbedtls_cipher_setkey( &t_out->cipher_ctx_dec, key0, keylen << 3, MBEDTLS_DECRYPT ) == 0 ); /* Setup MAC contexts */ #if defined(MBEDTLS_SSL_SOME_MODES_USE_MAC) if( cipher_info->mode == MBEDTLS_MODE_CBC || cipher_info->mode == MBEDTLS_MODE_STREAM ) { mbedtls_md_info_t const *md_info; unsigned char *md0, *md1; /* Pick hash */ md_info = mbedtls_md_info_from_type( hash_id ); CHK( md_info != NULL ); /* Pick hash keys */ maclen = mbedtls_md_get_size( md_info ); CHK( ( md0 = mbedtls_calloc( 1, maclen ) ) != NULL ); CHK( ( md1 = mbedtls_calloc( 1, maclen ) ) != NULL ); memset( md0, 0x5, maclen ); memset( md1, 0x6, maclen ); CHK( mbedtls_md_setup( &t_out->md_ctx_enc, md_info, 1 ) == 0 ); CHK( mbedtls_md_setup( &t_out->md_ctx_dec, md_info, 1 ) == 0 ); CHK( mbedtls_md_setup( &t_in->md_ctx_enc, md_info, 1 ) == 0 ); CHK( mbedtls_md_setup( &t_in->md_ctx_dec, md_info, 1 ) == 0 ); if( ver > MBEDTLS_SSL_MINOR_VERSION_0 ) { CHK( mbedtls_md_hmac_starts( &t_in->md_ctx_enc, md0, maclen ) == 0 ); CHK( mbedtls_md_hmac_starts( &t_in->md_ctx_dec, md1, maclen ) == 0 ); CHK( mbedtls_md_hmac_starts( &t_out->md_ctx_enc, md1, maclen ) == 0 ); CHK( mbedtls_md_hmac_starts( &t_out->md_ctx_dec, md0, maclen ) == 0 ); } #if defined(MBEDTLS_SSL_PROTO_SSL3) else { memcpy( &t_in->mac_enc, md0, maclen ); memcpy( &t_in->mac_dec, md1, maclen ); memcpy( &t_out->mac_enc, md1, maclen ); memcpy( &t_out->mac_dec, md0, maclen ); } #endif mbedtls_free( md0 ); mbedtls_free( md1 ); } #else ((void) hash_id); #endif /* MBEDTLS_SSL_SOME_MODES_USE_MAC */ /* Pick IV's (regardless of whether they * are being used by the transform). */ ivlen = cipher_info->iv_size; memset( iv_enc, 0x3, sizeof( iv_enc ) ); memset( iv_dec, 0x4, sizeof( iv_dec ) ); /* * Setup transforms */ #if defined(MBEDTLS_SSL_ENCRYPT_THEN_MAC) && \ defined(MBEDTLS_SSL_SOME_MODES_USE_MAC) t_out->encrypt_then_mac = etm; t_in->encrypt_then_mac = etm; #else ((void) etm); #endif t_out->minor_ver = ver; t_in->minor_ver = ver; t_out->ivlen = ivlen; t_in->ivlen = ivlen; switch( cipher_info->mode ) { case MBEDTLS_MODE_GCM: case MBEDTLS_MODE_CCM: t_out->fixed_ivlen = 4; t_in->fixed_ivlen = 4; t_out->maclen = 0; t_in->maclen = 0; switch( tag_mode ) { case 0: /* Full tag */ t_out->taglen = 16; t_in->taglen = 16; break; case 1: /* Partial tag */ t_out->taglen = 8; t_in->taglen = 8; break; default: return( 1 ); } break; case MBEDTLS_MODE_CHACHAPOLY: t_out->fixed_ivlen = 12; t_in->fixed_ivlen = 12; t_out->maclen = 0; t_in->maclen = 0; switch( tag_mode ) { case 0: /* Full tag */ t_out->taglen = 16; t_in->taglen = 16; break; case 1: /* Partial tag */ t_out->taglen = 8; t_in->taglen = 8; break; default: return( 1 ); } break; case MBEDTLS_MODE_STREAM: case MBEDTLS_MODE_CBC: t_out->fixed_ivlen = 0; /* redundant, must be 0 */ t_in->fixed_ivlen = 0; /* redundant, must be 0 */ t_out->taglen = 0; t_in->taglen = 0; switch( tag_mode ) { case 0: /* Full tag */ t_out->maclen = maclen; t_in->maclen = maclen; break; case 1: /* Partial tag */ t_out->maclen = 10; t_in->maclen = 10; break; default: return( 1 ); } break; default: return( 1 ); break; } /* Setup IV's */ memcpy( &t_in->iv_dec, iv_dec, sizeof( iv_dec ) ); memcpy( &t_in->iv_enc, iv_enc, sizeof( iv_enc ) ); memcpy( &t_out->iv_dec, iv_enc, sizeof( iv_enc ) ); memcpy( &t_out->iv_enc, iv_dec, sizeof( iv_dec ) ); #if defined(MBEDTLS_SSL_DTLS_CONNECTION_ID) /* Add CID */ memcpy( &t_in->in_cid, cid0, cid0_len ); memcpy( &t_in->out_cid, cid1, cid1_len ); t_in->in_cid_len = cid0_len; t_in->out_cid_len = cid1_len; memcpy( &t_out->in_cid, cid1, cid1_len ); memcpy( &t_out->out_cid, cid0, cid0_len ); t_out->in_cid_len = cid1_len; t_out->out_cid_len = cid0_len; #endif /* MBEDTLS_SSL_DTLS_CONNECTION_ID */ cleanup: mbedtls_free( key0 ); mbedtls_free( key1 ); return( ret ); } /* * Populate a session structure for serialization tests. * Choose dummy values, mostly non-0 to distinguish from the init default. */ static int ssl_populate_session( mbedtls_ssl_session *session, int ticket_len, const char *crt_file ) { #if defined(MBEDTLS_HAVE_TIME) session->start = mbedtls_time( NULL ) - 42; #endif session->ciphersuite = 0xabcd; session->compression = 1; session->id_len = sizeof( session->id ); memset( session->id, 66, session->id_len ); memset( session->master, 17, sizeof( session->master ) ); #if defined(MBEDTLS_X509_CRT_PARSE_C) && defined(MBEDTLS_FS_IO) if( strlen( crt_file ) != 0 ) { mbedtls_x509_crt tmp_crt; int ret; mbedtls_x509_crt_init( &tmp_crt ); ret = mbedtls_x509_crt_parse_file( &tmp_crt, crt_file ); if( ret != 0 ) return( ret ); #if defined(MBEDTLS_SSL_KEEP_PEER_CERTIFICATE) /* Move temporary CRT. */ session->peer_cert = mbedtls_calloc( 1, sizeof( *session->peer_cert ) ); if( session->peer_cert == NULL ) return( -1 ); *session->peer_cert = tmp_crt; memset( &tmp_crt, 0, sizeof( tmp_crt ) ); #else /* MBEDTLS_SSL_KEEP_PEER_CERTIFICATE */ /* Calculate digest of temporary CRT. */ session->peer_cert_digest = mbedtls_calloc( 1, MBEDTLS_SSL_PEER_CERT_DIGEST_DFL_LEN ); if( session->peer_cert_digest == NULL ) return( -1 ); ret = mbedtls_md( mbedtls_md_info_from_type( MBEDTLS_SSL_PEER_CERT_DIGEST_DFL_TYPE ), tmp_crt.raw.p, tmp_crt.raw.len, session->peer_cert_digest ); if( ret != 0 ) return( ret ); session->peer_cert_digest_type = MBEDTLS_SSL_PEER_CERT_DIGEST_DFL_TYPE; session->peer_cert_digest_len = MBEDTLS_SSL_PEER_CERT_DIGEST_DFL_LEN; #endif /* MBEDTLS_SSL_KEEP_PEER_CERTIFICATE */ mbedtls_x509_crt_free( &tmp_crt ); } #else /* MBEDTLS_X509_CRT_PARSE_C && MBEDTLS_FS_IO */ (void) crt_file; #endif /* MBEDTLS_X509_CRT_PARSE_C && MBEDTLS_FS_IO */ session->verify_result = 0xdeadbeef; #if defined(MBEDTLS_SSL_SESSION_TICKETS) && defined(MBEDTLS_SSL_CLI_C) if( ticket_len != 0 ) { session->ticket = mbedtls_calloc( 1, ticket_len ); if( session->ticket == NULL ) return( -1 ); memset( session->ticket, 33, ticket_len ); } session->ticket_len = ticket_len; session->ticket_lifetime = 86401; #else (void) ticket_len; #endif #if defined(MBEDTLS_SSL_MAX_FRAGMENT_LENGTH) session->mfl_code = 1; #endif #if defined(MBEDTLS_SSL_TRUNCATED_HMAC) session->trunc_hmac = 1; #endif #if defined(MBEDTLS_SSL_ENCRYPT_THEN_MAC) session->encrypt_then_mac = 1; #endif return( 0 ); } /* END_HEADER */ /* BEGIN_DEPENDENCIES * depends_on:MBEDTLS_SSL_TLS_C * END_DEPENDENCIES */ /* BEGIN_CASE */ void test_callback_buffer_sanity() { enum { MSGLEN = 10 }; mbedtls_test_buffer buf; unsigned char input[MSGLEN]; unsigned char output[MSGLEN]; memset( input, 0, sizeof(input) ); /* Make sure calling put and get on NULL buffer results in error. */ TEST_ASSERT( mbedtls_test_buffer_put( NULL, input, sizeof( input ) ) == -1 ); TEST_ASSERT( mbedtls_test_buffer_get( NULL, output, sizeof( output ) ) == -1 ); TEST_ASSERT( mbedtls_test_buffer_put( NULL, NULL, sizeof( input ) ) == -1 ); TEST_ASSERT( mbedtls_test_buffer_get( NULL, NULL, sizeof( output ) ) == -1 ); TEST_ASSERT( mbedtls_test_buffer_put( NULL, NULL, 0 ) == -1 ); TEST_ASSERT( mbedtls_test_buffer_get( NULL, NULL, 0 ) == -1 ); /* Make sure calling put and get on a buffer that hasn't been set up results * in eror. */ mbedtls_test_buffer_init( &buf ); TEST_ASSERT( mbedtls_test_buffer_put( &buf, input, sizeof( input ) ) == -1 ); TEST_ASSERT( mbedtls_test_buffer_get( &buf, output, sizeof( output ) ) == -1 ); TEST_ASSERT( mbedtls_test_buffer_put( &buf, NULL, sizeof( input ) ) == -1 ); TEST_ASSERT( mbedtls_test_buffer_get( &buf, NULL, sizeof( output ) ) == -1 ); TEST_ASSERT( mbedtls_test_buffer_put( &buf, NULL, 0 ) == -1 ); TEST_ASSERT( mbedtls_test_buffer_get( &buf, NULL, 0 ) == -1 ); /* Make sure calling put end get on NULL input and output only results in * error if the length is not zero. */ TEST_ASSERT( mbedtls_test_buffer_setup( &buf, sizeof( input ) ) == 0 ); TEST_ASSERT( mbedtls_test_buffer_put( &buf, NULL, sizeof( input ) ) == -1 ); TEST_ASSERT( mbedtls_test_buffer_get( &buf, NULL, sizeof( output ) ) == -1 ); TEST_ASSERT( mbedtls_test_buffer_put( &buf, NULL, 0 ) == 0 ); TEST_ASSERT( mbedtls_test_buffer_get( &buf, NULL, 0 ) == 0 ); exit: mbedtls_test_buffer_free( &buf ); } /* END_CASE */ /* * Test if the implementation of `mbedtls_test_buffer` related functions is * correct and works as expected. * * That is * - If we try to put in \p put1 bytes then we can put in \p put1_ret bytes. * - Afterwards if we try to get \p get1 bytes then we can get \get1_ret bytes. * - Next, if we try to put in \p put1 bytes then we can put in \p put1_ret * bytes. * - Afterwards if we try to get \p get1 bytes then we can get \get1_ret bytes. * - All of the bytes we got match the bytes we put in in a FIFO manner. */ /* BEGIN_CASE */ void test_callback_buffer( int size, int put1, int put1_ret, int get1, int get1_ret, int put2, int put2_ret, int get2, int get2_ret ) { enum { ROUNDS = 2 }; size_t put[ROUNDS]; int put_ret[ROUNDS]; size_t get[ROUNDS]; int get_ret[ROUNDS]; mbedtls_test_buffer buf; unsigned char* input = NULL; size_t input_len; unsigned char* output = NULL; size_t output_len; size_t i, j, written, read; mbedtls_test_buffer_init( &buf ); TEST_ASSERT( mbedtls_test_buffer_setup( &buf, size ) == 0 ); /* Check the sanity of input parameters and initialise local variables. That * is, ensure that the amount of data is not negative and that we are not * expecting more to put or get than we actually asked for. */ TEST_ASSERT( put1 >= 0 ); put[0] = put1; put_ret[0] = put1_ret; TEST_ASSERT( put1_ret <= put1 ); TEST_ASSERT( put2 >= 0 ); put[1] = put2; put_ret[1] = put2_ret; TEST_ASSERT( put2_ret <= put2 ); TEST_ASSERT( get1 >= 0 ); get[0] = get1; get_ret[0] = get1_ret; TEST_ASSERT( get1_ret <= get1 ); TEST_ASSERT( get2 >= 0 ); get[1] = get2; get_ret[1] = get2_ret; TEST_ASSERT( get2_ret <= get2 ); input_len = 0; /* Calculate actual input and output lengths */ for( j = 0; j < ROUNDS; j++ ) { if( put_ret[j] > 0 ) { input_len += put_ret[j]; } } /* In order to always have a valid pointer we always allocate at least 1 * byte. */ if( input_len == 0 ) input_len = 1; ASSERT_ALLOC( input, input_len ); output_len = 0; for( j = 0; j < ROUNDS; j++ ) { if( get_ret[j] > 0 ) { output_len += get_ret[j]; } } TEST_ASSERT( output_len <= input_len ); /* In order to always have a valid pointer we always allocate at least 1 * byte. */ if( output_len == 0 ) output_len = 1; ASSERT_ALLOC( output, output_len ); /* Fill up the buffer with structured data so that unwanted changes * can be detected */ for( i = 0; i < input_len; i++ ) { input[i] = i & 0xFF; } written = read = 0; for( j = 0; j < ROUNDS; j++ ) { TEST_ASSERT( put_ret[j] == mbedtls_test_buffer_put( &buf, input + written, put[j] ) ); written += put_ret[j]; TEST_ASSERT( get_ret[j] == mbedtls_test_buffer_get( &buf, output + read, get[j] ) ); read += get_ret[j]; TEST_ASSERT( read <= written ); if( get_ret[j] > 0 ) { TEST_ASSERT( memcmp( output + read - get_ret[j], input + read - get_ret[j], get_ret[j] ) == 0 ); } } exit: mbedtls_free( input ); mbedtls_free( output ); mbedtls_test_buffer_free( &buf ); } /* END_CASE */ /* * Test if the implementation of `mbedtls_mock_socket` related I/O functions is * correct and works as expected on unconnected sockets. */ /* BEGIN_CASE */ void ssl_mock_sanity( ) { enum { MSGLEN = 105 }; unsigned char message[MSGLEN]; unsigned char received[MSGLEN]; mbedtls_mock_socket socket; mbedtls_mock_socket_init( &socket ); TEST_ASSERT( mbedtls_mock_tcp_send_b( &socket, message, MSGLEN ) < 0 ); mbedtls_mock_socket_close( &socket ); mbedtls_mock_socket_init( &socket ); TEST_ASSERT( mbedtls_mock_tcp_recv_b( &socket, received, MSGLEN ) < 0 ); mbedtls_mock_socket_close( &socket ); mbedtls_mock_socket_init( &socket ); TEST_ASSERT( mbedtls_mock_tcp_send_nb( &socket, message, MSGLEN ) < 0 ); mbedtls_mock_socket_close( &socket ); mbedtls_mock_socket_init( &socket ); TEST_ASSERT( mbedtls_mock_tcp_recv_nb( &socket, received, MSGLEN ) < 0 ); mbedtls_mock_socket_close( &socket ); exit: mbedtls_mock_socket_close( &socket ); } /* END_CASE */ /* * Test if the implementation of `mbedtls_mock_socket` related functions can * send a single message from the client to the server. */ /* BEGIN_CASE */ void ssl_mock_tcp( int blocking, int client_pattern, int server_pattern ) { enum { MSGLEN = 105 }; unsigned char message[MSGLEN]; unsigned char received[MSGLEN]; mbedtls_mock_socket client; mbedtls_mock_socket server; size_t written, read; int send_ret, recv_ret; mbedtls_ssl_send_t *send; mbedtls_ssl_recv_t *recv; uint32_t client_block = client_pattern; uint32_t server_block = server_pattern; unsigned i; if( blocking == 0 ) { send = mbedtls_mock_tcp_send_nb; recv = mbedtls_mock_tcp_recv_nb; } else { send = mbedtls_mock_tcp_send_b; recv = mbedtls_mock_tcp_recv_b; } mbedtls_mock_socket_init( &client ); mbedtls_mock_socket_init( &server ); /* Fill up the buffer with structured data so that unwanted changes * can be detected */ for( i = 0; i < MSGLEN; i++ ) { message[i] = i & 0xFF; } /* Make sure that sending a message takes a few iterations. */ TEST_ASSERT( 0 == mbedtls_mock_socket_connect( &client, &server, MSGLEN / 5 ) ); TEST_ASSERT( 0 == mbedtls_mock_socket_set_block( &client, client_block ) ); TEST_ASSERT( 0 == mbedtls_mock_socket_set_block( &server, server_block ) ); /* Send the message to the server */ send_ret = recv_ret = 1; written = read = 0; while( send_ret != 0 || recv_ret != 0 ) { send_ret = send( &client, message + written, MSGLEN - written ); if( ( blocking == 0 ) && ( client_block & 1 ) ) { TEST_ASSERT( send_ret == MBEDTLS_ERR_SSL_WANT_WRITE ); } else { TEST_ASSERT( send_ret >= 0 ); written += send_ret; } client_block >>= 1; recv_ret = recv( &server, received + read, MSGLEN - read ); if( ( blocking == 0 ) && ( server_block & 1 ) ) { TEST_ASSERT( recv_ret == MBEDTLS_ERR_SSL_WANT_READ ); } else { TEST_ASSERT( recv_ret >= 0 ); read += recv_ret; } server_block >>= 1; } TEST_ASSERT( memcmp( message, received, MSGLEN ) == 0 ); exit: mbedtls_mock_socket_close( &client ); mbedtls_mock_socket_close( &server ); } /* END_CASE */ /* * Test if the implementation of `mbedtls_mock_socket` related functions can * send messages in both direction at the same time (with the I/O calls * interleaving). */ /* BEGIN_CASE */ void ssl_mock_tcp_interleaving( int blocking, int client_pattern, int server_pattern ) { enum { ROUNDS = 2 }; enum { MSGLEN = 105 }; unsigned char message[ROUNDS][MSGLEN]; unsigned char received[ROUNDS][MSGLEN]; mbedtls_mock_socket client; mbedtls_mock_socket server; size_t written[ROUNDS]; size_t read[ROUNDS]; int send_ret[ROUNDS]; int recv_ret[ROUNDS]; unsigned i, j, progress; mbedtls_ssl_send_t *send; mbedtls_ssl_recv_t *recv; uint32_t client_block = client_pattern; uint32_t server_block = server_pattern; if( blocking == 0 ) { send = mbedtls_mock_tcp_send_nb; recv = mbedtls_mock_tcp_recv_nb; } else { send = mbedtls_mock_tcp_send_b; recv = mbedtls_mock_tcp_recv_b; } mbedtls_mock_socket_init( &client ); mbedtls_mock_socket_init( &server ); /* Fill up the buffers with structured data so that unwanted changes * can be detected */ for( i = 0; i < ROUNDS; i++ ) { for( j = 0; j < MSGLEN; j++ ) { message[i][j] = ( i * MSGLEN + j ) & 0xFF; } } /* Make sure that sending a message takes a few iterations. */ TEST_ASSERT( 0 == mbedtls_mock_socket_connect( &client, &server, MSGLEN / 5 ) ); TEST_ASSERT( 0 == mbedtls_mock_socket_set_block( &client, client_block ) ); TEST_ASSERT( 0 == mbedtls_mock_socket_set_block( &server, server_block ) ); /* Send the message from both sides, interleaving. */ progress = 1; for( i = 0; i < ROUNDS; i++ ) { written[i] = 0; read[i] = 0; } /* This loop does not stop as long as there was a successful write or read * of at least one byte on either side. */ while( progress != 0 ) { send_ret[0] = send( &client, message[0] + written[0], MSGLEN - written[0] ); if( ( blocking == 0 ) && ( client_block & 1 ) ) { TEST_ASSERT( send_ret[0] == MBEDTLS_ERR_SSL_WANT_WRITE ); } else { TEST_ASSERT( send_ret[0] >= 0 ); written[0] += send_ret[0]; } client_block >>= 1; send_ret[1] = send( &server, message[1] + written[1], MSGLEN - written[1] ); if( ( blocking == 0 ) && ( server_block & 1 ) ) { TEST_ASSERT( send_ret[1] == MBEDTLS_ERR_SSL_WANT_WRITE ); } else { TEST_ASSERT( send_ret[1] >= 0 ); written[1] += send_ret[1]; } server_block >>= 1; recv_ret[0] = recv( &server, received[0] + read[0], MSGLEN - read[0] ); if( ( blocking == 0 ) && ( server_block & 1 ) ) { TEST_ASSERT( recv_ret[0] == MBEDTLS_ERR_SSL_WANT_READ ); } else { TEST_ASSERT( recv_ret[0] >= 0 ); read[0] += recv_ret[0]; } server_block >>= 1; recv_ret[1] = recv( &client, received[1] + read[1], MSGLEN - read[1] ); if( ( blocking == 0 ) && ( client_block & 1 ) ) { TEST_ASSERT( recv_ret[1] == MBEDTLS_ERR_SSL_WANT_READ ); } else { TEST_ASSERT( recv_ret[1] >= 0 ); read[1] += recv_ret[1]; } client_block >>= 1; progress = 0; for( i = 0; i < ROUNDS; i++ ) { if( ( send_ret[i] > 0 ) || ( send_ret[i] == MBEDTLS_ERR_SSL_WANT_WRITE ) ) { progress++; } if( ( recv_ret[i] > 0 ) || ( recv_ret[i] == MBEDTLS_ERR_SSL_WANT_READ ) ) { progress++; } } } for( i = 0; i < ROUNDS; i++ ) TEST_ASSERT( memcmp( message[i], received[i], MSGLEN ) == 0 ); exit: mbedtls_mock_socket_close( &client ); mbedtls_mock_socket_close( &server ); } /* END_CASE */ /* BEGIN_CASE depends_on:MBEDTLS_SSL_DTLS_ANTI_REPLAY */ void ssl_dtls_replay( data_t * prevs, data_t * new, int ret ) { uint32_t len = 0; mbedtls_ssl_context ssl; mbedtls_ssl_config conf; mbedtls_ssl_init( &ssl ); mbedtls_ssl_config_init( &conf ); TEST_ASSERT( mbedtls_ssl_config_defaults( &conf, MBEDTLS_SSL_IS_CLIENT, MBEDTLS_SSL_TRANSPORT_DATAGRAM, MBEDTLS_SSL_PRESET_DEFAULT ) == 0 ); TEST_ASSERT( mbedtls_ssl_setup( &ssl, &conf ) == 0 ); /* Read previous record numbers */ for( len = 0; len < prevs->len; len += 6 ) { memcpy( ssl.in_ctr + 2, prevs->x + len, 6 ); mbedtls_ssl_dtls_replay_update( &ssl ); } /* Check new number */ memcpy( ssl.in_ctr + 2, new->x, 6 ); TEST_ASSERT( mbedtls_ssl_dtls_replay_check( &ssl ) == ret ); mbedtls_ssl_free( &ssl ); mbedtls_ssl_config_free( &conf ); } /* END_CASE */ /* BEGIN_CASE depends_on:MBEDTLS_X509_CRT_PARSE_C */ void ssl_set_hostname_twice( char *hostname0, char *hostname1 ) { mbedtls_ssl_context ssl; mbedtls_ssl_init( &ssl ); TEST_ASSERT( mbedtls_ssl_set_hostname( &ssl, hostname0 ) == 0 ); TEST_ASSERT( mbedtls_ssl_set_hostname( &ssl, hostname1 ) == 0 ); mbedtls_ssl_free( &ssl ); } /* END_CASE */ /* BEGIN_CASE */ void ssl_crypt_record( int cipher_type, int hash_id, int etm, int tag_mode, int ver, int cid0_len, int cid1_len ) { /* * Test several record encryptions and decryptions * with plenty of space before and after the data * within the record buffer. */ int ret; int num_records = 16; mbedtls_ssl_context ssl; /* ONLY for debugging */ mbedtls_ssl_transform t0, t1; unsigned char *buf = NULL; size_t const buflen = 512; mbedtls_record rec, rec_backup; mbedtls_ssl_init( &ssl ); mbedtls_ssl_transform_init( &t0 ); mbedtls_ssl_transform_init( &t1 ); TEST_ASSERT( build_transforms( &t0, &t1, cipher_type, hash_id, etm, tag_mode, ver, (size_t) cid0_len, (size_t) cid1_len ) == 0 ); TEST_ASSERT( ( buf = mbedtls_calloc( 1, buflen ) ) != NULL ); while( num_records-- > 0 ) { mbedtls_ssl_transform *t_dec, *t_enc; /* Take turns in who's sending and who's receiving. */ if( num_records % 3 == 0 ) { t_dec = &t0; t_enc = &t1; } else { t_dec = &t1; t_enc = &t0; } /* * The record header affects the transformation in two ways: * 1) It determines the AEAD additional data * 2) The record counter sometimes determines the IV. * * Apart from that, the fields don't have influence. * In particular, it is currently not the responsibility * of ssl_encrypt/decrypt_buf to check if the transform * version matches the record version, or that the * type is sensible. */ memset( rec.ctr, num_records, sizeof( rec.ctr ) ); rec.type = 42; rec.ver[0] = num_records; rec.ver[1] = num_records; #if defined(MBEDTLS_SSL_DTLS_CONNECTION_ID) rec.cid_len = 0; #endif /* MBEDTLS_SSL_DTLS_CONNECTION_ID */ rec.buf = buf; rec.buf_len = buflen; rec.data_offset = 16; /* Make sure to vary the length to exercise different * paddings. */ rec.data_len = 1 + num_records; memset( rec.buf + rec.data_offset, 42, rec.data_len ); /* Make a copy for later comparison */ rec_backup = rec; /* Encrypt record */ ret = mbedtls_ssl_encrypt_buf( &ssl, t_enc, &rec, rnd_std_rand, NULL ); TEST_ASSERT( ret == 0 || ret == MBEDTLS_ERR_SSL_BUFFER_TOO_SMALL ); if( ret != 0 ) { continue; } /* Decrypt record with t_dec */ ret = mbedtls_ssl_decrypt_buf( &ssl, t_dec, &rec ); TEST_ASSERT( ret == 0 ); /* Compare results */ TEST_ASSERT( rec.type == rec_backup.type ); TEST_ASSERT( memcmp( rec.ctr, rec_backup.ctr, 8 ) == 0 ); TEST_ASSERT( rec.ver[0] == rec_backup.ver[0] ); TEST_ASSERT( rec.ver[1] == rec_backup.ver[1] ); TEST_ASSERT( rec.data_len == rec_backup.data_len ); TEST_ASSERT( rec.data_offset == rec_backup.data_offset ); TEST_ASSERT( memcmp( rec.buf + rec.data_offset, rec_backup.buf + rec_backup.data_offset, rec.data_len ) == 0 ); } exit: /* Cleanup */ mbedtls_ssl_free( &ssl ); mbedtls_ssl_transform_free( &t0 ); mbedtls_ssl_transform_free( &t1 ); mbedtls_free( buf ); } /* END_CASE */ /* BEGIN_CASE */ void ssl_crypt_record_small( int cipher_type, int hash_id, int etm, int