/** * \file psa/crypto.h * \brief Platform Security Architecture cryptography module */ /* * Copyright (C) 2018, ARM Limited, All Rights Reserved * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the "License"); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef PSA_CRYPTO_H #define PSA_CRYPTO_H #include "crypto_platform.h" #include #ifdef __DOXYGEN_ONLY__ /* This __DOXYGEN_ONLY__ block contains mock definitions for things that * must be defined in the crypto_platform.h header. These mock definitions * are present in this file as a convenience to generate pretty-printed * documentation that includes those definitions. */ /** \defgroup platform Implementation-specific definitions * @{ */ /** \brief Key handle. * * This type represents open handles to keys. It must be an unsigned integral * type. The choice of type is implementation-dependent. * * 0 is not a valid key handle. How other handle values are assigned is * implementation-dependent. */ typedef _unsigned_integral_type_ psa_key_handle_t; /**@}*/ #endif /* __DOXYGEN_ONLY__ */ #ifdef __cplusplus extern "C" { #endif /* The file "crypto_types.h" declares types that encode errors, * algorithms, key types, policies, etc. */ #include "crypto_types.h" /* The file "crypto_values.h" declares macros to build and analyze values * of integral types defined in "crypto_types.h". */ #include "crypto_values.h" /** \defgroup initialization Library initialization * @{ */ /** * \brief Library initialization. * * Applications must call this function before calling any other * function in this module. * * Applications may call this function more than once. Once a call * succeeds, subsequent calls are guaranteed to succeed. * * If the application calls other functions before calling psa_crypto_init(), * the behavior is undefined. Implementations are encouraged to either perform * the operation as if the library had been initialized or to return * #PSA_ERROR_BAD_STATE or some other applicable error. In particular, * implementations should not return a success status if the lack of * initialization may have security implications, for example due to improper * seeding of the random number generator. * * \retval #PSA_SUCCESS * \retval #PSA_ERROR_INSUFFICIENT_MEMORY * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_CORRUPTION_DETECTED * \retval #PSA_ERROR_INSUFFICIENT_ENTROPY */ psa_status_t psa_crypto_init(void); /**@}*/ /** \addtogroup attributes * @{ */ /** \def PSA_KEY_ATTRIBUTES_INIT * * This macro returns a suitable initializer for a key attribute structure * of type #psa_key_attributes_t. */ #ifdef __DOXYGEN_ONLY__ /* This is an example definition for documentation purposes. * Implementations should define a suitable value in `crypto_struct.h`. */ #define PSA_KEY_ATTRIBUTES_INIT {0} #endif /** Return an initial value for a key attributes structure. */ static psa_key_attributes_t psa_key_attributes_init(void); /** Declare a key as persistent and set its key identifier. * * If the attribute structure currently declares the key as volatile (which * is the default content of an attribute structure), this function sets * the lifetime attribute to #PSA_KEY_LIFETIME_PERSISTENT. * * This function does not access storage, it merely stores the given * value in the structure. * The persistent key will be written to storage when the attribute * structure is passed to a key creation function such as * psa_import_key(), psa_generate_key(), * psa_key_derivation_output_key() or psa_copy_key(). * * This function may be declared as `static` (i.e. without external * linkage). This function may be provided as a function-like macro, * but in this case it must evaluate each of its arguments exactly once. * * \param[out] attributes The attribute structure to write to. * \param id The persistent identifier for the key. */ static void psa_set_key_id(psa_key_attributes_t *attributes, psa_key_id_t id); /** Set the location of a persistent key. * * To make a key persistent, you must give it a persistent key identifier * with psa_set_key_id(). By default, a key that has a persistent identifier * is stored in the default storage area identifier by * #PSA_KEY_LIFETIME_PERSISTENT. Call this function to choose a storage * area, or to explicitly declare the key as volatile. * * This function does not access storage, it merely stores the given * value in the structure. * The persistent key will be written to storage when the attribute * structure is passed to a key creation function such as * psa_import_key(), psa_generate_key(), * psa_key_derivation_output_key() or psa_copy_key(). * * This function may be declared as `static` (i.e. without external * linkage). This function may be provided as a function-like macro, * but in this case it must evaluate each of its arguments exactly once. * * \param[out] attributes The attribute structure to write to. * \param lifetime The lifetime for the key. * If this is #PSA_KEY_LIFETIME_VOLATILE, the * key will be volatile, and the key identifier * attribute is reset to 0. */ static void psa_set_key_lifetime(psa_key_attributes_t *attributes, psa_key_lifetime_t lifetime); /** Retrieve the key identifier from key attributes. * * This function may be declared as `static` (i.e. without external * linkage). This function may be provided as a function-like macro, * but in this case it must evaluate its argument exactly once. * * \param[in] attributes The key attribute structure to query. * * \return The persistent identifier stored in the attribute structure. * This value is unspecified if the attribute structure declares * the key as volatile. */ static psa_key_id_t psa_get_key_id(const psa_key_attributes_t *attributes); /** Retrieve the lifetime from key attributes. * * This function may be declared as `static` (i.e. without external * linkage). This function may be provided as a function-like macro, * but in this case it must evaluate its argument exactly once. * * \param[in] attributes The key attribute structure to query. * * \return The lifetime value stored in the attribute structure. */ static psa_key_lifetime_t psa_get_key_lifetime( const psa_key_attributes_t *attributes); /** Declare usage flags for a key. * * Usage flags are part of a key's usage policy. They encode what * kind of operations are permitted on the key. For more details, * refer to the documentation of the type #psa_key_usage_t. * * This function overwrites any usage flags * previously set in \p attributes. * * This function may be declared as `static` (i.e. without external * linkage). This function may be provided as a function-like macro, * but in this case it must evaluate each of its arguments exactly once. * * \param[out] attributes The attribute structure to write to. * \param usage_flags The usage flags to write. */ static void psa_set_key_usage_flags(psa_key_attributes_t *attributes, psa_key_usage_t usage_flags); /** Retrieve the usage flags from key attributes. * * This function may be declared as `static` (i.e. without external * linkage). This function may be provided as a function-like macro, * but in this case it must evaluate its argument exactly once. * * \param[in] attributes The key attribute structure to query. * * \return The usage flags stored in the attribute structure. */ static psa_key_usage_t psa_get_key_usage_flags( const psa_key_attributes_t *attributes); /** Declare the permitted algorithm policy for a key. * * The permitted algorithm policy of a key encodes which algorithm or * algorithms are permitted to be used with this key. * * This function overwrites any algorithm policy * previously set in \p attributes. * * This function may be declared as `static` (i.e. without external * linkage). This function may be provided as a function-like macro, * but in this case it must evaluate each of its arguments exactly once. * * \param[out] attributes The attribute structure to write to. * \param alg The permitted algorithm policy to write. */ static void psa_set_key_algorithm(psa_key_attributes_t *attributes, psa_algorithm_t alg); /** Retrieve the algorithm policy from key attributes. * * This function may be declared as `static` (i.e. without external * linkage). This function may be provided as a function-like macro, * but in this case it must evaluate its argument exactly once. * * \param[in] attributes The key attribute structure to query. * * \return The algorithm stored in the attribute structure. */ static psa_algorithm_t psa_get_key_algorithm( const psa_key_attributes_t *attributes); /** Declare the type of a key. * * This function overwrites any key type * previously set in \p attributes. * * This function may be declared as `static` (i.e. without external * linkage). This function may be provided as a function-like macro, * but in this case it must evaluate each of its arguments exactly once. * * \param[out] attributes The attribute structure to write to. * \param type The key type to write. */ static void psa_set_key_type(psa_key_attributes_t *attributes, psa_key_type_t type); /** Declare the size of a key. * * This function overwrites any key size previously set in \p attributes. * * This function may be declared as `static` (i.e. without external * linkage). This function may be provided as a function-like macro, * but in this case it must evaluate each of its arguments exactly once. * * \param[out] attributes The attribute structure to write to. * \param bits The key size in bits. */ static void psa_set_key_bits(psa_key_attributes_t *attributes, size_t bits); /** Retrieve the key type from key attributes. * * This function may be declared as `static` (i.e. without external * linkage). This function may be provided as a function-like macro, * but in this case it must evaluate its argument exactly once. * * \param[in] attributes The key attribute structure to query. * * \return The key type stored in the attribute structure. */ static psa_key_type_t psa_get_key_type(const psa_key_attributes_t *attributes); /** Retrieve the key size from key attributes. * * This function may be declared as `static` (i.e. without external * linkage). This function may be provided as a function-like macro, * but in this case it must evaluate its argument exactly once. * * \param[in] attributes The key attribute structure to query. * * \return The key size stored in the attribute structure, in bits. */ static size_t psa_get_key_bits(const psa_key_attributes_t *attributes); /** Retrieve the attributes of a key. * * This function first resets the attribute structure as with * psa_reset_key_attributes(). It then copies the attributes of * the given key into the given attribute structure. * * \note This function may allocate memory or other resources. * Once you have called this function on an attribute structure, * you must call psa_reset_key_attributes() to free these resources. * * \param[in] handle Handle to the key to query. * \param[in,out] attributes On success, the attributes of the key. * On failure, equivalent to a * freshly-initialized structure. * * \retval #PSA_SUCCESS * \retval #PSA_ERROR_INVALID_HANDLE * \retval #PSA_ERROR_INSUFFICIENT_MEMORY * \retval #PSA_ERROR_COMMUNICATION_FAILURE */ psa_status_t psa_get_key_attributes(psa_key_handle_t handle, psa_key_attributes_t *attributes); /** Reset a key attribute structure to a freshly initialized state. * * You must initialize the attribute structure as described in the * documentation of the type #psa_key_attributes_t before calling this * function. Once the structure has been initialized, you may call this * function at any time. * * This function frees any auxiliary resources that the structure * may contain. * * \param[in,out] attributes The attribute structure to reset. */ void psa_reset_key_attributes(psa_key_attributes_t *attributes); /**@}*/ /** \defgroup key_management Key management * @{ */ /** Open a handle to an existing persistent key. * * Open a handle to a persistent key. A key is persistent if it was created * with a lifetime other than #PSA_KEY_LIFETIME_VOLATILE. A persistent key * always has a nonzero key identifier, set with psa_set_key_id() when * creating the key. Implementations may provide additional pre-provisioned * keys that can be opened with psa_open_key(). Such keys have a key identifier * in the vendor range, as documented in the description of #psa_key_id_t. * * The application must eventually close the handle with psa_close_key() * to release associated resources. If the application dies without calling * psa_close_key(), the implementation should perform the equivalent of a * call to psa_close_key(). * * Some implementations permit an application to open the same key multiple * times. Applications that rely on this behavior will not be portable to * implementations that only permit a single key handle to be opened. See * also :ref:\`key-handles\`. * * \param id The persistent identifier of the key. * \param[out] handle On success, a handle to the key. * * \retval #PSA_SUCCESS * Success. The application can now use the value of `*handle` * to access the key. * \retval #PSA_ERROR_INSUFFICIENT_MEMORY * The implementation does not have sufficient resources to open the * key. This can be due to reaching an implementation limit on the * number of open keys, the number of open key handles, or available * memory. * \retval #PSA_ERROR_DOES_NOT_EXIST * There is no persistent key with key identifier \p id. * \retval #PSA_ERROR_INVALID_ARGUMENT * \p id is not a valid persistent key identifier. * \retval #PSA_ERROR_NOT_PERMITTED * The specified key exists, but the application does not have the * permission to access it. Note that this specification does not * define any way to create such a key, but it may be possible * through implementation-specific means. * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_STORAGE_FAILURE */ psa_status_t psa_open_key(psa_key_id_t id, psa_key_handle_t *handle); /** Close a key handle. * * If the handle designates a volatile key, this will destroy the key material * and free all associated resources, just like psa_destroy_key(). * * If this is the last open handle to a persistent key, then closing the handle * will free all resources associated with the key in volatile memory. The key * data in persistent storage is not affected and can be opened again later * with a call to psa_open_key(). * * Closing the key handle makes the handle invalid, and the key handle * must not be used again by the application.. * * If the key is currently in use in a multipart operation, then closing the * last handle to the key will abort the multipart operation. * * \param handle The key handle to close. * * \retval #PSA_SUCCESS * \retval #PSA_ERROR_INVALID_HANDLE * \retval #PSA_ERROR_COMMUNICATION_FAILURE */ psa_status_t psa_close_key(psa_key_handle_t handle); /**@}*/ /** \defgroup import_export Key import and export * @{ */ /** * \brief Import a key in binary format. * * This function supports any output from psa_export_key(). Refer to the * documentation of psa_export_public_key() for the format of public keys * and to the documentation of psa_export_key() for the format for * other key types. * * This specification supports a single format for each key type. * Implementations may support other formats as long as the standard * format is supported. Implementations that support other formats * should ensure that the formats are clearly unambiguous so as to * minimize the risk that an invalid input is accidentally interpreted * according to a different format. * * \param[in] attributes The attributes for the new key. * The key size is always determined from the * \p data buffer. * If the key size in \p attributes is nonzero, * it must be equal to the size from \p data. * \param[out] handle On success, a handle to the newly created key. * \c 0 on failure. * \param[in] data Buffer containing the key data. The content of this * buffer is interpreted according to the type declared * in \p attributes. * All implementations must support at least the format * described in the documentation * of psa_export_key() or psa_export_public_key() for * the chosen type. Implementations may allow other * formats, but should be conservative: implementations * should err on the side of rejecting content if it * may be erroneous (e.g. wrong type or truncated data). * \param data_length Size of the \p data buffer in bytes. * * \retval #PSA_SUCCESS * Success. * If the key is persistent, the key material and the key's metadata * have been saved to persistent storage. * \retval #PSA_ERROR_ALREADY_EXISTS * This is an attempt to create a persistent key, and there is * already a persistent key with the given identifier. * \retval #PSA_ERROR_NOT_SUPPORTED * The key type or key size is not supported, either by the * implementation in general or in this particular persistent location. * \retval #PSA_ERROR_INVALID_ARGUMENT * The key attributes, as a whole, are invalid. * \retval #PSA_ERROR_INVALID_ARGUMENT * The key data is not correctly formatted. * \retval #PSA_ERROR_INVALID_ARGUMENT * The size in \p attributes is nonzero and does not match the size * of the key data. * \retval #PSA_ERROR_INSUFFICIENT_MEMORY * \retval #PSA_ERROR_INSUFFICIENT_STORAGE * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_STORAGE_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_CORRUPTION_DETECTED * \retval #PSA_ERROR_BAD_STATE * The library has not been previously initialized by psa_crypto_init(). * It is implementation-dependent whether a failure to initialize * results in this error code. */ psa_status_t psa_import_key(const psa_key_attributes_t *attributes, const uint8_t *data, size_t data_length, psa_key_handle_t *handle); /** * \brief Destroy a key. * * This function destroys a key from both volatile * memory and, if applicable, non-volatile storage. Implementations shall * make a best effort to ensure that that the key material cannot be recovered. * * This function also erases any metadata such as policies and frees all * resources associated with the key. * * Destroying a key will invalidate all existing handles to the key. * * If the key is currently in use in a multipart operation, then destroying the * key will abort the multipart operation. * * \param handle Handle to the key to erase. * * \retval #PSA_SUCCESS * The key material has been erased. * \retval #PSA_ERROR_NOT_PERMITTED * The key cannot be erased because it is * read-only, either due to a policy or due to physical restrictions. * \retval #PSA_ERROR_INVALID_HANDLE * \retval #PSA_ERROR_COMMUNICATION_FAILURE * There was an failure in communication with the cryptoprocessor. * The key material may still be present in the cryptoprocessor. * \retval #PSA_ERROR_STORAGE_FAILURE * The storage is corrupted. Implementations shall make a best effort * to erase key material even in this stage, however applications * should be aware that it may be impossible to guarantee that the * key material is not recoverable in such cases. * \retval #PSA_ERROR_CORRUPTION_DETECTED * An unexpected condition which is not a storage corruption or * a communication failure occurred. The cryptoprocessor may have * been compromised. * \retval #PSA_ERROR_BAD_STATE * The library has not been previously initialized by psa_crypto_init(). * It is implementation-dependent whether a failure to initialize * results in this error code. */ psa_status_t psa_destroy_key(psa_key_handle_t handle); /** * \brief Export a key in binary format. * * The output of this function can be passed to psa_import_key() to * create an equivalent object. * * If the implementation of psa_import_key() supports other formats * beyond the format specified here, the output from psa_export_key() * must use the representation specified here, not the original * representation. * * For standard key types, the output format is as follows: * * - For symmetric keys (including MAC keys), the format is the * raw bytes of the key. * - For DES, the key data consists of 8 bytes. The parity bits must be * correct. * - For Triple-DES, the format is the concatenation of the * two or three DES keys. * - For RSA key pairs (#PSA_KEY_TYPE_RSA_KEY_PAIR), the format * is the non-encrypted DER encoding of the representation defined by * PKCS\#1 (RFC 8017) as `RSAPrivateKey`, version 0. * ``` * RSAPrivateKey ::= SEQUENCE { * version INTEGER, -- must be 0 * modulus INTEGER, -- n * publicExponent INTEGER, -- e * privateExponent INTEGER, -- d * prime1 INTEGER, -- p * prime2 INTEGER, -- q * exponent1 INTEGER, -- d mod (p-1) * exponent2 INTEGER, -- d mod (q-1) * coefficient INTEGER, -- (inverse of q) mod p * } * ``` * - For elliptic curve key pairs (key types for which * #PSA_KEY_TYPE_IS_ECC_KEY_PAIR is true), the format is * a representation of the private value as a `ceiling(m/8)`-byte string * where `m` is the bit size associated with the curve, i.e. the bit size * of the order of the curve's coordinate field. This byte string is * in little-endian order for Montgomery curves (curve types * `PSA_ECC_CURVE_CURVEXXX`), and in big-endian order for Weierstrass * curves (curve types `PSA_ECC_CURVE_SECTXXX`, `PSA_ECC_CURVE_SECPXXX` * and `PSA_ECC_CURVE_BRAINPOOL_PXXX`). * This is the content of the `privateKey` field of the `ECPrivateKey` * format defined by RFC 5915. * - For Diffie-Hellman key exchange key pairs (key types for which * #PSA_KEY_TYPE_IS_DH_KEY_PAIR is true), the * format is the representation of the private key `x` as a big-endian byte * string. The length of the byte string is the private key size in bytes * (leading zeroes are not stripped). * - For public keys (key types for which #PSA_KEY_TYPE_IS_PUBLIC_KEY is * true), the format is the same as for psa_export_public_key(). * * The policy on the key must have the usage flag #PSA_KEY_USAGE_EXPORT set. * * \param handle Handle to the key to export. * \param[out] data Buffer where the key data is to be written. * \param data_size Size of the \p data buffer in bytes. * \param[out] data_length On success, the number of bytes * that make up the key data. * * \retval #PSA_SUCCESS * \retval #PSA_ERROR_INVALID_HANDLE * \retval #PSA_ERROR_DOES_NOT_EXIST * \retval #PSA_ERROR_NOT_PERMITTED * The key does not have the #PSA_KEY_USAGE_EXPORT flag. * \retval #PSA_ERROR_NOT_SUPPORTED * \retval #PSA_ERROR_BUFFER_TOO_SMALL * The size of the \p data buffer is too small. You can determine a * sufficient buffer size by calling * #PSA_KEY_EXPORT_MAX_SIZE(\c type, \c bits) * where \c type is the key type * and \c bits is the key size in bits. * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_CORRUPTION_DETECTED * \retval #PSA_ERROR_BAD_STATE * The library has not been previously initialized by psa_crypto_init(). * It is implementation-dependent whether a failure to initialize * results in this error code. */ psa_status_t psa_export_key(psa_key_handle_t handle, uint8_t *data, size_t data_size, size_t *data_length); /** * \brief Export a public key or the public part of a key pair in binary format. * * The output of this function can be passed to psa_import_key() to * create an object that is equivalent to the public key. * * This specification supports a single format for each key type. * Implementations may support other formats as long as the standard * format is supported. Implementations that support other formats * should ensure that the formats are clearly unambiguous so as to * minimize the risk that an invalid input is accidentally interpreted * according to a different format. * * For standard key types, the output format is as follows: * - For RSA public keys (#PSA_KEY_TYPE_RSA_PUBLIC_KEY), the DER encoding of * the representation defined by RFC 3279 §2.3.1 as `RSAPublicKey`. * ``` * RSAPublicKey ::= SEQUENCE { * modulus INTEGER, -- n * publicExponent INTEGER } -- e * ``` * - For elliptic curve public keys (key types for which * #PSA_KEY_TYPE_IS_ECC_PUBLIC_KEY is true), the format is the uncompressed * representation defined by SEC1 §2.3.3 as the content of an ECPoint. * Let `m` be the bit size associated with the curve, i.e. the bit size of * `q` for a curve over `F_q`. The representation consists of: * - The byte 0x04; * - `x_P` as a `ceiling(m/8)`-byte string, big-endian; * - `y_P` as a `ceiling(m/8)`-byte string, big-endian. * - For Diffie-Hellman key exchange public keys (key types for which * #PSA_KEY_TYPE_IS_DH_PUBLIC_KEY is true), * the format is the representation of the public key `y = g^x mod p` as a * big-endian byte string. The length of the byte string is the length of the * base prime `p` in bytes. * * Exporting a public key object or the public part of a key pair is * always permitted, regardless of the key's usage flags. * * \param handle Handle to the key to export. * \param[out] data Buffer where the key data is to be written. * \param data_size Size of the \p data buffer in bytes. * \param[out] data_length On success, the number of bytes * that make up the key data. * * \retval #PSA_SUCCESS * \retval #PSA_ERROR_INVALID_HANDLE * \retval #PSA_ERROR_DOES_NOT_EXIST * \retval #PSA_ERROR_INVALID_ARGUMENT * The key is neither a public key nor a key pair. * \retval #PSA_ERROR_NOT_SUPPORTED * \retval #PSA_ERROR_BUFFER_TOO_SMALL * The size of the \p data buffer is too small. You can determine a * sufficient buffer size by calling * #PSA_KEY_EXPORT_MAX_SIZE(#PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(\c type), \c bits) * where \c type is the key type * and \c bits is the key size in bits. * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_CORRUPTION_DETECTED * \retval #PSA_ERROR_BAD_STATE * The library has not been previously initialized by psa_crypto_init(). * It is implementation-dependent whether a failure to initialize * results in this error code. */ psa_status_t psa_export_public_key(psa_key_handle_t handle, uint8_t *data, size_t data_size, size_t *data_length); /** Make a copy of a key. * * Copy key material from one location to another. * * This function is primarily useful to copy a key from one location * to another, since it populates a key using the material from * another key which may have a different lifetime. * * This function may be used to share a key with a different party, * subject to implementation-defined restrictions on key sharing. * * The policy on the source key must have the usage flag * #PSA_KEY_USAGE_COPY set. * This flag is sufficient to permit the copy if the key has the lifetime * #PSA_KEY_LIFETIME_VOLATILE or #PSA_KEY_LIFETIME_PERSISTENT. * Some secure elements do not provide a way to copy a key without * making it extractable from the secure element. If a key is located * in such a secure element, then the key must have both usage flags * #PSA_KEY_USAGE_COPY and #PSA_KEY_USAGE_EXPORT in order to make * a copy of the key outside the secure element. * * The resulting key may only be used in a way that conforms to * both the policy of the original key and the policy specified in * the \p attributes parameter: * - The usage flags on the resulting key are the bitwise-and of the * usage flags on the source policy and the usage flags in \p attributes. * - If both allow the same algorithm or wildcard-based * algorithm policy, the resulting key has the same algorithm policy. * - If either of the policies allows an algorithm and the other policy * allows a wildcard-based algorithm policy that includes this algorithm, * the resulting key allows the same algorithm. * - If the policies do not allow any algorithm in common, this function * fails with the status #PSA_ERROR_INVALID_ARGUMENT. * * The effect of this function on implementation-defined attributes is * implementation-defined. * * \param source_handle The key to copy. It must be a valid key handle. * \param[in] attributes The attributes for the new key. * They are used as follows: * - The key type and size may be 0. If either is * nonzero, it must match the corresponding * attribute of the source key. * - The key location (the lifetime and, for * persistent keys, the key identifier) is * used directly. * - The policy constraints (usage flags and * algorithm policy) are combined from * the source key and \p attributes so that * both sets of restrictions apply, as * described in the documentation of this function. * \param[out] target_handle On success, a handle to the newly created key. * \c 0 on failure. * * \retval #PSA_SUCCESS * \retval #PSA_ERROR_INVALID_HANDLE * \p source_handle is invalid. * \retval #PSA_ERROR_ALREADY_EXISTS * This is an attempt to create a persistent key, and there is * already a persistent key with the given identifier. * \retval #PSA_ERROR_INVALID_ARGUMENT * The lifetime or identifier in \p attributes are invalid. * \retval #PSA_ERROR_INVALID_ARGUMENT * The policy constraints on the source and specified in * \p attributes are incompatible. * \retval #PSA_ERROR_INVALID_ARGUMENT * \p attributes specifies a key type or key size * which does not match the attributes of the source key. * \retval #PSA_ERROR_NOT_PERMITTED * The source key does not have the #PSA_KEY_USAGE_COPY usage flag. * \retval #PSA_ERROR_NOT_PERMITTED * The source key is not exportable and its lifetime does not * allow copying it to the target's lifetime. * \retval #PSA_ERROR_INSUFFICIENT_MEMORY * \retval #PSA_ERROR_INSUFFICIENT_STORAGE * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_CORRUPTION_DETECTED */ psa_status_t psa_copy_key(psa_key_handle_t source_handle, const psa_key_attributes_t *attributes, psa_key_handle_t *target_handle); /**@}*/ /** \defgroup hash Message digests * @{ */ /** Calculate the hash (digest) of a message. * * \note To verify the hash of a message against an * expected value, use psa_hash_compare() instead. * * \param alg The hash algorithm to compute (\c PSA_ALG_XXX value * such that #PSA_ALG_IS_HASH(\p alg) is true). * \param[in] input Buffer containing the message to hash. * \param input_length Size of the \p input buffer in bytes. * \param[out] hash Buffer where the hash is to be written. * \param hash_size Size of the \p hash buffer in bytes. * \param[out] hash_length On success, the number of bytes * that make up the hash value. This is always * #PSA_HASH_SIZE(\p alg). * * \retval #PSA_SUCCESS * Success. * \retval #PSA_ERROR_NOT_SUPPORTED * \p alg is not supported or is not a hash algorithm. * \retval #PSA_ERROR_INSUFFICIENT_MEMORY * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_CORRUPTION_DETECTED */ psa_status_t psa_hash_compute(psa_algorithm_t alg, const uint8_t *input, size_t input_length, uint8_t *hash, size_t hash_size, size_t *hash_length); /** Calculate the hash (digest) of a message and compare it with a * reference value. * * \param alg The hash algorithm to compute (\c PSA_ALG_XXX value * such that #PSA_ALG_IS_HASH(\p alg) is true). * \param[in] input Buffer containing the message to hash. * \param input_length Size of the \p input buffer in bytes. * \param[out] hash Buffer containing the expected hash value. * \param hash_length Size of the \p hash buffer in bytes. * * \retval #PSA_SUCCESS * The expected hash is identical to the actual hash of the input. * \retval #PSA_ERROR_INVALID_SIGNATURE * The hash of the message was calculated successfully, but it * differs from the expected hash. * \retval #PSA_ERROR_NOT_SUPPORTED * \p alg is not supported or is not a hash algorithm. * \retval #PSA_ERROR_INSUFFICIENT_MEMORY * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_CORRUPTION_DETECTED */ psa_status_t psa_hash_compare(psa_algorithm_t alg, const uint8_t *input, size_t input_length, const uint8_t *hash, const size_t hash_length); /** The type of the state data structure for multipart hash operations. * * Before calling any function on a hash operation object, the application must * initialize it by any of the following means: * - Set the structure to all-bits-zero, for example: * \code * psa_hash_operation_t operation; * memset(&operation, 0, sizeof(operation)); * \endcode * - Initialize the structure to logical zero values, for example: * \code * psa_hash_operation_t operation = {0}; * \endcode * - Initialize the structure to the initializer #PSA_HASH_OPERATION_INIT, * for