tag_mode, int ver, int cid0_len, int cid1_len ) { /* * Test pairs of encryption and decryption with an increasing * amount of space in the record buffer - in more detail: * 1) Try to encrypt with 0, 1, 2, ... bytes available * in front of the plaintext, and expect the encryption * to succeed starting from some offset. Always keep * enough space in the end of the buffer. * 2) Try to encrypt with 0, 1, 2, ... bytes available * at the end of the plaintext, and expect the encryption * to succeed starting from some offset. Always keep * enough space at the beginning of the buffer. * 3) Try to encrypt with 0, 1, 2, ... bytes available * both at the front and end of the plaintext, * and expect the encryption to succeed starting from * some offset. * * If encryption succeeds, check that decryption succeeds * and yields the original record. */ mbedtls_ssl_context ssl; /* ONLY for debugging */ mbedtls_ssl_transform t0, t1; unsigned char *buf = NULL; size_t const buflen = 256; mbedtls_record rec, rec_backup; int ret; int mode; /* Mode 1, 2 or 3 as explained above */ size_t offset; /* Available space at beginning/end/both */ size_t threshold = 96; /* Maximum offset to test against */ size_t default_pre_padding = 64; /* Pre-padding to use in mode 2 */ size_t default_post_padding = 128; /* Post-padding to use in mode 1 */ int seen_success; /* Indicates if in the current mode we've * already seen a successful test. */ mbedtls_ssl_init( &ssl ); mbedtls_ssl_transform_init( &t0 ); mbedtls_ssl_transform_init( &t1 ); TEST_ASSERT( build_transforms( &t0, &t1, cipher_type, hash_id, etm, tag_mode, ver, (size_t) cid0_len, (size_t) cid1_len ) == 0 ); TEST_ASSERT( ( buf = mbedtls_calloc( 1, buflen ) ) != NULL ); for( mode=1; mode <= 3; mode++ ) { seen_success = 0; for( offset=0; offset <= threshold; offset++ ) { mbedtls_ssl_transform *t_dec, *t_enc; t_dec = &t0; t_enc = &t1; memset( rec.ctr, offset, sizeof( rec.ctr ) ); rec.type = 42; rec.ver[0] = offset; rec.ver[1] = offset; rec.buf = buf; rec.buf_len = buflen; #if defined(MBEDTLS_SSL_DTLS_CONNECTION_ID) rec.cid_len = 0; #endif /* MBEDTLS_SSL_DTLS_CONNECTION_ID */ switch( mode ) { case 1: /* Space in the beginning */ rec.data_offset = offset; rec.data_len = buflen - offset - default_post_padding; break; case 2: /* Space in the end */ rec.data_offset = default_pre_padding; rec.data_len = buflen - default_pre_padding - offset; break; case 3: /* Space in the beginning and end */ rec.data_offset = offset; rec.data_len = buflen - 2 * offset; break; default: TEST_ASSERT( 0 ); break; } memset( rec.buf + rec.data_offset, 42, rec.data_len ); /* Make a copy for later comparison */ rec_backup = rec; /* Encrypt record */ ret = mbedtls_ssl_encrypt_buf( &ssl, t_enc, &rec, rnd_std_rand, NULL ); if( ( mode == 1 || mode == 2 ) && seen_success ) { TEST_ASSERT( ret == 0 ); } else { TEST_ASSERT( ret == 0 || ret == MBEDTLS_ERR_SSL_BUFFER_TOO_SMALL ); if( ret == 0 ) seen_success = 1; } if( ret != 0 ) continue; /* Decrypt record with t_dec */ TEST_ASSERT( mbedtls_ssl_decrypt_buf( &ssl, t_dec, &rec ) == 0 ); /* Compare results */ TEST_ASSERT( rec.type == rec_backup.type ); TEST_ASSERT( memcmp( rec.ctr, rec_backup.ctr, 8 ) == 0 ); TEST_ASSERT( rec.ver[0] == rec_backup.ver[0] ); TEST_ASSERT( rec.ver[1] == rec_backup.ver[1] ); TEST_ASSERT( rec.data_len == rec_backup.data_len ); TEST_ASSERT( rec.data_offset == rec_backup.data_offset ); TEST_ASSERT( memcmp( rec.buf + rec.data_offset, rec_backup.buf + rec_backup.data_offset, rec.data_len ) == 0 ); } TEST_ASSERT( seen_success == 1 ); } exit: /* Cleanup */ mbedtls_ssl_free( &ssl ); mbedtls_ssl_transform_free( &t0 ); mbedtls_ssl_transform_free( &t1 ); mbedtls_free( buf ); } /* END_CASE */ /* BEGIN_CASE */ void ssl_tls_prf( int type, data_t * secret, data_t * random, char *label, data_t *result_hex_str, int exp_ret ) { unsigned char *output; output = mbedtls_calloc( 1, result_hex_str->len ); if( output == NULL ) goto exit; #if defined(MBEDTLS_USE_PSA_CRYPTO) TEST_ASSERT( psa_crypto_init() == 0 ); #endif TEST_ASSERT( mbedtls_ssl_tls_prf( type, secret->x, secret->len, label, random->x, random->len, output, result_hex_str->len ) == exp_ret ); if( exp_ret == 0 ) { TEST_ASSERT( hexcmp( output, result_hex_str->x, result_hex_str->len, result_hex_str->len ) == 0 ); } exit: mbedtls_free( output ); } /* END_CASE */ /* BEGIN_CASE */ void ssl_serialize_session_save_load( int ticket_len, char *crt_file ) { mbedtls_ssl_session original, restored; unsigned char *buf = NULL; size_t len; /* * Test that a save-load pair is the identity */ mbedtls_ssl_session_init( &original ); mbedtls_ssl_session_init( &restored ); /* Prepare a dummy session to work on */ TEST_ASSERT( ssl_populate_session( &original, ticket_len, crt_file ) == 0 ); /* Serialize it */ TEST_ASSERT( mbedtls_ssl_session_save( &original, NULL, 0, &len ) == MBEDTLS_ERR_SSL_BUFFER_TOO_SMALL ); TEST_ASSERT( ( buf = mbedtls_calloc( 1, len ) ) != NULL ); TEST_ASSERT( mbedtls_ssl_session_save( &original, buf, len, &len ) == 0 ); /* Restore session from serialized data */ TEST_ASSERT( mbedtls_ssl_session_load( &restored, buf, len) == 0 ); /* * Make sure both session structures are identical */ #if defined(MBEDTLS_HAVE_TIME) TEST_ASSERT( original.start == restored.start ); #endif TEST_ASSERT( original.ciphersuite == restored.ciphersuite ); TEST_ASSERT( original.compression == restored.compression ); TEST_ASSERT( original.id_len == restored.id_len ); TEST_ASSERT( memcmp( original.id, restored.id, sizeof( original.id ) ) == 0 ); TEST_ASSERT( memcmp( original.master, restored.master, sizeof( original.master ) ) == 0 ); #if defined(MBEDTLS_X509_CRT_PARSE_C) #if defined(MBEDTLS_SSL_KEEP_PEER_CERTIFICATE) TEST_ASSERT( ( original.peer_cert == NULL ) == ( restored.peer_cert == NULL ) ); if( original.peer_cert != NULL ) { TEST_ASSERT( original.peer_cert->raw.len == restored.peer_cert->raw.len ); TEST_ASSERT( memcmp( original.peer_cert->raw.p, restored.peer_cert->raw.p, original.peer_cert->raw.len ) == 0 ); } #else /* MBEDTLS_SSL_KEEP_PEER_CERTIFICATE */ TEST_ASSERT( original.peer_cert_digest_type == restored.peer_cert_digest_type ); TEST_ASSERT( original.peer_cert_digest_len == restored.peer_cert_digest_len ); TEST_ASSERT( ( original.peer_cert_digest == NULL ) == ( restored.peer_cert_digest == NULL ) ); if( original.peer_cert_digest != NULL ) { TEST_ASSERT( memcmp( original.peer_cert_digest, restored.peer_cert_digest, original.peer_cert_digest_len ) == 0 ); } #endif /* MBEDTLS_SSL_KEEP_PEER_CERTIFICATE */ #endif /* MBEDTLS_X509_CRT_PARSE_C */ TEST_ASSERT( original.verify_result == restored.verify_result ); #if defined(MBEDTLS_SSL_SESSION_TICKETS) && defined(MBEDTLS_SSL_CLI_C) TEST_ASSERT( original.ticket_len == restored.ticket_len ); if( original.ticket_len != 0 ) { TEST_ASSERT( original.ticket != NULL ); TEST_ASSERT( restored.ticket != NULL ); TEST_ASSERT( memcmp( original.ticket, restored.ticket, original.ticket_len ) == 0 ); } TEST_ASSERT( original.ticket_lifetime == restored.ticket_lifetime ); #endif #if defined(MBEDTLS_SSL_MAX_FRAGMENT_LENGTH) TEST_ASSERT( original.mfl_code == restored.mfl_code ); #endif #if defined(MBEDTLS_SSL_TRUNCATED_HMAC) TEST_ASSERT( original.trunc_hmac == restored.trunc_hmac ); #endif #if defined(MBEDTLS_SSL_ENCRYPT_THEN_MAC) TEST_ASSERT( original.encrypt_then_mac == restored.encrypt_then_mac ); #endif exit: mbedtls_ssl_session_free( &original ); mbedtls_ssl_session_free( &restored ); mbedtls_free( buf ); } /* END_CASE */ /* BEGIN_CASE */ void ssl_serialize_session_load_save( int ticket_len, char *crt_file ) { mbedtls_ssl_session session; unsigned char *buf1 = NULL, *buf2 = NULL; size_t len0, len1, len2; /* * Test that a load-save pair is the identity */ mbedtls_ssl_session_init( &session ); /* Prepare a dummy session to work on */ TEST_ASSERT( ssl_populate_session( &session, ticket_len, crt_file ) == 0 ); /* Get desired buffer size for serializing */ TEST_ASSERT( mbedtls_ssl_session_save( &session, NULL, 0, &len0 ) == MBEDTLS_ERR_SSL_BUFFER_TOO_SMALL ); /* Allocate first buffer */ buf1 = mbedtls_calloc( 1, len0 ); TEST_ASSERT( buf1 != NULL ); /* Serialize to buffer and free live session */ TEST_ASSERT( mbedtls_ssl_session_save( &session, buf1, len0, &len1 ) == 0 ); TEST_ASSERT( len0 == len1 ); mbedtls_ssl_session_free( &session ); /* Restore session from serialized data */ TEST_ASSERT( mbedtls_ssl_session_load( &session, buf1, len1 ) == 0 ); /* Allocate second buffer and serialize to it */ buf2 = mbedtls_calloc( 1, len0 ); TEST_ASSERT( buf2 != NULL ); TEST_ASSERT( mbedtls_ssl_session_save( &session, buf2, len0, &len2 ) == 0 ); /* Make sure both serialized versions are identical */ TEST_ASSERT( len1 == len2 ); TEST_ASSERT( memcmp( buf1, buf2, len1 ) == 0 ); exit: mbedtls_ssl_session_free( &session ); mbedtls_free( buf1 ); mbedtls_free( buf2 ); } /* END_CASE */ /* BEGIN_CASE */ void ssl_serialize_session_save_buf_size( int ticket_len, char *crt_file ) { mbedtls_ssl_session session; unsigned char *buf = NULL; size_t good_len, bad_len, test_len; /* * Test that session_save() fails cleanly on small buffers */ mbedtls_ssl_session_init( &session ); /* Prepare dummy session and get serialized size */ TEST_ASSERT( ssl_populate_session( &session, ticket_len, crt_file ) == 0 ); TEST_ASSERT( mbedtls_ssl_session_save( &session, NULL, 0, &good_len ) == MBEDTLS_ERR_SSL_BUFFER_TOO_SMALL ); /* Try all possible bad lengths */ for( bad_len = 1; bad_len < good_len; bad_len++ ) { /* Allocate exact size so that asan/valgrind can detect any overwrite */ mbedtls_free( buf ); TEST_ASSERT( ( buf = mbedtls_calloc( 1, bad_len ) ) != NULL ); TEST_ASSERT( mbedtls_ssl_session_save( &session, buf, bad_len, &test_len ) == MBEDTLS_ERR_SSL_BUFFER_TOO_SMALL ); TEST_ASSERT( test_len == good_len ); } exit: mbedtls_ssl_session_free( &session ); mbedtls_free( buf ); } /* END_CASE */ /* BEGIN_CASE */ void ssl_serialize_session_load_buf_size( int ticket_len, char *crt_file ) { mbedtls_ssl_session session; unsigned char *good_buf = NULL, *bad_buf = NULL; size_t good_len, bad_len; /* * Test that session_load() fails cleanly on small buffers */ mbedtls_ssl_session_init( &session ); /* Prepare serialized session data */ TEST_ASSERT( ssl_populate_session( &session, ticket_len, crt_file ) == 0 ); TEST_ASSERT( mbedtls_ssl_session_save( &session, NULL, 0, &good_len ) == MBEDTLS_ERR_SSL_BUFFER_TOO_SMALL ); TEST_ASSERT( ( good_buf = mbedtls_calloc( 1, good_len ) ) != NULL ); TEST_ASSERT( mbedtls_ssl_session_save( &session, good_buf, good_len, &good_len ) == 0 ); mbedtls_ssl_session_free( &session ); /* Try all possible bad lengths */ for( bad_len = 0; bad_len < good_len; bad_len++ ) { /* Allocate exact size so that asan/valgrind can detect any overread */ mbedtls_free( bad_buf ); bad_buf = mbedtls_calloc( 1, bad_len ? bad_len : 1 ); TEST_ASSERT( bad_buf != NULL ); memcpy( bad_buf, good_buf, bad_len ); TEST_ASSERT( mbedtls_ssl_session_load( &session, bad_buf, bad_len ) == MBEDTLS_ERR_SSL_BAD_INPUT_DATA ); } exit: mbedtls_ssl_session_free( &session ); mbedtls_free( good_buf ); mbedtls_free( bad_buf ); } /* END_CASE */ /* BEGIN_CASE */ void ssl_session_serialize_version_check( int corrupt_major, int corrupt_minor, int corrupt_patch, int corrupt_config ) { unsigned char serialized_session[ 2048 ]; size_t serialized_session_len; unsigned cur_byte; mbedtls_ssl_session session; uint8_t should_corrupt_byte[] = { corrupt_major == 1, corrupt_minor == 1, corrupt_patch == 1, corrupt_config == 1, corrupt_config == 1 }; mbedtls_ssl_session_init( &session ); /* Infer length of serialized session. */ TEST_ASSERT( mbedtls_ssl_session_save( &session, serialized_session, sizeof( serialized_session ), &serialized_session_len ) == 0 ); mbedtls_ssl_session_free( &session ); /* Without any modification, we should be able to successfully * de-serialize the session - double-check that. */ TEST_ASSERT( mbedtls_ssl_session_load( &session, serialized_session, serialized_session_len ) == 0 ); mbedtls_ssl_session_free( &session ); /* Go through the bytes in the serialized session header and * corrupt them bit-by-bit. */ for( cur_byte = 0; cur_byte < sizeof( should_corrupt_byte ); cur_byte++ ) { int cur_bit; unsigned char * const byte = &serialized_session[ cur_byte ]; if( should_corrupt_byte[ cur_byte ] == 0 ) continue; for( cur_bit = 0; cur_bit < CHAR_BIT; cur_bit++ ) { unsigned char const corrupted_bit = 0x1u << cur_bit; /* Modify a single bit in the serialized session. */ *byte ^= corrupted_bit; /* Attempt to deserialize */ TEST_ASSERT( mbedtls_ssl_session_load( &session, serialized_session, serialized_session_len ) == MBEDTLS_ERR_SSL_VERSION_MISMATCH ); /* Undo the change */ *byte ^= corrupted_bit; } } } /* END_CASE */