example: * \code * psa_hash_operation_t operation = PSA_HASH_OPERATION_INIT; * \endcode * - Assign the result of the function psa_hash_operation_init() * to the structure, for example: * \code * psa_hash_operation_t operation; * operation = psa_hash_operation_init(); * \endcode * * This is an implementation-defined \c struct. Applications should not * make any assumptions about the content of this structure except * as directed by the documentation of a specific implementation. */ typedef struct psa_hash_operation_s psa_hash_operation_t; /** \def PSA_HASH_OPERATION_INIT * * This macro returns a suitable initializer for a hash operation object * of type #psa_hash_operation_t. */ #ifdef __DOXYGEN_ONLY__ /* This is an example definition for documentation purposes. * Implementations should define a suitable value in `crypto_struct.h`. */ #define PSA_HASH_OPERATION_INIT {0} #endif /** Return an initial value for a hash operation object. */ static psa_hash_operation_t psa_hash_operation_init(void); /** Set up a multipart hash operation. * * The sequence of operations to calculate a hash (message digest) * is as follows: * -# Allocate an operation object which will be passed to all the functions * listed here. * -# Initialize the operation object with one of the methods described in the * documentation for #psa_hash_operation_t, e.g. PSA_HASH_OPERATION_INIT. * -# Call psa_hash_setup() to specify the algorithm. * -# Call psa_hash_update() zero, one or more times, passing a fragment * of the message each time. The hash that is calculated is the hash * of the concatenation of these messages in order. * -# To calculate the hash, call psa_hash_finish(). * To compare the hash with an expected value, call psa_hash_verify(). * * The application may call psa_hash_abort() at any time after the operation * has been initialized. * * After a successful call to psa_hash_setup(), the application must * eventually terminate the operation. The following events terminate an * operation: * - A failed call to psa_hash_update(). * - A call to psa_hash_finish(), psa_hash_verify() or psa_hash_abort(). * * \param[in,out] operation The operation object to set up. It must have * been initialized as per the documentation for * #psa_hash_operation_t and not yet in use. * \param alg The hash algorithm to compute (\c PSA_ALG_XXX value * such that #PSA_ALG_IS_HASH(\p alg) is true). * * \retval #PSA_SUCCESS * Success. * \retval #PSA_ERROR_NOT_SUPPORTED * \p alg is not supported or is not a hash algorithm. * \retval #PSA_ERROR_BAD_STATE * The operation state is not valid (already set up and not * subsequently completed). * \retval #PSA_ERROR_INSUFFICIENT_MEMORY * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_CORRUPTION_DETECTED */ psa_status_t psa_hash_setup(psa_hash_operation_t *operation, psa_algorithm_t alg); /** Add a message fragment to a multipart hash operation. * * The application must call psa_hash_setup() before calling this function. * * If this function returns an error status, the operation becomes inactive. * * \param[in,out] operation Active hash operation. * \param[in] input Buffer containing the message fragment to hash. * \param input_length Size of the \p input buffer in bytes. * * \retval #PSA_SUCCESS * Success. * \retval #PSA_ERROR_BAD_STATE * The operation state is not valid (not set up, or already completed). * \retval #PSA_ERROR_INSUFFICIENT_MEMORY * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_CORRUPTION_DETECTED */ psa_status_t psa_hash_update(psa_hash_operation_t *operation, const uint8_t *input, size_t input_length); /** Finish the calculation of the hash of a message. * * The application must call psa_hash_setup() before calling this function. * This function calculates the hash of the message formed by concatenating * the inputs passed to preceding calls to psa_hash_update(). * * When this function returns, the operation becomes inactive. * * \warning Applications should not call this function if they expect * a specific value for the hash. Call psa_hash_verify() instead. * Beware that comparing integrity or authenticity data such as * hash values with a function such as \c memcmp is risky * because the time taken by the comparison may leak information * about the hashed data which could allow an attacker to guess * a valid hash and thereby bypass security controls. * * \param[in,out] operation Active hash operation. * \param[out] hash Buffer where the hash is to be written. * \param hash_size Size of the \p hash buffer in bytes. * \param[out] hash_length On success, the number of bytes * that make up the hash value. This is always * #PSA_HASH_SIZE(\c alg) where \c alg is the * hash algorithm that is calculated. * * \retval #PSA_SUCCESS * Success. * \retval #PSA_ERROR_BAD_STATE * The operation state is not valid (not set up, or already completed). * \retval #PSA_ERROR_BUFFER_TOO_SMALL * The size of the \p hash buffer is too small. You can determine a * sufficient buffer size by calling #PSA_HASH_SIZE(\c alg) * where \c alg is the hash algorithm that is calculated. * \retval #PSA_ERROR_INSUFFICIENT_MEMORY * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_CORRUPTION_DETECTED */ psa_status_t psa_hash_finish(psa_hash_operation_t *operation, uint8_t *hash, size_t hash_size, size_t *hash_length); /** Finish the calculation of the hash of a message and compare it with * an expected value. * * The application must call psa_hash_setup() before calling this function. * This function calculates the hash of the message formed by concatenating * the inputs passed to preceding calls to psa_hash_update(). It then * compares the calculated hash with the expected hash passed as a * parameter to this function. * * When this function returns, the operation becomes inactive. * * \note Implementations shall make the best effort to ensure that the * comparison between the actual hash and the expected hash is performed * in constant time. * * \param[in,out] operation Active hash operation. * \param[in] hash Buffer containing the expected hash value. * \param hash_length Size of the \p hash buffer in bytes. * * \retval #PSA_SUCCESS * The expected hash is identical to the actual hash of the message. * \retval #PSA_ERROR_INVALID_SIGNATURE * The hash of the message was calculated successfully, but it * differs from the expected hash. * \retval #PSA_ERROR_BAD_STATE * The operation state is not valid (not set up, or already completed). * \retval #PSA_ERROR_INSUFFICIENT_MEMORY * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_CORRUPTION_DETECTED */ psa_status_t psa_hash_verify(psa_hash_operation_t *operation, const uint8_t *hash, size_t hash_length); /** Abort a hash operation. * * Aborting an operation frees all associated resources except for the * \p operation structure itself. Once aborted, the operation object * can be reused for another operation by calling * psa_hash_setup() again. * * You may call this function any time after the operation object has * been initialized by any of the following methods: * - A call to psa_hash_setup(), whether it succeeds or not. * - Initializing the \c struct to all-bits-zero. * - Initializing the \c struct to logical zeros, e.g. * `psa_hash_operation_t operation = {0}`. * * In particular, calling psa_hash_abort() after the operation has been * terminated by a call to psa_hash_abort(), psa_hash_finish() or * psa_hash_verify() is safe and has no effect. * * \param[in,out] operation Initialized hash operation. * * \retval #PSA_SUCCESS * \retval #PSA_ERROR_BAD_STATE * \p operation is not an active hash operation. * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_CORRUPTION_DETECTED */ psa_status_t psa_hash_abort(psa_hash_operation_t *operation); /** Clone a hash operation. * * This function copies the state of an ongoing hash operation to * a new operation object. In other words, this function is equivalent * to calling psa_hash_setup() on \p target_operation with the same * algorithm that \p source_operation was set up for, then * psa_hash_update() on \p target_operation with the same input that * that was passed to \p source_operation. After this function returns, the * two objects are independent, i.e. subsequent calls involving one of * the objects do not affect the other object. * * \param[in] source_operation The active hash operation to clone. * \param[in,out] target_operation The operation object to set up. * It must be initialized but not active. * * \retval #PSA_SUCCESS * \retval #PSA_ERROR_BAD_STATE * \p source_operation is not an active hash operation. * \retval #PSA_ERROR_BAD_STATE * \p target_operation is active. * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_CORRUPTION_DETECTED */ psa_status_t psa_hash_clone(const psa_hash_operation_t *source_operation, psa_hash_operation_t *target_operation); /**@}*/ /** \defgroup MAC Message authentication codes * @{ */ /** Calculate the MAC (message authentication code) of a message. * * \note To verify the MAC of a message against an * expected value, use psa_mac_verify() instead. * Beware that comparing integrity or authenticity data such as * MAC values with a function such as \c memcmp is risky * because the time taken by the comparison may leak information * about the MAC value which could allow an attacker to guess * a valid MAC and thereby bypass security controls. * * \param handle Handle to the key to use for the operation. * \param alg The MAC algorithm to compute (\c PSA_ALG_XXX value * such that #PSA_ALG_IS_MAC(\p alg) is true). * \param[in] input Buffer containing the input message. * \param input_length Size of the \p input buffer in bytes. * \param[out] mac Buffer where the MAC value is to be written. * \param mac_size Size of the \p mac buffer in bytes. * \param[out] mac_length On success, the number of bytes * that make up the MAC value. * * \retval #PSA_SUCCESS * Success. * \retval #PSA_ERROR_INVALID_HANDLE * \retval #PSA_ERROR_NOT_PERMITTED * \retval #PSA_ERROR_INVALID_ARGUMENT * \p handle is not compatible with \p alg. * \retval #PSA_ERROR_NOT_SUPPORTED * \p alg is not supported or is not a MAC algorithm. * \retval #PSA_ERROR_INSUFFICIENT_MEMORY * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_CORRUPTION_DETECTED * \retval #PSA_ERROR_BAD_STATE * The library has not been previously initialized by psa_crypto_init(). * It is implementation-dependent whether a failure to initialize * results in this error code. */ psa_status_t psa_mac_compute(psa_key_handle_t handle, psa_algorithm_t alg, const uint8_t *input, size_t input_length, uint8_t *mac, size_t mac_size, size_t *mac_length); /** Calculate the MAC of a message and compare it with a reference value. * * \param handle Handle to the key to use for the operation. * \param alg The MAC algorithm to compute (\c PSA_ALG_XXX value * such that #PSA_ALG_IS_MAC(\p alg) is true). * \param[in] input Buffer containing the input message. * \param input_length Size of the \p input buffer in bytes. * \param[out] mac Buffer containing the expected MAC value. * \param mac_length Size of the \p mac buffer in bytes. * * \retval #PSA_SUCCESS * The expected MAC is identical to the actual MAC of the input. * \retval #PSA_ERROR_INVALID_SIGNATURE * The MAC of the message was calculated successfully, but it * differs from the expected value. * \retval #PSA_ERROR_INVALID_HANDLE * \retval #PSA_ERROR_NOT_PERMITTED * \retval #PSA_ERROR_INVALID_ARGUMENT * \p handle is not compatible with \p alg. * \retval #PSA_ERROR_NOT_SUPPORTED * \p alg is not supported or is not a MAC algorithm. * \retval #PSA_ERROR_INSUFFICIENT_MEMORY * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_CORRUPTION_DETECTED */ psa_status_t psa_mac_verify(psa_key_handle_t handle, psa_algorithm_t alg, const uint8_t *input, size_t input_length, const uint8_t *mac, const size_t mac_length); /** The type of the state data structure for multipart MAC operations. * * Before calling any function on a MAC operation object, the application must * initialize it by any of the following means: * - Set the structure to all-bits-zero, for example: * \code * psa_mac_operation_t operation; * memset(&operation, 0, sizeof(operation)); * \endcode * - Initialize the structure to logical zero values, for example: * \code * psa_mac_operation_t operation = {0}; * \endcode * - Initialize the structure to the initializer #PSA_MAC_OPERATION_INIT, * for example: * \code * psa_mac_operation_t operation = PSA_MAC_OPERATION_INIT; * \endcode * - Assign the result of the function psa_mac_operation_init() * to the structure, for example: * \code * psa_mac_operation_t operation; * operation = psa_mac_operation_init(); * \endcode * * This is an implementation-defined \c struct. Applications should not * make any assumptions about the content of this structure except * as directed by the documentation of a specific implementation. */ typedef struct psa_mac_operation_s psa_mac_operation_t; /** \def PSA_MAC_OPERATION_INIT * * This macro returns a suitable initializer for a MAC operation object of type * #psa_mac_operation_t. */ #ifdef __DOXYGEN_ONLY__ /* This is an example definition for documentation purposes. * Implementations should define a suitable value in `crypto_struct.h`. */ #define PSA_MAC_OPERATION_INIT {0} #endif /** Return an initial value for a MAC operation object. */ static psa_mac_operation_t psa_mac_operation_init(void); /** Set up a multipart MAC calculation operation. * * This function sets up the calculation of the MAC * (message authentication code) of a byte string. * To verify the MAC of a message against an * expected value, use psa_mac_verify_setup() instead. * * The sequence of operations to calculate a MAC is as follows: * -# Allocate an operation object which will be passed to all the functions * listed here. * -# Initialize the operation object with one of the methods described in the * documentation for #psa_mac_operation_t, e.g. PSA_MAC_OPERATION_INIT. * -# Call psa_mac_sign_setup() to specify the algorithm and key. * -# Call psa_mac_update() zero, one or more times, passing a fragment * of the message each time. The MAC that is calculated is the MAC * of the concatenation of these messages in order. * -# At the end of the message, call psa_mac_sign_finish() to finish * calculating the MAC value and retrieve it. * * The application may call psa_mac_abort() at any time after the operation * has been initialized. * * After a successful call to psa_mac_sign_setup(), the application must * eventually terminate the operation through one of the following methods: * - A failed call to psa_mac_update(). * - A call to psa_mac_sign_finish() or psa_mac_abort(). * * \param[in,out] operation The operation object to set up. It must have * been initialized as per the documentation for * #psa_mac_operation_t and not yet in use. * \param handle Handle to the key to use for the operation. * It must remain valid until the operation * terminates. * \param alg The MAC algorithm to compute (\c PSA_ALG_XXX value * such that #PSA_ALG_IS_MAC(\p alg) is true). * * \retval #PSA_SUCCESS * Success. * \retval #PSA_ERROR_INVALID_HANDLE * \retval #PSA_ERROR_DOES_NOT_EXIST * \retval #PSA_ERROR_NOT_PERMITTED * \retval #PSA_ERROR_INVALID_ARGUMENT * \p handle is not compatible with \p alg. * \retval #PSA_ERROR_NOT_SUPPORTED * \p alg is not supported or is not a MAC algorithm. * \retval #PSA_ERROR_INSUFFICIENT_MEMORY * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_CORRUPTION_DETECTED * \retval #PSA_ERROR_BAD_STATE * The operation state is not valid (already set up and not * subsequently completed). * \retval #PSA_ERROR_BAD_STATE * The library has not been previously initialized by psa_crypto_init(). * It is implementation-dependent whether a failure to initialize * results in this error code. */ psa_status_t psa_mac_sign_setup(psa_mac_operation_t *operation, psa_key_handle_t handle, psa_algorithm_t alg); /** Set up a multipart MAC verification operation. * * This function sets up the verification of the MAC * (message authentication code) of a byte string against an expected value. * * The sequence of operations to verify a MAC is as follows: * -# Allocate an operation object which will be passed to all the functions * listed here. * -# Initialize the operation object with one of the methods described in the * documentation for #psa_mac_operation_t, e.g. PSA_MAC_OPERATION_INIT. * -# Call psa_mac_verify_setup() to specify the algorithm and key. * -# Call psa_mac_update() zero, one or more times, passing a fragment * of the message each time. The MAC that is calculated is the MAC * of the concatenation of these messages in order. * -# At the end of the message, call psa_mac_verify_finish() to finish * calculating the actual MAC of the message and verify it against * the expected value. * * The application may call psa_mac_abort() at any time after the operation * has been initialized. * * After a successful call to psa_mac_verify_setup(), the application must * eventually terminate the operation through one of the following methods: * - A failed call to psa_mac_update(). * - A call to psa_mac_verify_finish() or psa_mac_abort(). * * \param[in,out] operation The operation object to set up. It must have * been initialized as per the documentation for * #psa_mac_operation_t and not yet in use. * \param handle Handle to the key to use for the operation. * It must remain valid until the operation * terminates. * \param alg The MAC algorithm to compute (\c PSA_ALG_XXX value * such that #PSA_ALG_IS_MAC(\p alg) is true). * * \retval #PSA_SUCCESS * Success. * \retval #PSA_ERROR_INVALID_HANDLE * \retval #PSA_ERROR_DOES_NOT_EXIST * \retval #PSA_ERROR_NOT_PERMITTED * \retval #PSA_ERROR_INVALID_ARGUMENT * \c key is not compatible with \c alg. * \retval #PSA_ERROR_NOT_SUPPORTED * \c alg is not supported or is not a MAC algorithm. * \retval #PSA_ERROR_INSUFFICIENT_MEMORY * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_CORRUPTION_DETECTED * \retval #PSA_ERROR_BAD_STATE * The operation state is not valid (already set up and not * subsequently completed). * \retval #PSA_ERROR_BAD_STATE * The library has not been previously initialized by psa_crypto_init(). * It is implementation-dependent whether a failure to initialize * results in this error code. */ psa_status_t psa_mac_verify_setup(psa_mac_operation_t *operation, psa_key_handle_t handle, psa_algorithm_t alg); /** Add a message fragment to a multipart MAC operation. * * The application must call psa_mac_sign_setup() or psa_mac_verify_setup() * before calling this function. * * If this function returns an error status, the operation becomes inactive. * * \param[in,out] operation Active MAC operation. * \param[in] input Buffer containing the message fragment to add to * the MAC calculation. * \param input_length Size of the \p input buffer in bytes. * * \retval #PSA_SUCCESS * Success. * \retval #PSA_ERROR_BAD_STATE * The operation state is not valid (not set up, or already completed). * \retval #PSA_ERROR_INSUFFICIENT_MEMORY * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_CORRUPTION_DETECTED */ psa_status_t psa_mac_update(psa_mac_operation_t *operation, const uint8_t *input, size_t input_length); /** Finish the calculation of the MAC of a message. * * The application must call psa_mac_sign_setup() before calling this function. * This function calculates the MAC of the message formed by concatenating * the inputs passed to preceding calls to psa_mac_update(). * * When this function returns, the operation becomes inactive. * * \warning Applications should not call this function if they expect * a specific value for the MAC. Call psa_mac_verify_finish() instead. * Beware that comparing integrity or authenticity data such as * MAC values with a function such as \c memcmp is risky * because the time taken by the comparison may leak information * about the MAC value which could allow an attacker to guess * a valid MAC and thereby bypass security controls. * * \param[in,out] operation Active MAC operation. * \param[out] mac Buffer where the MAC value is to be written. * \param mac_size Size of the \p mac buffer in bytes. * \param[out] mac_length On success, the number of bytes * that make up the MAC value. This is always * #PSA_MAC_FINAL_SIZE(\c key_type, \c key_bits, \c alg) * where \c key_type and \c key_bits are the type and * bit-size respectively of the key and \c alg is the * MAC algorithm that is calculated. * * \retval #PSA_SUCCESS * Success. * \retval #PSA_ERROR_BAD_STATE * The operation state is not valid (not set up, or already completed). * \retval #PSA_ERROR_BUFFER_TOO_SMALL * The size of the \p mac buffer is too small. You can determine a * sufficient buffer size by calling PSA_MAC_FINAL_SIZE(). * \retval #PSA_ERROR_INSUFFICIENT_MEMORY * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_CORRUPTION_DETECTED */ psa_status_t psa_mac_sign_finish(psa_mac_operation_t *operation, uint8_t *mac, size_t mac_size, size_t *mac_length); /** Finish the calculation of the MAC of a message and compare it with * an expected value. * * The application must call psa_mac_verify_setup() before calling this function. * This function calculates the MAC of the message formed by concatenating * the inputs passed to preceding calls to psa_mac_update(). It then * compares the calculated MAC with the expected MAC passed as a * parameter to this function. * * When this function returns, the operation becomes inactive. * * \note Implementations shall make the best effort to ensure that the * comparison between the actual MAC and the expected MAC is performed * in constant time. * * \param[in,out] operation Active MAC operation. * \param[in] mac Buffer containing the expected MAC value. * \param mac_length Size of the \p mac buffer in bytes. * * \retval #PSA_SUCCESS * The expected MAC is identical to the actual MAC of the message. * \retval #PSA_ERROR_INVALID_SIGNATURE * The MAC of the message was calculated successfully, but it * differs from the expected MAC. * \retval #PSA_ERROR_BAD_STATE * The operation state is not valid (not set up, or already completed). * \retval #PSA_ERROR_INSUFFICIENT_MEMORY * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_CORRUPTION_DETECTED */ psa_status_t psa_mac_verify_finish(psa_mac_operation_t *operation, const uint8_t *mac, size_t mac_length); /** Abort a MAC operation. * * Aborting an operation frees all associated resources except for the * \p operation structure itself. Once aborted, the operation object * can be reused for another operation by calling * psa_mac_sign_setup() or psa_mac_verify_setup() again. * * You may call this function any time after the operation object has * been initialized by any of the following methods: * - A call to psa_mac_sign_setup() or psa_mac_verify_setup(), whether * it succeeds or not. * - Initializing the \c struct to all-bits-zero. * - Initializing the \c struct to logical zeros, e.g. * `psa_mac_operation_t operation = {0}`. * * In particular, calling psa_mac_abort() after the operation has been * terminated by a call to psa_mac_abort(), psa_mac_sign_finish() or * psa_mac_verify_finish() is safe and has no effect. * * \param[in,out] operation Initialized MAC operation. * * \retval #PSA_SUCCESS * \retval #PSA_ERROR_BAD_STATE * \p operation is not an active MAC operation. * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_CORRUPTION_DETECTED */ psa_status_t psa_mac_abort(psa_mac_operation_t *operation); /**@}*/ /** \defgroup cipher Symmetric ciphers * @{ */ /** Encrypt a message using a symmetric cipher. * * This function encrypts a message with a random IV (initialization * vector). * * \param handle Handle to the key to use for the operation. * It must remain valid until the operation * terminates. * \param alg The cipher algorithm to compute * (\c PSA_ALG_XXX value such that * #PSA_ALG_IS_CIPHER(\p alg) is true). * \param[in] input Buffer containing the message to encrypt. * \param input_length Size of the \p input buffer in bytes. * \param[out] output Buffer where the output is to be written. * The output contains the IV followed by * the ciphertext proper. * \param output_size Size of the \p output buffer in bytes. * \param[out] output_length On success, the number of bytes * that make up the output. * * \retval #PSA_SUCCESS * Success. * \retval #PSA_ERROR_INVALID_HANDLE * \retval #PSA_ERROR_NOT_PERMITTED * \retval #PSA_ERROR_INVALID_ARGUMENT * \p handle is not compatible with \p alg. * \retval #PSA_ERROR_NOT_SUPPORTED * \p alg is not supported or is not a cipher algorithm. * \retval #PSA_ERROR_BUFFER_TOO_SMALL * \retval #PSA_ERROR_INSUFFICIENT_MEMORY * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_CORRUPTION_DETECTED */ psa_status_t psa_cipher_encrypt(psa_key_handle_t handle, psa_algorithm_t alg, const uint8_t *input, size_t input_length, uint8_t *output, size_t output_size, size_t *output_length); /** Decrypt a message using a symmetric cipher. * * This function decrypts a message encrypted with a symmetric cipher. * * \param handle Handle to the key to use for the operation. * It must remain valid until the operation * terminates. * \param alg The cipher algorithm to compute * (\c PSA_ALG_XXX value such that * #PSA_ALG_IS_CIPHER(\p alg) is true). * \param[in] input Buffer containing the message to decrypt. * This consists of the IV followed by the * ciphertext proper. * \param input_length Size of the \p input buffer in bytes. * \param[out] output Buffer where the plaintext is to be written. * \param output_size Size of the \p output buffer in bytes. * \param[out] output_length On success, the number of bytes * that make up the output. * * \retval #PSA_SUCCESS * Success. * \retval #PSA_ERROR_INVALID_HANDLE * \retval #PSA_ERROR_NOT_PERMITTED * \retval #PSA_ERROR_INVALID_ARGUMENT * \p handle is not compatible with \p alg. * \retval #PSA_ERROR_NOT_SUPPORTED * \p alg is not supported or is not a cipher algorithm. * \retval #PSA_ERROR_BUFFER_TOO_SMALL * \retval #PSA_ERROR_INSUFFICIENT_MEMORY * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_CORRUPTION_DETECTED */ psa_status_t psa_cipher_decrypt(psa_key_handle_t handle, psa_algorithm_t alg, const uint8_t *input, size_t input_length, uint8_t *output, size_t output_size, size_t *output_length); /** The type of the state data structure for multipart cipher operations. * * Before calling any function on a cipher operation object, the application * must initialize it by any of the following means: * - Set the structure to all-bits-zero, for example: * \code * psa_cipher_operation_t operation; * memset(&operation, 0, sizeof(operation)); * \endcode * - Initialize the structure to logical zero values, for example: * \code * psa_cipher_operation_t operation = {0}; * \endcode * - Initialize the structure to the initializer #PSA_CIPHER_OPERATION_INIT, * for example: * \code * psa_cipher_operation_t operation = PSA_CIPHER_OPERATION_INIT; * \endcode * - Assign the result of the function psa_cipher_operation_init() * to the structure, for example: * \code * psa_cipher_operation_t operation; * operation = psa_cipher_operation_init(); * \endcode * * This is an implementation-defined \c struct. Applications should not * make any assumptions about the content of this structure except * as directed by the documentation of a specific implementation. */ typedef struct psa_cipher_operation_s psa_cipher_operation_t; /** \def PSA_CIPHER_OPERATION_INIT * * This macro returns a suitable initializer for a cipher operation object of * type #psa_cipher_operation_t. */ #ifdef __DOXYGEN_ONLY__ /* This is an example definition for documentation purposes. * Implementations should define a suitable value in `crypto_struct.h`. */ #define PSA_CIPHER_OPERATION_INIT {0} #endif /** Return an initial value for a cipher operation object. */ static psa_cipher_operation_t psa_cipher_operation_init(void); /** Set the key for a multipart symmetric encryption operation. * * The sequence of operations to encrypt a message with a symmetric cipher * is as follows: * -# Allocate an operation object which will be passed to all the functions * listed here. * -# Initialize the operation object with one of the methods described in the * documentation for #psa_cipher_operation_t, e.g. * PSA_CIPHER_OPERATION_INIT. * -# Call psa_cipher_encrypt_setup() to specify the algorithm and key. * -# Call either psa_cipher_generate_iv() or psa_cipher_set_iv() to * generate or set the IV (initialization vector). You should use * psa_cipher_generate_iv() unless the protocol you are implementing * requires a specific IV value. * -# Call psa_cipher_update() zero, one or more times, passing a fragment * of the message each time. * -# Call psa_cipher_finish(). * * The application may call psa_cipher_abort() at any time after the operation * has been initialized. * * After a successful call to psa_cipher_encrypt_setup(), the application must * eventually terminate the operation. The following events terminate an * operation: * - A failed call to any of the \c psa_cipher_xxx functions. * - A call to psa_cipher_finish() or psa_cipher_abort(). * * \param[in,out] operation The operation object to set up. It must have * been initialized as per the documentation for * #psa_cipher_operation_t and not yet in use. * \param handle Handle to the key to use for the operation. * It must remain valid until the operation * terminates. * \param alg The cipher algorithm to compute * (\c PSA_ALG_XXX value such that * #PSA_ALG_IS_CIPHER(\p alg) is true). * * \retval #PSA_SUCCESS * Success. * \retval #PSA_ERROR_INVALID_HANDLE * \retval #PSA_ERROR_DOES_NOT_EXIST * \retval #PSA_ERROR_NOT_PERMITTED * \retval #PSA_ERROR_INVALID_ARGUMENT * \p handle is not compatible with \p alg. * \retval #PSA_ERROR_NOT_SUPPORTED * \p alg is not supported or is not a cipher algorithm. * \retval #PSA_ERROR_INSUFFICIENT_MEMORY * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_CORRUPTION_DETECTED * \retval #PSA_ERROR_BAD_STATE * The operation state is not valid (already set up and not * subsequently completed). * \retval #PSA_ERROR_BAD_STATE * The library has not been previously initialized by psa_crypto_init(). * It is implementation-dependent whether a failure to initialize * results in this error code. */ psa_status_t psa_cipher_encrypt_setup(psa_cipher_operation_t *operation, psa_key_handle_t handle, psa_algorithm_t alg); /** Set the key for a multipart symmetric decryption operation. * * The sequence of operations to decrypt a message with a symmetric cipher * is as follows: * -# Allocate an operation object which will be passed to all the functions * listed here. * -# Initialize the operation object with one of the methods described in the * documentation for #psa_cipher_operation_t, e.g. * PSA_CIPHER_OPERATION_INIT. * -# Call psa_cipher_decrypt_setup() to specify the algorithm and key. * -# Call psa_cipher_set_iv() with the IV (initialization vector) for the * decryption. If the IV is prepended to the ciphertext, you can call * psa_cipher_update() on a buffer containing the IV followed by the * beginning of the message. * -# Call psa_cipher_update() zero, one or more times, passing a fragment * of the message each time. * -# Call psa_cipher_finish(). * * The application may call psa_cipher_abort() at any time after the operation * has been initialized. * * After a successful call to psa_cipher_decrypt_setup(), the application must * eventually terminate the operation. The following events terminate an * operation: * - A failed call to any of the \c psa_cipher_xxx functions. * - A call to psa_cipher_finish() or psa_cipher_abort(). * * \param[in,out] operation The operation object to set up. It must have * been initialized as per the documentation for * #psa_cipher_operation_t and not yet in use. * \param handle Handle to the key to use for the operation. * It must remain valid until the operation * terminates. * \param alg The cipher algorithm to compute * (\c PSA_ALG_XXX value such that * #PSA_ALG_IS_CIPHER(\p alg) is true). * * \retval #PSA_SUCCESS * Success. * \retval #PSA_ERROR_INVALID_HANDLE * \retval #PSA_ERROR_DOES_NOT_EXIST * \retval #PSA_ERROR_NOT_PERMITTED * \retval #PSA_ERROR_INVALID_ARGUMENT * \p handle is not compatible with \p alg. * \retval #PSA_ERROR_NOT_SUPPORTED * \p alg is not supported or is not a cipher algorithm. * \retval #PSA_ERROR_INSUFFICIENT_MEMORY * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_CORRUPTION_DETECTED * \retval #PSA_ERROR_BAD_STATE * The operation state is not valid (already set up and not * subsequently completed). * \retval #PSA_ERROR_BAD_STATE * The library has not been previously initialized by psa_crypto_init(). * It is implementation-dependent whether a failure to initialize * results in this error code. */ psa_status_t psa_cipher_decrypt_setup(psa_cipher_operation_t *operation, psa_key_handle_t handle, psa_algorithm_t alg); /** Generate an IV for a symmetric encryption operation. * * This function generates a random IV (initialization vector), nonce * or initial counter value for the encryption operation as appropriate * for the chosen algorithm, key type and key size. * * The application must call psa_cipher_encrypt_setup() before * calling this function. * * If this function returns an error status, the operation becomes inactive. * * \param[in,out] operation Active cipher operation. * \param[out] iv Buffer where the generated IV is to be written. * \param iv_size Size of the \p iv buffer in bytes. * \param[out] iv_length On success, the number of bytes of the * generated IV. * * \retval #PSA_SUCCESS * Success. * \retval #PSA_ERROR_BAD_STATE * The operation state is not valid (not set up, or IV already set). * \retval #PSA_ERROR_BUFFER_TOO_SMALL * The size of the \p iv buffer is too small. * \retval #PSA_ERROR_INSUFFICIENT_MEMORY * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_CORRUPTION_DETECTED */ psa_status_t psa_cipher_generate_iv(psa_cipher_operation_t *operation, uint8_t *iv, size_t iv_size, size_t *iv_length); /** Set the IV for a symmetric encryption or decryption operation. * * This function sets the IV (initialization vector), nonce * or initial counter value for the encryption or decryption operation. * * The application must call psa_cipher_encrypt_setup() before * calling this function. * * If this function returns an error status, the operation becomes inactive. * * \note When encrypting, applications should use psa_cipher_generate_iv() * instead of this function, unless implementing a protocol that requires * a non-random IV. * * \param[in,out] operation Active cipher operation. * \param[in] iv Buffer containing the IV to use. * \param iv_length Size of the IV in bytes. * * \retval #PSA_SUCCESS * Success. * \retval #PSA_ERROR_BAD_STATE * The operation state is not valid (not set up, or IV already set). * \retval #PSA_ERROR_INVALID_ARGUMENT * The size of \p iv is not acceptable for the chosen algorithm, * or the chosen algorithm does not use an IV. * \retval #PSA_ERROR_INSUFFICIENT_MEMORY * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_CORRUPTION_DETECTED */ psa_status_t psa_cipher_set_iv(psa_cipher_operation_t *operation, const uint8_t *iv, size_t iv_length); /** Encrypt or decrypt a message fragment in an active cipher operation. * * Before calling this function, you must: * 1. Call either psa_cipher_encrypt_setup() or psa_cipher_decrypt_setup(). * The choice of setup function determines whether this function * encrypts or decrypts its input. * 2. If the algorithm requires an IV, call psa_cipher_generate_iv() * (recommended when encrypting) or psa_cipher_set_iv(). * * If this function returns an error status, the operation becomes inactive. * * \param[in,out] operation Active cipher operation. * \param[in] input Buffer containing the message fragment to * encrypt or decrypt. * \param input_length Size of the \p input buffer in bytes. * \param[out] output Buffer where the output is to be written. * \param output_size Size of the \p output buffer in bytes. * \param[out] output_length On success, the number of bytes * that make up the returned output. * * \retval #PSA_SUCCESS * Success. * \retval #PSA_ERROR_BAD_STATE * The operation state is not valid (not set up, IV required but * not set, or already completed). * \retval #PSA_ERROR_BUFFER_TOO_SMALL * The size of the \p output buffer is too small. * \retval #PSA_ERROR_INSUFFICIENT_MEMORY * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_CORRUPTION_DETECTED */ psa_status_t psa_cipher_update(psa_cipher_operation_t *operation, const uint8_t *input, size_t input_length, uint8_t *output, size_t output_size, size_t *output_length); /** Finish encrypting or decrypting a message in a cipher operation. * * The application must call psa_cipher_encrypt_setup() or * psa_cipher_decrypt_setup() before calling this function. The choice * of setup function determines whether this function encrypts or * decrypts its input. * * This function finishes the encryption or decryption of the message * formed by concatenating the inputs passed to preceding calls to * psa_cipher_update(). * * When this function returns, the operation becomes inactive. * * \param[in,out] operation Active cipher operation. * \param[out] output Buffer where the output is to be written. * \param output_size Size of the \p output buffer in bytes. * \param[out] output_length On success, the number of bytes * that make up the returned output. * * \retval #PSA_SUCCESS * Success. * \retval #PSA_ERROR_BAD_STATE * The operation state is not valid (not set up, IV required but * not set, or already completed). * \retval #PSA_ERROR_BUFFER_TOO_SMALL * The size of the \p output buffer is too small. * \retval #PSA_ERROR_INSUFFICIENT_MEMORY * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_CORRUPTION_DETECTED */ psa_status_t psa_cipher_finish(psa_cipher_operation_t *operation, uint8_t *output, size_t output_size, size_t *output_length); /** Abort a cipher operation. * * Aborting an operation frees all associated resources except for the * \p operation structure itself. Once aborted, the operation object * can be reused for another operation by calling * psa_cipher_encrypt_setup() or psa_cipher_decrypt_setup() again. * * You may call this function any time after the operation object has * been initialized by any of the following methods: * - A call to psa_cipher_encrypt_setup() or psa_cipher_decrypt_setup(), * whether it succeeds or not. * - Initializing the \c struct to all-bits-zero. * - Initializing the \c struct to logical zeros, e.g. * `psa_cipher_operation_t operation = {0}`. * * In particular, calling psa_cipher_abort() after the operation has been * terminated by a call to psa_cipher_abort() or psa_cipher_finish() * is safe and has no effect. * * \param[in,out] operation Initialized cipher operation. * * \retval #PSA_SUCCESS * \retval #PSA_ERROR_BAD_STATE * \p operation is not an active cipher operation. * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_CORRUPTION_DETECTED */ psa_status_t psa_cipher_abort(psa_cipher_operation_t *operation); /**@}*/ /** \defgroup aead Authenticated encryption with associated data (AEAD) * @{ */ /** Process an authenticated encryption operation. * * \param handle Handle to the key to use for the operation. * \param alg The AEAD algorithm to compute * (\c PSA_ALG_XXX value such that * #PSA_ALG_IS_AEAD(\p alg) is true). * \param[in] nonce Nonce or IV to use. * \param nonce_length Size of the \p nonce buffer in bytes. * \param[in] additional_data Additional data that will be authenticated * but not encrypted. * \param additional_data_length Size of \p additional_data in bytes. * \param[in] plaintext Data that will be authenticated and * encrypted. * \param plaintext_length Size of \p plaintext in bytes. * \param[out] ciphertext Output buffer for the authenticated and * encrypted data. The additional data is not * part of this output. For algorithms where the * encrypted data and the authentication tag * are defined as separate outputs, the * authentication tag is appended to the * encrypted data. * \param ciphertext_size Size of the \p ciphertext buffer in bytes. * This must be at least * #PSA_AEAD_ENCRYPT_OUTPUT_SIZE(\p alg, * \p plaintext_length). * \param[out] ciphertext_length On success, the size of the output * in the \p ciphertext buffer. * * \retval #PSA_SUCCESS * Success. * \retval #PSA_ERROR_INVALID_HANDLE * \retval #PSA_ERROR_DOES_NOT_EXIST * \retval #PSA_ERROR_NOT_PERMITTED * \retval #PSA_ERROR_INVALID_ARGUMENT * \p handle is not compatible with \p alg. * \retval #PSA_ERROR_NOT_SUPPORTED * \p alg is not supported or is not an AEAD algorithm. * \retval #PSA_ERROR_INSUFFICIENT_MEMORY * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_CORRUPTION_DETECTED * \retval #PSA_ERROR_BAD_STATE * The library has not been previously initialized by psa_crypto_init(). * It is implementation-dependent whether a failure to initialize * results in this error code. */ psa_status_t psa_aead_encrypt(psa_key_handle_t handle, psa_algorithm_t alg, const uint8_t *nonce, size_t nonce_length, const uint8_t *additional_data, size_t additional_data_length, const uint8_t *plaintext, size_t plaintext_length, uint8_t *ciphertext, size_t ciphertext_size, size_t *ciphertext_length); /** Process an authenticated decryption operation. * * \param handle Handle to the key to use for the operation. * \param alg The AEAD algorithm to compute * (\c PSA_ALG_XXX value such that * #PSA_ALG_IS_AEAD(\p alg) is true). * \param[in] nonce Nonce or IV to use. * \param nonce_length Size of the \p nonce buffer in bytes. * \param[in] additional_data Additional data that has been authenticated * but not encrypted. * \param additional_data_length Size of \p additional_data in bytes. * \param[in] ciphertext Data that has been authenticated and * encrypted. For algorithms where the * encrypted data and the authentication tag * are defined as separate inputs, the buffer * must contain the encrypted data followed * by the authentication tag. * \param ciphertext_length Size of \p ciphertext in bytes. * \param[out] plaintext Output buffer for the decrypted data. * \param plaintext_size Size of the \p plaintext buffer in bytes. * This must be at least * #PSA_AEAD_DECRYPT_OUTPUT_SIZE(\p alg, * \p ciphertext_length). * \param[out] plaintext_length On success, the size of the output * in the \p plaintext buffer. * * \retval #PSA_SUCCESS * Success. * \retval #PSA_ERROR_INVALID_HANDLE * \retval #PSA_ERROR_DOES_NOT_EXIST * \retval #PSA_ERROR_INVALID_SIGNATURE * The ciphertext is not authentic. * \retval #PSA_ERROR_NOT_PERMITTED * \retval #PSA_ERROR_INVALID_ARGUMENT * \p handle is not compatible with \p alg. * \retval #PSA_ERROR_NOT_SUPPORTED * \p alg is not supported or is not an AEAD algorithm. * \retval #PSA_ERROR_INSUFFICIENT_MEMORY * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_CORRUPTION_DETECTED * \retval #PSA_ERROR_BAD_STATE * The library has not been previously initialized by psa_crypto_init(). * It is implementation-dependent whether a failure to initialize * results in this error code. */ psa_status_t psa_aead_decrypt(psa_key_handle_t handle, psa_algorithm_t alg, const uint8_t *nonce, size_t nonce_length, const uint8_t *additional_data, size_t additional_data_length, const uint8_t *ciphertext, size_t ciphertext_length, uint8_t *plaintext, size_t plaintext_size, size_t *plaintext_length); /** The type of the state data structure for multipart AEAD operations. * * Before calling any function on an AEAD operation object, the application * must initialize it by any of the following means: * - Set the structure to all-bits-zero, for example: * \code * psa_aead_operation_t operation; * memset(&operation, 0, sizeof(operation)); * \endcode * - Initialize the structure to logical zero values, for example: * \code * psa_aead_operation_t operation = {0}; * \endcode * - Initialize the structure to the initializer #PSA_AEAD_OPERATION_INIT, * for example: * \code * psa_aead_operation_t operation = PSA_AEAD_OPERATION_INIT; * \endcode * - Assign the result of the function psa_aead_operation_init() * to the structure, for example: * \code * psa_aead_operation_t operation; * operation = psa_aead_operation_init(); * \endcode * * This is an implementation-defined \c struct. Applications should not * make any assumptions about the content of this structure except * as directed by the documentation of a specific implementation. */ typedef struct psa_aead_operation_s psa_aead_operation_t; /** \def PSA_AEAD_OPERATION_INIT * * This macro returns a suitable initializer for an AEAD operation object of * type #psa_aead_operation_t. */ #ifdef __DOXYGEN_ONLY__ /* This is an example definition for documentation purposes. * Implementations should define a suitable value in `crypto_struct.h`. */ #define PSA_AEAD_OPERATION_INIT {0} #endif /** Return an initial value for an AEAD operation object. */ static psa_aead_operation_t psa_aead_operation_init(void); /** Set the key for a multipart authenticated encryption operation. * * The sequence of operations to encrypt a message with authentication * is as follows: * -# Allocate an operation object which will be passed to all the functions * listed here. * -# Initialize the operation object with one of the methods described in the * documentation for #psa_aead_operation_t, e.g. * PSA_AEAD_OPERATION_INIT. * -# Call psa_aead_encrypt_setup() to specify the algorithm and key. * -# If needed, call psa_aead_set_lengths() to specify the length of the * inputs to the subsequent calls to psa_aead_update_ad() and * psa_aead_update(). See the documentation of psa_aead_set_lengths() * for details. * -# Call either psa_aead_generate_nonce() or psa_aead_set_nonce() to * generate or set the nonce. You should use * psa_aead_generate_nonce() unless the protocol you are implementing * requires a specific nonce value. * -# Call psa_aead_update_ad() zero, one or more times, passing a fragment * of the non-encrypted additional authenticated data each time. * -# Call psa_aead_update() zero, one or more times, passing a fragment * of the message to encrypt each time. * -# Call psa_aead_finish(). * * The application may call psa_aead_abort() at any time after the operation * has been initialized. * * After a successful call to psa_aead_encrypt_setup(), the application must * eventually terminate the operation. The following events terminate an * operation: * - A failed call to any of the \c psa_aead_xxx functions. * - A call to psa_aead_finish(), psa_aead_verify() or psa_aead_abort(). * * \param[in,out] operation The operation object to set up. It must have * been initialized as per the documentation for * #psa_aead_operation_t and not yet in use. * \param handle Handle to the key to use for the operation. * It must remain valid until the operation * terminates. * \param alg The AEAD algorithm to compute * (\c PSA_ALG_XXX value such that * #PSA_ALG_IS_AEAD(\p alg) is true). * * \retval #PSA_SUCCESS * Success. * \retval #PSA_ERROR_INVALID_HANDLE * \retval #PSA_ERROR_NOT_PERMITTED * \retval #PSA_ERROR_INVALID_ARGUMENT * \p handle is not compatible with \p alg. * \retval #PSA_ERROR_NOT_SUPPORTED * \p alg is not supported or is not an AEAD algorithm. * \retval #PSA_ERROR_INSUFFICIENT_MEMORY * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_CORRUPTION_DETECTED * \retval #PSA_ERROR_BAD_STATE * The library has not been previously initialized by psa_crypto_init(). * It is implementation-dependent whether a failure to initialize * results in this error code. */ psa_status_t psa_aead_encrypt_setup(psa_aead_operation_t *operation, psa_key_handle_t handle, psa_algorithm_t alg); /** Set the key for a multipart authenticated decryption operation. * * The sequence of operations to decrypt a message with authentication * is as follows: * -# Allocate an operation object which will be passed to all the functions * listed here. * -# Initialize the operation object with one of the methods described in the * documentation for #psa_aead_operation_t, e.g. * PSA_AEAD_OPERATION_INIT. * -# Call psa_aead_decrypt_setup() to specify the algorithm and key. * -# If needed, call psa_aead_set_lengths() to specify the length of the * inputs to the subsequent calls to psa_aead_update_ad() and * psa_aead_update(). See the documentation of psa_aead_set_lengths() * for details. * -# Call psa_aead_set_nonce() with the nonce for the decryption. * -# Call psa_aead_update_ad() zero, one or more times, passing a fragment * of the non-encrypted additional authenticated data each time. * -# Call psa_aead_update() zero, one or more times, passing a fragment * of the ciphertext to decrypt each time. * -# Call psa_aead_verify(). * * The application may call psa_aead_abort() at any time after the operation * has been initialized. * * After a successful call to psa_aead_decrypt_setup(), the application must * eventually terminate the operation. The following events terminate an * operation: * - A failed call to any of the \c psa_aead_xxx functions. * - A call to psa_aead_finish(), psa_aead_verify() or psa_aead_abort(). * * \param[in,out] operation The operation object to set up. It must have * been initialized as per the documentation for * #psa_aead_operation_t and not yet in use. * \param handle Handle to the key to use for the operation. * It must remain valid until the operation * terminates. * \param alg The AEAD algorithm to compute * (\c PSA_ALG_XXX value such that * #PSA_ALG_IS_AEAD(\p alg) is true). * * \retval #PSA_SUCCESS * Success. * \retval #PSA_ERROR_INVALID_HANDLE * \retval #PSA_ERROR_NOT_PERMITTED * \retval #PSA_ERROR_INVALID_ARGUMENT * \p handle is not compatible with \p alg. * \retval #PSA_ERROR_NOT_SUPPORTED * \p alg is not supported or is not an AEAD algorithm. * \retval #PSA_ERROR_INSUFFICIENT_MEMORY * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_CORRUPTION_DETECTED * \retval #PSA_ERROR_BAD_STATE * The library has not been previously initialized by psa_crypto_init(). * It is implementation-dependent whether a failure to initialize * results in this error code. */ psa_status_t psa_aead_decrypt_setup(psa_aead_operation_t *operation, psa_key_handle_t handle, psa_algorithm_t alg); /** Generate a random nonce for an authenticated encryption operation. * * This function generates a random nonce for the authenticated encryption * operation with an appropriate size for the chosen algorithm, key type * and key size. * * The application must call psa_aead_encrypt_setup() before * calling this function. * * If this function returns an error status, the operation becomes inactive. * * \param[in,out] operation Active AEAD operation. * \param[out] nonce Buffer where the generated nonce is to be * written. * \param nonce_size Size of the \p nonce buffer in bytes. * \param[out] nonce_length On success, the number of bytes of the * generated nonce. * * \retval #PSA_SUCCESS * Success. * \retval #PSA_ERROR_BAD_STATE * The operation state is not valid (not set up, or nonce already set). * \retval #PSA_ERROR_BUFFER_TOO_SMALL * The size of the \p nonce buffer is too small. * \retval #PSA_ERROR_INSUFFICIENT_MEMORY * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_CORRUPTION_DETECTED */ psa_status_t psa_aead_generate_nonce(psa_aead_operation_t *operation, uint8_t *nonce, size_t nonce_size, size_t *nonce_length); /** Set the nonce for an authenticated encryption or decryption operation. * * This function sets the nonce for the authenticated * encryption or decryption operation. * * The application must call psa_aead_encrypt_setup() before * calling this function. * * If this function returns an error status, the operation becomes inactive. * * \note When encrypting, applications should use psa_aead_generate_nonce() * instead of this function, unless implementing a protocol that requires * a non-random IV. * * \param[in,out] operation Active AEAD operation. * \param[in] nonce Buffer containing the nonce to use. * \param nonce_length Size of the nonce in bytes. * * \retval #PSA_SUCCESS * Success. * \retval #PSA_ERROR_BAD_STATE * The operation state is not valid (not set up, or nonce already set). * \retval #PSA_ERROR_INVALID_ARGUMENT * The size of \p nonce is not acceptable for the chosen algorithm. * \retval #PSA_ERROR_INSUFFICIENT_MEMORY * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_CORRUPTION_DETECTED */ psa_status_t psa_aead_set_nonce(psa_aead_operation_t *operation, const uint8_t *nonce, size_t nonce_length); /** Declare the lengths of the message and additional data for AEAD. * * The application must call this function before calling * psa_aead_update_ad() or psa_aead_update() if the algorithm for * the operation requires it. If the algorithm does not require it, * calling this function is optional, but if this function is called * then the implementation must enforce the lengths. * * You may call this function before or after setting the nonce with * psa_aead_set_nonce() or psa_aead_generate_nonce(). * * - For #PSA_ALG_CCM, calling this function is required. * - For the other AEAD algorithms defined in this specification, calling * this function is not required. * - For vendor-defined algorithm, refer to the vendor documentation. * * \param[in,out] operation Active AEAD operation. * \param ad_length Size of the non-encrypted additional * authenticated data in bytes. * \param plaintext_length Size of the plaintext to encrypt in bytes. * * \retval #PSA_SUCCESS * Success. * \retval #PSA_ERROR_BAD_STATE * The operation state is not valid (not set up, already completed, * or psa_aead_update_ad() or psa_aead_update() already called). * \retval #PSA_ERROR_INVALID_ARGUMENT * At least one of the lengths is not acceptable for the chosen * algorithm. * \retval #PSA_ERROR_INSUFFICIENT_MEMORY * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_CORRUPTION_DETECTED */ psa_status_t psa_aead_set_lengths(psa_aead_operation_t *operation, size_t ad_length, size_t plaintext_length); /** Pass additional data to an active AEAD operation. * * Additional data is authenticated, but not encrypted. * * You may call this function multiple times to pass successive fragments * of the additional data. You may not call this function after passing * data to encrypt or decrypt with psa_aead_update(). * * Before calling this function, you must: * 1. Call either psa_aead_encrypt_setup() or psa_aead_decrypt_setup(). * 2. Set the nonce with psa_aead_generate_nonce() or psa_aead_set_nonce(). * * If this function returns an error status, the operation becomes inactive. * * \warning When decrypting, until psa_aead_verify() has returned #PSA_SUCCESS, * there is no guarantee that the input is valid. Therefore, until * you have called psa_aead_verify() and it has returned #PSA_SUCCESS, * treat the input as untrusted and prepare to undo any action that * depends on the input if psa_aead_verify() returns an error status. * * \param[in,out] operation Active AEAD operation. * \param[in] input Buffer containing the fragment of * additional data. * \param input_length Size of the \p input buffer in bytes. * * \retval #PSA_SUCCESS * Success. * \retval #PSA_ERROR_BAD_STATE * The operation state is not valid (not set up, nonce not set, * psa_aead_update() already called, or operation already completed). * \retval #PSA_ERROR_INVALID_ARGUMENT * The total input length overflows the additional data length that * was previously specified with psa_aead_set_lengths(). * \retval #PSA_ERROR_INSUFFICIENT_MEMORY * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_CORRUPTION_DETECTED */ psa_status_t psa_aead_update_ad(psa_aead_operation_t *operation, const uint8_t *input, size_t input_length); /** Encrypt or decrypt a message fragment in an active AEAD operation. * * Before calling this function, you must: * 1. Call either psa_aead_encrypt_setup() or psa_aead_decrypt_setup(). * The choice of setup function determines whether this function * encrypts or decrypts its input. * 2. Set the nonce with psa_aead_generate_nonce() or psa_aead_set_nonce(). * 3. Call psa_aead_update_ad() to pass all the additional data. * * If this function returns an error status, the operation becomes inactive. * * \warning When decrypting, until psa_aead_verify() has returned #PSA_SUCCESS, * there is no guarantee that the input is valid. Therefore, until * you have called psa_aead_verify() and it has returned #PSA_SUCCESS: * - Do not use the output in any way other than storing it in a * confidential location. If you take any action that depends * on the tentative decrypted data, this action will need to be * undone if the input turns out not to be valid. Furthermore, * if an adversary can observe that this action took place * (for example through timing), they may be able to use this * fact as an oracle to decrypt any message encrypted with the * same key. * - In particular, do not copy the output anywhere but to a * memory or storage space that you have exclusive access to. * * This function does not require the input to be aligned to any * particular block boundary. If the implementation can only process * a whole block at a time, it must consume all the input provided, but * it may delay the end of the corresponding output until a subsequent * call to psa_aead_update(), psa_aead_finish() or psa_aead_verify() * provides sufficient input. The amount of data that can be delayed * in this way is bounded by #PSA_AEAD_UPDATE_OUTPUT_SIZE. * * \param[in,out] operation Active AEAD operation. * \param[in] input Buffer containing the message fragment to * encrypt or decrypt. * \param input_length Size of the \p input buffer in bytes. * \param[out] output Buffer where the output is to be written. * \param output_size Size of the \p output buffer in bytes. * This must be at least * #PSA_AEAD_UPDATE_OUTPUT_SIZE(\c alg, * \p input_length) where \c alg is the * algorithm that is being calculated. * \param[out] output_length On success, the number of bytes * that make up the returned output. * * \retval #PSA_SUCCESS * Success. * \retval #PSA_ERROR_BAD_STATE * The operation state is not valid (not set up, nonce not set * or already completed). * \retval #PSA_ERROR_BUFFER_TOO_SMALL * The size of the \p output buffer is too small. * You can determine a sufficient buffer size by calling * #PSA_AEAD_UPDATE_OUTPUT_SIZE(\c alg, \p input_length) * where \c alg is the algorithm that is being calculated. * \retval #PSA_ERROR_INVALID_ARGUMENT * The total length of input to psa_aead_update_ad() so far is * less than the additional data length that was previously * specified with psa_aead_set_lengths(). * \retval #PSA_ERROR_INVALID_ARGUMENT * The total input length overflows the plaintext length that * was previously specified with psa_aead_set_lengths(). * \retval #PSA_ERROR_INSUFFICIENT_MEMORY * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_CORRUPTION_DETECTED */ psa_status_t psa_aead_update(psa_aead_operation_t *operation, const uint8_t *input, size_t input_length, uint8_t *output, size_t output_size, size_t *output_length); /** Finish encrypting a message in an AEAD operation. * * The operation must have been set up with psa_aead_encrypt_setup(). * * This function finishes the authentication of the additional data * formed by concatenating the inputs passed to preceding calls to * psa_aead_update_ad() with the plaintext formed by concatenating the * inputs passed to preceding calls to psa_aead_update(). * * This function has two output buffers: * - \p ciphertext contains trailing ciphertext that was buffered from * preceding calls to psa_aead_update(). * - \p tag contains the authentication tag. Its length is always * #PSA_AEAD_TAG_LENGTH(\c alg) where \c alg is the AEAD algorithm * that the operation performs. * * When this function returns, the operation becomes inactive. * * \param[in,out] operation Active AEAD operation. * \param[out] ciphertext Buffer where the last part of the ciphertext * is to be written. * \param ciphertext_size Size of the \p ciphertext buffer in bytes. * This must be at least * #PSA_AEAD_FINISH_OUTPUT_SIZE(\c alg) where * \c alg is the algorithm that is being * calculated. * \param[out] ciphertext_length On success, the number of bytes of * returned ciphertext. * \param[out] tag Buffer where the authentication tag is * to be written. * \param tag_size Size of the \p tag buffer in bytes. * This must be at least * #PSA_AEAD_TAG_LENGTH(\c alg) where \c alg is * the algorithm that is being calculated. * \param[out] tag_length On success, the number of bytes * that make up the returned tag. * * \retval #PSA_SUCCESS * Success. * \retval #PSA_ERROR_BAD_STATE * The operation state is not valid (not set up, nonce not set, * decryption, or already completed). * \retval #PSA_ERROR_BUFFER_TOO_SMALL * The size of the \p ciphertext or \p tag buffer is too small. * You can determine a sufficient buffer size for \p ciphertext by * calling #PSA_AEAD_FINISH_OUTPUT_SIZE(\c alg) * where \c alg is the algorithm that is being calculated. * You can determine a sufficient buffer size for \p tag by * calling #PSA_AEAD_TAG_LENGTH(\c alg). * \retval #PSA_ERROR_INVALID_ARGUMENT * The total length of input to psa_aead_update_ad() so far is * less than the additional data length that was previously * specified with psa_aead_set_lengths(). * \retval #PSA_ERROR_INVALID_ARGUMENT * The total length of input to psa_aead_update() so far is * less than the plaintext length that was previously * specified with psa_aead_set_lengths(). * \retval #PSA_ERROR_INSUFFICIENT_MEMORY * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_CORRUPTION_DETECTED */ psa_status_t psa_aead_finish(psa_aead_operation_t *operation, uint8_t *ciphertext, size_t ciphertext_size, size_t *ciphertext_length, uint8_t *tag, size_t tag_size, size_t *tag_length); /** Finish authenticating and decrypting a message in an AEAD operation. * * The operation must have been set up with psa_aead_decrypt_setup(). * * This function finishes the authentication of the additional data * formed by concatenating the inputs passed to preceding calls to * psa_aead_update_ad() with the ciphertext formed by concatenating the * inputs passed to preceding calls to psa_aead_update(). * * When this function returns, the operation becomes inactive. * * \param[in,out] operation Active AEAD operation. * \param[out] plaintext Buffer where the last part of the plaintext * is to be written. This is the remaining data * from previous calls to psa_aead_update() * that could not be processed until the end * of the input. * \param plaintext_size Size of the \p plaintext buffer in bytes. * This must be at least * #PSA_AEAD_VERIFY_OUTPUT_SIZE(\c alg) where * \c alg is the algorithm that is being * calculated. * \param[out] plaintext_length On success, the number of bytes of * returned plaintext. * \param[in] tag Buffer containing the authentication tag. * \param tag_length Size of the \p tag buffer in bytes. * * \retval #PSA_SUCCESS * Success. * \retval #PSA_ERROR_BAD_STATE * The operation state is not valid (not set up, nonce not set, * encryption, or already completed). * \retval #PSA_ERROR_BUFFER_TOO_SMALL * The size of the \p plaintext buffer is too small. * You can determine a sufficient buffer size for \p plaintext by * calling #PSA_AEAD_VERIFY_OUTPUT_SIZE(\c alg) * where \c alg is the algorithm that is being calculated. * \retval #PSA_ERROR_INVALID_ARGUMENT * The total length of input to psa_aead_update_ad() so far is * less than the additional data length that was previously * specified with psa_aead_set_lengths(). * \retval #PSA_ERROR_INVALID_ARGUMENT * The total length of input to psa_aead_update() so far is * less than the plaintext length that was previously * specified with psa_aead_set_lengths(). * \retval #PSA_ERROR_INSUFFICIENT_MEMORY * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_CORRUPTION_DETECTED */ psa_status_t psa_aead_verify(psa_aead_operation_t *operation, uint8_t *plaintext, size_t plaintext_size, size_t *plaintext_length, const uint8_t *tag, size_t tag_length); /** Abort an AEAD operation. * * Aborting an operation frees all associated resources except for the * \p operation structure itself. Once aborted, the operation object * can be reused for another operation by calling * psa_aead_encrypt_setup() or psa_aead_decrypt_setup() again. * * You may call this function any time after the operation object has * been initialized by any of the following methods: * - A call to psa_aead_encrypt_setup() or psa_aead_decrypt_setup(), * whether it succeeds or not. * - Initializing the \c struct to all-bits-zero. * - Initializing the \c struct to logical zeros, e.g. * `psa_aead_operation_t operation = {0}`. * * In particular, calling psa_aead_abort() after the operation has been * terminated by a call to psa_aead_abort() or psa_aead_finish() * is safe and has no effect. * * \param[in,out] operation Initialized AEAD operation. * * \retval #PSA_SUCCESS * \retval #PSA_ERROR_BAD_STATE * \p operation is not an active AEAD operation. * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_CORRUPTION_DETECTED */ psa_status_t psa_aead_abort(psa_aead_operation_t *operation); /**@}*/ /** \defgroup asymmetric Asymmetric cryptography * @{ */ /** * \brief Sign a hash or short message with a private key. * * Note that to perform a hash-and-sign signature algorithm, you must * first calculate the hash by calling psa_hash_setup(), psa_hash_update() * and psa_hash_finish(). Then pass the resulting hash as the \p hash * parameter to this function. You can use #PSA_ALG_SIGN_GET_HASH(\p alg) * to determine the hash algorithm to use. * * \param handle Handle to the key to use for the operation. * It must be an asymmetric key pair. * \param alg A signature algorithm that is compatible with * the type of \p handle. * \param[in] hash The hash or message to sign. * \param hash_length Size of the \p hash buffer in bytes. * \param[out] signature Buffer where the signature is to be written. * \param signature_size Size of the \p signature buffer in bytes. * \param[out] signature_length On success, the number of bytes * that make up the returned signature value. * * \retval #PSA_SUCCESS * \retval #PSA_ERROR_BUFFER_TOO_SMALL * The size of the \p signature buffer is too small. You can * determine a sufficient buffer size by calling * #PSA_ASYMMETRIC_SIGN_OUTPUT_SIZE(\c key_type, \c key_bits, \p alg) * where \c key_type and \c key_bits are the type and bit-size * respectively of \p handle. * \retval #PSA_ERROR_NOT_SUPPORTED * \retval #PSA_ERROR_INVALID_ARGUMENT * \retval #PSA_ERROR_INSUFFICIENT_MEMORY * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_CORRUPTION_DETECTED * \retval #PSA_ERROR_INSUFFICIENT_ENTROPY * \retval #PSA_ERROR_BAD_STATE * The library has not been previously initialized by psa_crypto_init(). * It is implementation-dependent whether a failure to initialize * results in this error code. */ psa_status_t psa_asymmetric_sign(psa_key_handle_t handle, psa_algorithm_t alg, const uint8_t *hash, size_t hash_length, uint8_t *signature, size_t signature_size, size_t *signature_length); /** * \brief Verify the signature a hash or short message using a public key. * * Note that to perform a hash-and-sign signature algorithm, you must * first calculate the hash by calling psa_hash_setup(), psa_hash_update() * and psa_hash_finish(). Then pass the resulting hash as the \p hash * parameter to this function. You can use #PSA_ALG_SIGN_GET_HASH(\p alg) * to determine the hash algorithm to use. * * \param handle Handle to the key to use for the operation. * It must be a public key or an asymmetric key pair. * \param alg A signature algorithm that is compatible with * the type of \p handle. * \param[in] hash The hash or message whose signature is to be * verified. * \param hash_length Size of the \p hash buffer in bytes. * \param[in] signature Buffer containing the signature to verify. * \param signature_length Size of the \p signature buffer in bytes. * * \retval #PSA_SUCCESS * The signature is valid. * \retval #PSA_ERROR_INVALID_SIGNATURE * The calculation was perfomed successfully, but the passed * signature is not a valid signature. * \retval #PSA_ERROR_NOT_SUPPORTED * \retval #PSA_ERROR_INVALID_ARGUMENT * \retval #PSA_ERROR_INSUFFICIENT_MEMORY * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_CORRUPTION_DETECTED * \retval #PSA_ERROR_BAD_STATE * The library has not been previously initialized by psa_crypto_init(). * It is implementation-dependent whether a failure to initialize * results in this error code. */ psa_status_t psa_asymmetric_verify(psa_key_handle_t handle, psa_algorithm_t alg, const uint8_t *hash, size_t hash_length, const uint8_t *signature, size_t signature_length); /** * \brief Encrypt a short message with a public key. * * \param handle Handle to the key to use for the operation. * It must be a public key or an asymmetric * key pair. * \param alg An asymmetric encryption algorithm that is * compatible with the type of \p handle. * \param[in] input The message to encrypt. * \param input_length Size of the \p input buffer in bytes. * \param[in] salt A salt or label, if supported by the * encryption algorithm. * If the algorithm does not support a * salt, pass \c NULL. * If the algorithm supports an optional * salt and you do not want to pass a salt, * pass \c NULL. * * - For #PSA_ALG_RSA_PKCS1V15_CRYPT, no salt is * supported. * \param salt_length Size of the \p salt buffer in bytes. * If \p salt is \c NULL, pass 0. * \param[out] output Buffer where the encrypted message is to * be written. * \param output_size Size of the \p output buffer in bytes. * \param[out] output_length On success, the number of bytes * that make up the returned output. * * \retval #PSA_SUCCESS * \retval #PSA_ERROR_BUFFER_TOO_SMALL * The size of the \p output buffer is too small. You can * determine a sufficient buffer size by calling * #PSA_ASYMMETRIC_ENCRYPT_OUTPUT_SIZE(\c key_type, \c key_bits, \p alg) * where \c key_type and \c key_bits are the type and bit-size * respectively of \p handle. * \retval #PSA_ERROR_NOT_SUPPORTED * \retval #PSA_ERROR_INVALID_ARGUMENT * \retval #PSA_ERROR_INSUFFICIENT_MEMORY * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_CORRUPTION_DETECTED * \retval #PSA_ERROR_INSUFFICIENT_ENTROPY * \retval #PSA_ERROR_BAD_STATE * The library has not been previously initialized by psa_crypto_init(). * It is implementation-dependent whether a failure to initialize * results in this error code. */ psa_status_t psa_asymmetric_encrypt(psa_key_handle_t handle, psa_algorithm_t alg, const uint8_t *input, size_t input_length, const uint8_t *salt, size_t salt_length, uint8_t *output, size_t output_size, size_t *output_length); /** * \brief Decrypt a short message with a private key. * * \param handle Handle to the key to use for the operation. * It must be an asymmetric key pair. * \param alg An asymmetric encryption algorithm that is * compatible with the type of \p handle. * \param[in] input The message to decrypt. * \param input_length Size of the \p input buffer in bytes. * \param[in] salt A salt or label, if supported by the * encryption algorithm. * If the algorithm does not support a * salt, pass \c NULL. * If the algorithm supports an optional * salt and you do not want to pass a salt, * pass \c NULL. * * - For #PSA_ALG_RSA_PKCS1V15_CRYPT, no salt is * supported. * \param salt_length Size of the \p salt buffer in bytes. * If \p salt is \c NULL, pass 0. * \param[out] output Buffer where the decrypted message is to * be written. * \param output_size Size of the \c output buffer in bytes. * \param[out] output_length On success, the number of bytes * that make up the returned output. * * \retval #PSA_SUCCESS * \retval #PSA_ERROR_BUFFER_TOO_SMALL * The size of the \p output buffer is too small. You can * determine a sufficient buffer size by calling * #PSA_ASYMMETRIC_DECRYPT_OUTPUT_SIZE(\c key_type, \c key_bits, \p alg) * where \c key_type and \c key_bits are the type and bit-size * respectively of \p handle. * \retval #PSA_ERROR_NOT_SUPPORTED * \retval #PSA_ERROR_INVALID_ARGUMENT * \retval #PSA_ERROR_INSUFFICIENT_MEMORY * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_CORRUPTION_DETECTED * \retval #PSA_ERROR_INSUFFICIENT_ENTROPY * \retval #PSA_ERROR_INVALID_PADDING * \retval #PSA_ERROR_BAD_STATE * The library has not been previously initialized by psa_crypto_init(). * It is implementation-dependent whether a failure to initialize * results in this error code. */ psa_status_t psa_asymmetric_decrypt(psa_key_handle_t handle, psa_algorithm_t alg, const uint8_t *input, size_t input_length, const uint8_t *salt, size_t salt_length, uint8_t *output, size_t output_size, size_t *output_length); /**@}*/ /** \defgroup key_derivation Key derivation and pseudorandom generation * @{ */ /** The type of the state data structure for key derivation operations. * * Before calling any function on a key derivation operation object, the * application must initialize it by any of the following means: * - Set the structure to all-bits-zero, for example: * \code * psa_key_derivation_operation_t operation; * memset(&operation, 0, sizeof(operation)); * \endcode * - Initialize the structure to logical zero values, for example: * \code * psa_key_derivation_operation_t operation = {0}; * \endcode * - Initialize the structure to the initializer #PSA_KEY_DERIVATION_OPERATION_INIT, * for example: * \code * psa_key_derivation_operation_t operation = PSA_KEY_DERIVATION_OPERATION_INIT; * \endcode * - Assign the result of the function psa_key_derivation_operation_init() * to the structure, for example: * \code * psa_key_derivation_operation_t operation; * operation = psa_key_derivation_operation_init(); * \endcode * * This is an implementation-defined \c struct. Applications should not * make any assumptions about the content of this structure except * as directed by the documentation of a specific implementation. */ typedef struct psa_key_derivation_s psa_key_derivation_operation_t; /** \def PSA_KEY_DERIVATION_OPERATION_INIT * * This macro returns a suitable initializer for a key derivation operation * object of type #psa_key_derivation_operation_t. */ #ifdef __DOXYGEN_ONLY__ /* This is an example definition for documentation purposes. * Implementations should define a suitable value in `crypto_struct.h`. */ #define PSA_KEY_DERIVATION_OPERATION_INIT {0} #endif /** Return an initial value for a key derivation operation object. */ static psa_key_derivation_operation_t psa_key_derivation_operation_init(void); /** Set up a key derivation operation. * * A key derivation algorithm takes some inputs and uses them to generate * a byte stream in a deterministic way. * This byte stream can be used to produce keys and other * cryptographic material. * * To derive a key: * - Start with an initialized object of type #psa_key_derivation_operation_t. * - Call psa_key_derivation_setup() to select the algorithm. * - Provide the inputs for the key derivation by calling * psa_key_derivation_input_bytes() or psa_key_derivation_input_key() * as appropriate. Which inputs are needed, in what order, and whether * they may be keys and if so of what type depends on the algorithm. * - Optionally set the operation's maximum capacity with * psa_key_derivation_set_capacity(). You may do this before, in the middle * of or after providing inputs. For some algorithms, this step is mandatory * because the output depends on the maximum capacity. * - To derive a key, call psa_key_derivation_output_key(). * To derive a byte string for a different purpose, call * - psa_key_derivation_output_bytes(). * Successive calls to these functions use successive output bytes * calculated by the key derivation algorithm. * - Clean up the key derivation operation object with * psa_key_derivation_abort(). * * \param[in,out] operation The key derivation operation object * to set up. It must * have been initialized but not set up yet. * \param alg The key derivation algorithm to compute * (\c PSA_ALG_XXX value such that * #PSA_ALG_IS_KEY_DERIVATION(\p alg) is true). * * \retval #PSA_SUCCESS * Success. * \retval #PSA_ERROR_INVALID_ARGUMENT * \c alg is not a key derivation algorithm. * \retval #PSA_ERROR_NOT_SUPPORTED * \c alg is not supported or is not a key derivation algorithm. * \retval #PSA_ERROR_INSUFFICIENT_MEMORY * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_CORRUPTION_DETECTED * \retval #PSA_ERROR_BAD_STATE */ psa_status_t psa_key_derivation_setup( psa_key_derivation_operation_t *operation, psa_algorithm_t alg); /** Retrieve the current capacity of a key derivation operation. * * The capacity of a key derivation is the maximum number of bytes that it can * return. When you get *N* bytes of output from a key derivation operation, * this reduces its capacity by *N*. * * \param[in] operation The operation to query. * \param[out] capacity On success, the capacity of the operation. * * \retval #PSA_SUCCESS * \retval #PSA_ERROR_BAD_STATE * \retval #PSA_ERROR_COMMUNICATION_FAILURE */ psa_status_t psa_key_derivation_get_capacity( const psa_key_derivation_operation_t *operation, size_t *capacity); /** Set the maximum capacity of a key derivation operation. * * The capacity of a key derivation operation is the maximum number of bytes * that the key derivation operation can return from this point onwards. * * \param[in,out] operation The key derivation operation object to modify. * \param capacity The new capacity of the operation. * It must be less or equal to the operation's * current capacity. * * \retval #PSA_SUCCESS * \retval #PSA_ERROR_INVALID_ARGUMENT * \p capacity is larger than the operation's current capacity. * In this case, the operation object remains valid and its capacity * remains unchanged. * \retval #PSA_ERROR_BAD_STATE * \retval #PSA_ERROR_COMMUNICATION_FAILURE */ psa_status_t psa_key_derivation_set_capacity( psa_key_derivation_operation_t *operation, size_t capacity); /** Use the maximum possible capacity for a key derivation operation. * * Use this value as the capacity argument when setting up a key derivation * to indicate that the operation should have the maximum possible capacity. * The value of the maximum possible capacity depends on the key derivation * algorithm. */ #define PSA_KEY_DERIVATION_UNLIMITED_CAPACITY ((size_t)(-1)) /** Provide an input for key derivation or key agreement. * * Which inputs are required and in what order depends on the algorithm. * Refer to the documentation of each key derivation or key agreement * algorithm for information. * * This function passes direct inputs. Some inputs must be passed as keys * using psa_key_derivation_input_key() instead of this function. Refer to * the documentation of individual step types for information. * * \param[in,out] operation The key derivation operation object to use. * It must have been set up with * psa_key_derivation_setup() and must not * have produced any output yet. * \param step Which step the input data is for. * \param[in] data Input data to use. * \param data_length Size of the \p data buffer in bytes. * * \retval #PSA_SUCCESS * Success. * \retval #PSA_ERROR_INVALID_ARGUMENT * \c step is not compatible with the operation's algorithm. * \retval #PSA_ERROR_INVALID_ARGUMENT * \c step does not allow direct inputs. * \retval #PSA_ERROR_INSUFFICIENT_MEMORY * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_CORRUPTION_DETECTED * \retval #PSA_ERROR_BAD_STATE * The value of \p step is not valid given the state of \p operation. * \retval #PSA_ERROR_BAD_STATE * The library has not been previously initialized by psa_crypto_init(). * It is implementation-dependent whether a failure to initialize * results in this error code. */ psa_status_t psa_key_derivation_input_bytes( psa_key_derivation_operation_t *operation, psa_key_derivation_step_t step, const uint8_t *data, size_t data_length); /** Provide an input for key derivation in the form of a key. * * Which inputs are required and in what order depends on the algorithm. * Refer to the documentation of each key derivation or key agreement * algorithm for information. * * This function passes key inputs. Some inputs must be passed as keys * of the appropriate type using this function, while others must be * passed as direct inputs using psa_key_derivation_input_bytes(). Refer to * the documentation of individual step types for information. * * \param[in,out] operation The key derivation operation object to use. * It must have been set up with * psa_key_derivation_setup() and must not * have produced any output yet. * \param step Which step the input data is for. * \param handle Handle to the key. It must have an * appropriate type for \p step and must * allow the usage #PSA_KEY_USAGE_DERIVE. * * \retval #PSA_SUCCESS * Success. * \retval #PSA_ERROR_INVALID_HANDLE * \retval #PSA_ERROR_DOES_NOT_EXIST * \retval #PSA_ERROR_NOT_PERMITTED * \retval #PSA_ERROR_INVALID_ARGUMENT * \c step is not compatible with the operation's algorithm. * \retval #PSA_ERROR_INVALID_ARGUMENT * \c step does not allow key inputs. * \retval #PSA_ERROR_INSUFFICIENT_MEMORY * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_CORRUPTION_DETECTED * \retval #PSA_ERROR_BAD_STATE * The value of \p step is not valid given the state of \p operation. * \retval #PSA_ERROR_BAD_STATE * The library has not been previously initialized by psa_crypto_init(). * It is implementation-dependent whether a failure to initialize * results in this error code. */ psa_status_t psa_key_derivation_input_key( psa_key_derivation_operation_t *operation, psa_key_derivation_step_t step, psa_key_handle_t handle); /** Perform a key agreement and use the shared secret as input to a key * derivation. * * A key agreement algorithm takes two inputs: a private key \p private_key * a public key \p peer_key. * The result of this function is passed as input to a key derivation. * The output of this key derivation can be extracted by reading from the * resulting operation to produce keys and other cryptographic material. * * \param[in,out] operation The key derivation operation object to use. * It must have been set up with * psa_key_derivation_setup() with a * key agreement and derivation algorithm * \c alg (\c PSA_ALG_XXX value such that * #PSA_ALG_IS_KEY_AGREEMENT(\c alg) is true * and #PSA_ALG_IS_RAW_KEY_AGREEMENT(\c alg) * is false). * The operation must be ready for an * input of the type given by \p step. * \param step Which step the input data is for. * \param private_key Handle to the private key to use. * \param[in] peer_key Public key of the peer. The peer key must be in the * same format that psa_import_key() accepts for the * public key type corresponding to the type of * private_key. That is, this function performs the * equivalent of * #psa_import_key(..., * `peer_key`, `peer_key_length`) where * with key attributes indicating the public key * type corresponding to the type of `private_key`. * For example, for EC keys, this means that peer_key * is interpreted as a point on the curve that the * private key is on. The standard formats for public * keys are documented in the documentation of * psa_export_public_key(). * \param peer_key_length Size of \p peer_key in bytes. * * \retval #PSA_SUCCESS * Success. * \retval #PSA_ERROR_INVALID_HANDLE * \retval #PSA_ERROR_DOES_NOT_EXIST * \retval #PSA_ERROR_NOT_PERMITTED * \retval #PSA_ERROR_INVALID_ARGUMENT * \c private_key is not compatible with \c alg, * or \p peer_key is not valid for \c alg or not compatible with * \c private_key. * \retval #PSA_ERROR_NOT_SUPPORTED * \c alg is not supported or is not a key derivation algorithm. * \retval #PSA_ERROR_INSUFFICIENT_MEMORY * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_CORRUPTION_DETECTED */ psa_status_t psa_key_derivation_key_agreement( psa_key_derivation_operation_t *operation, psa_key_derivation_step_t step, psa_key_handle_t private_key, const uint8_t *peer_key, size_t peer_key_length); /** Read some data from a key derivation operation. * * This function calculates output bytes from a key derivation algorithm and * return those bytes. * If you view the key derivation's output as a stream of bytes, this * function destructively reads the requested number of bytes from the * stream. * The operation's capacity decreases by the number of bytes read. * * \param[in,out] operation The key derivation operation object to read from. * \param[out] output Buffer where the output will be written. * \param output_length Number of bytes to output. * * \retval #PSA_SUCCESS * \retval #PSA_ERROR_INSUFFICIENT_DATA * The operation's capacity was less than * \p output_length bytes. Note that in this case, * no output is written to the output buffer. * The operation's capacity is set to 0, thus * subsequent calls to this function will not * succeed, even with a smaller output buffer. * \retval #PSA_ERROR_BAD_STATE * \retval #PSA_ERROR_INSUFFICIENT_MEMORY * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_CORRUPTION_DETECTED */ psa_status_t psa_key_derivation_output_bytes( psa_key_derivation_operation_t *operation, uint8_t *output, size_t output_length); /** Derive a key from an ongoing key derivation operation. * * This function calculates output bytes from a key derivation algorithm * and uses those bytes to generate a key deterministically. * If you view the key derivation's output as a stream of bytes, this * function destructively reads as many bytes as required from the * stream. * The operation's capacity decreases by the number of bytes read. * * How much output is produced and consumed from the operation, and how * the key is derived, depends on the key type: * * - For key types for which the key is an arbitrary sequence of bytes * of a given size, this function is functionally equivalent to * calling #psa_key_derivation_output_bytes * and passing the resulting output to #psa_import_key. * However, this function has a security benefit: * if the implementation provides an isolation boundary then * the key material is not exposed outside the isolation boundary. * As a consequence, for these key types, this function always consumes * exactly (\p bits / 8) bytes from the operation. * The following key types defined in this specification follow this scheme: * * - #PSA_KEY_TYPE_AES; * - #PSA_KEY_TYPE_ARC4; * - #PSA_KEY_TYPE_CAMELLIA; * - #PSA_KEY_TYPE_DERIVE; * - #PSA_KEY_TYPE_HMAC. * * - For ECC keys on a Montgomery elliptic curve * (#PSA_KEY_TYPE_ECC_KEY_PAIR(\c curve) where \c curve designates a * Montgomery curve), this function always draws a byte string whose * length is determined by the curve, and sets the mandatory bits * accordingly. That is: * * - #PSA_ECC_CURVE_CURVE25519: draw a 32-byte string * and process it as specified in RFC 7748 §5. * - #PSA_ECC_CURVE_CURVE448: draw a 56-byte string * and process it as specified in RFC 7748 §5. * * - For key types for which the key is represented by a single sequence of * \p bits bits with constraints as to which bit sequences are acceptable, * this function draws a byte string of length (\p bits / 8) bytes rounded * up to the nearest whole number of bytes. If the resulting byte string * is acceptable, it becomes the key, otherwise the drawn bytes are discarded. * This process is repeated until an acceptable byte string is drawn. * The byte string drawn from the operation is interpreted as specified * for the output produced by psa_export_key(). * The following key types defined in this specification follow this scheme: * * - #PSA_KEY_TYPE_DES. * Force-set the parity bits, but discard forbidden weak keys. * For 2-key and 3-key triple-DES, the three keys are generated * successively (for example, for 3-key triple-DES, * if the first 8 bytes specify a weak key and the next 8 bytes do not, * discard the first 8 bytes, use the next 8 bytes as the first key, * and continue reading output from the operation to derive the other * two keys). * - Finite-field Diffie-Hellman keys (#PSA_KEY_TYPE_DH_KEY_PAIR(\c group) * where \c group designates any Diffie-Hellman group) and * ECC keys on a Weierstrass elliptic curve * (#PSA_KEY_TYPE_ECC_KEY_PAIR(\c curve) where \c curve designates a * Weierstrass curve). * For these key types, interpret the byte string as integer * in big-endian order. Discard it if it is not in the range * [0, *N* - 2] where *N* is the boundary of the private key domain * (the prime *p* for Diffie-Hellman, the subprime *q* for DSA, * or the order of the curve's base point for ECC). * Add 1 to the resulting integer and use this as the private key *x*. * This method allows compliance to NIST standards, specifically * the methods titled "key-pair generation by testing candidates" * in NIST SP 800-56A §5.6.1.1.4 for Diffie-Hellman, * in FIPS 186-4 §B.1.2 for DSA, and * in NIST SP 800-56A §5.6.1.2.2 or * FIPS 186-4 §B.4.2 for elliptic curve keys. * * - For other key types, including #PSA_KEY_TYPE_RSA_KEY_PAIR, * the way in which the operation output is consumed is * implementation-defined. * * In all cases, the data that is read is discarded from the operation. * The operation's capacity is decreased by the number of bytes read. * * \param[in] attributes The attributes for the new key. * \param[in,out] operation The key derivation operation object to read from. * \param[out] handle On success, a handle to the newly created key. * \c 0 on failure. * * \retval #PSA_SUCCESS * Success. * If the key is persistent, the key material and the key's metadata * have been saved to persistent storage. * \retval #PSA_ERROR_ALREADY_EXISTS * This is an attempt to create a persistent key, and there is * already a persistent key with the given identifier. * \retval #PSA_ERROR_INSUFFICIENT_DATA * There was not enough data to create the desired key. * Note that in this case, no output is written to the output buffer. * The operation's capacity is set to 0, thus subsequent calls to * this function will not succeed, even with a smaller output buffer. * \retval #PSA_ERROR_NOT_SUPPORTED * The key type or key size is not supported, either by the * implementation in general or in this particular location. * \retval #PSA_ERROR_BAD_STATE * \retval #PSA_ERROR_INSUFFICIENT_MEMORY * \retval #PSA_ERROR_INSUFFICIENT_STORAGE * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_CORRUPTION_DETECTED * \retval #PSA_ERROR_BAD_STATE * The library has not been previously initialized by psa_crypto_init(). * It is implementation-dependent whether a failure to initialize * results in this error code. */ psa_status_t psa_key_derivation_output_key( const psa_key_attributes_t *attributes, psa_key_derivation_operation_t *operation, psa_key_handle_t *handle); /** Abort a key derivation operation. * * Once a key derivation operation has been aborted, its capacity is zero. * Aborting an operation frees all associated resources except for the * \c operation structure itself. * * This function may be called at any time as long as the operation * object has been initialized to #PSA_KEY_DERIVATION_OPERATION_INIT, to * psa_key_derivation_operation_init() or a zero value. In particular, * it is valid to call psa_key_derivation_abort() twice, or to call * psa_key_derivation_abort() on an operation that has not been set up. * * Once aborted, the key derivation operation object may be called. * * \param[in,out] operation The operation to abort. * * \retval #PSA_SUCCESS * \retval #PSA_ERROR_BAD_STATE * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_CORRUPTION_DETECTED */ psa_status_t psa_key_derivation_abort( psa_key_derivation_operation_t *operation); /** Perform a key agreement and return the raw shared secret. * * \warning The raw result of a key agreement algorithm such as finite-field * Diffie-Hellman or elliptic curve Diffie-Hellman has biases and should * not be used directly as key material. It should instead be passed as * input to a key derivation algorithm. To chain a key agreement with * a key derivation, use psa_key_derivation_key_agreement() and other * functions from the key derivation interface. * * \param alg The key agreement algorithm to compute * (\c PSA_ALG_XXX value such that * #PSA_ALG_IS_RAW_KEY_AGREEMENT(\p alg) * is true). * \param private_key Handle to the private key to use. * \param[in] peer_key Public key of the peer. It must be * in the same format that psa_import_key() * accepts. The standard formats for public * keys are documented in the documentation * of psa_export_public_key(). * \param peer_key_length Size of \p peer_key in bytes. * \param[out] output Buffer where the decrypted message is to * be written. * \param output_size Size of the \c output buffer in bytes. * \param[out] output_length On success, the number of bytes * that make up the returned output. * * \retval #PSA_SUCCESS * Success. * \retval #PSA_ERROR_INVALID_HANDLE * \retval #PSA_ERROR_NOT_PERMITTED * \retval #PSA_ERROR_INVALID_ARGUMENT * \p alg is not a key agreement algorithm * \retval #PSA_ERROR_INVALID_ARGUMENT * \p private_key is not compatible with \p alg, * or \p peer_key is not valid for \p alg or not compatible with * \p private_key. * \retval #PSA_ERROR_NOT_SUPPORTED * \p alg is not a supported key agreement algorithm. * \retval #PSA_ERROR_INSUFFICIENT_MEMORY * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_CORRUPTION_DETECTED */ psa_status_t psa_raw_key_agreement(psa_algorithm_t alg, psa_key_handle_t private_key, const uint8_t *peer_key, size_t peer_key_length, uint8_t *output, size_t output_size, size_t *output_length); /**@}*/ /** \defgroup random Random generation * @{ */ /** * \brief Generate random bytes. * * \warning This function **can** fail! Callers MUST check the return status * and MUST NOT use the content of the output buffer if the return * status is not #PSA_SUCCESS. * * \note To generate a key, use psa_generate_key() instead. * * \param[out] output Output buffer for the generated data. * \param output_size Number of bytes to generate and output. * * \retval #PSA_SUCCESS * \retval #PSA_ERROR_NOT_SUPPORTED * \retval #PSA_ERROR_INSUFFICIENT_ENTROPY * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_CORRUPTION_DETECTED * \retval #PSA_ERROR_BAD_STATE * The library has not been previously initialized by psa_crypto_init(). * It is implementation-dependent whether a failure to initialize * results in this error code. */ psa_status_t psa_generate_random(uint8_t *output, size_t output_size); /** * \brief Generate a key or key pair. * * The key is generated randomly. * Its location, policy, type and size are taken from \p attributes. * * The following type-specific considerations apply: * - For RSA keys (#PSA_KEY_TYPE_RSA_KEY_PAIR), * the public exponent is 65537. * The modulus is a product of two probabilistic primes * between 2^{n-1} and 2^n where n is the bit size specified in the * attributes. * * \param[in] attributes The attributes for the new key. * \param[out] handle On success, a handle to the newly created key. * \c 0 on failure. * * \retval #PSA_SUCCESS * Success. * If the key is persistent, the key material and the key's metadata * have been saved to persistent storage. * \retval #PSA_ERROR_ALREADY_EXISTS * This is an attempt to create a persistent key, and there is * already a persistent key with the given identifier. * \retval #PSA_ERROR_NOT_SUPPORTED * \retval #PSA_ERROR_INVALID_ARGUMENT * \retval #PSA_ERROR_INSUFFICIENT_MEMORY * \retval #PSA_ERROR_INSUFFICIENT_ENTROPY * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_CORRUPTION_DETECTED * \retval #PSA_ERROR_BAD_STATE * The library has not been previously initialized by psa_crypto_init(). * It is implementation-dependent whether a failure to initialize * results in this error code. */ psa_status_t psa_generate_key(const psa_key_attributes_t *attributes, psa_key_handle_t *handle); /**@}*/ #ifdef __cplusplus } #endif /* The file "crypto_sizes.h" contains definitions for size calculation * macros whose definitions are implementation-specific. */ #include "crypto_sizes.h" /* The file "crypto_struct.h" contains definitions for * implementation-specific structs that are declared above. */ #include "crypto_struct.h" /* The file "crypto_extra.h" contains vendor-specific definitions. This * can include vendor-defined algorithms, extra functions, etc. */ #include "crypto_extra.h" #endif /* PSA_CRYPTO_H */