#line 1 "helpers.function"
/*----------------------------------------------------------------------------*/
/* Headers */

#include <stdlib.h>

#if defined(MBEDTLS_PLATFORM_C)
#include "mbedtls/platform.h"
#else
#include <stdio.h>
#define mbedtls_fprintf    fprintf
#define mbedtls_snprintf   snprintf
#define mbedtls_calloc     calloc
#define mbedtls_free       free
#define mbedtls_exit       exit
#define mbedtls_time       time
#define mbedtls_time_t     time_t
#define MBEDTLS_EXIT_SUCCESS EXIT_SUCCESS
#define MBEDTLS_EXIT_FAILURE EXIT_FAILURE
#endif

#if defined(MBEDTLS_MEMORY_BUFFER_ALLOC_C)
#include "mbedtls/memory_buffer_alloc.h"
#endif

#ifdef _MSC_VER
#include <basetsd.h>
typedef UINT32 uint32_t;
#define strncasecmp _strnicmp
#define strcasecmp _stricmp
#else
#include <stdint.h>
#endif

#include <string.h>

#if defined(__unix__) || (defined(__APPLE__) && defined(__MACH__))
#include <unistd.h>
#endif

/*
 * Define the two macros
 *
 *  #define TEST_CF_SECRET(ptr, size)
 *  #define TEST_CF_PUBLIC(ptr, size)
 *
 * that can be used in tests to mark a memory area as secret (no branch or
 * memory access should depend on it) or public (default, only needs to be
 * marked explicitly when it was derived from secret data).
 *
 * Arguments:
 * - ptr: a pointer to the memory area to be marked
 * - size: the size in bytes of the memory area
 *
 * Implementation:
 * The basic idea is that of ctgrind <https://github.com/agl/ctgrind>: we can
 * re-use tools that were designed for checking use of uninitialized memory.
 * This file contains two implementations: one based on MemorySanitizer, the
 * other on valgrind's memcheck. If none of them is enabled, dummy macros that
 * do nothing are defined for convenience.
 */
#if defined(MBEDTLS_TEST_CONSTANT_FLOW_MEMSAN)
#include <sanitizer/msan_interface.h>

/* Use macros to avoid messing up with origin tracking */
#define TEST_CF_SECRET  __msan_allocated_memory
// void __msan_allocated_memory(const volatile void* data, size_t size);
#define TEST_CF_PUBLIC  __msan_unpoison
// void __msan_unpoison(const volatile void *a, size_t size);

#elif defined(MBEDTLS_TEST_CONSTANT_FLOW_VALGRIND)
#include <valgrind/memcheck.h>

#define TEST_CF_SECRET  VALGRIND_MAKE_MEM_UNDEFINED
// VALGRIND_MAKE_MEM_UNDEFINED(_qzz_addr, _qzz_len)
#define TEST_CF_PUBLIC  VALGRIND_MAKE_MEM_DEFINED
// VALGRIND_MAKE_MEM_DEFINED(_qzz_addr, _qzz_len)

#else /* MBEDTLS_TEST_CONSTANT_FLOW_MEMSAN ||
         MBEDTLS_TEST_CONSTANT_FLOW_VALGRIND */

#define TEST_CF_SECRET(ptr, size)
#define TEST_CF_PUBLIC(ptr, size)

#endif /* MBEDTLS_TEST_CONSTANT_FLOW_MEMSAN */

/*----------------------------------------------------------------------------*/
/* Constants */

#define DEPENDENCY_SUPPORTED        0
#define DEPENDENCY_NOT_SUPPORTED    1

#define KEY_VALUE_MAPPING_FOUND     0
#define KEY_VALUE_MAPPING_NOT_FOUND -1

#define DISPATCH_TEST_SUCCESS       0
#define DISPATCH_TEST_FN_NOT_FOUND  1
#define DISPATCH_INVALID_TEST_DATA  2
#define DISPATCH_UNSUPPORTED_SUITE  3


/*----------------------------------------------------------------------------*/
/* Macros */

#define TEST_ASSERT( TEST )                         \
    do {                                            \
        if( ! (TEST) )                              \
        {                                           \
            test_fail( #TEST, __LINE__, __FILE__ ); \
            goto exit;                              \
        }                                           \
    } while( 0 )

#define assert(a) if( !( a ) )                                      \
{                                                                   \
    mbedtls_fprintf( stderr, "Assertion Failed at %s:%d - %s\n",   \
                             __FILE__, __LINE__, #a );              \
    mbedtls_exit( 1 );                                             \
}

#if defined(__GNUC__)
/* Test if arg and &(arg)[0] have the same type. This is true if arg is
 * an array but not if it's a pointer. */
#define IS_ARRAY_NOT_POINTER( arg )                                     \
    ( ! __builtin_types_compatible_p( __typeof__( arg ),                \
                                      __typeof__( &( arg )[0] ) ) )
#else
/* On platforms where we don't know how to implement this check,
 * omit it. Oh well, a non-portable check is better than nothing. */
#define IS_ARRAY_NOT_POINTER( arg ) 1
#endif

/* A compile-time constant with the value 0. If `const_expr` is not a
 * compile-time constant with a nonzero value, cause a compile-time error. */
#define STATIC_ASSERT_EXPR( const_expr )                                \
    ( 0 && sizeof( struct { unsigned int STATIC_ASSERT : 1 - 2 * ! ( const_expr ); } ) )
/* Return the scalar value `value` (possibly promoted). This is a compile-time
 * constant if `value` is. `condition` must be a compile-time constant.
 * If `condition` is false, arrange to cause a compile-time error. */
#define STATIC_ASSERT_THEN_RETURN( condition, value )   \
    ( STATIC_ASSERT_EXPR( condition ) ? 0 : ( value ) )

#define ARRAY_LENGTH_UNSAFE( array )            \
    ( sizeof( array ) / sizeof( *( array ) ) )
/** Return the number of elements of a static or stack array.
 *
 * \param array         A value of array (not pointer) type.
 *
 * \return The number of elements of the array.
 */
#define ARRAY_LENGTH( array )                                           \
    ( STATIC_ASSERT_THEN_RETURN( IS_ARRAY_NOT_POINTER( array ),         \
                                 ARRAY_LENGTH_UNSAFE( array ) ) )


/*
 * 32-bit integer manipulation macros (big endian)
 */
#ifndef GET_UINT32_BE
#define GET_UINT32_BE(n,b,i)                            \
{                                                       \
    (n) = ( (uint32_t) (b)[(i)    ] << 24 )             \
        | ( (uint32_t) (b)[(i) + 1] << 16 )             \
        | ( (uint32_t) (b)[(i) + 2] <<  8 )             \
        | ( (uint32_t) (b)[(i) + 3]       );            \
}
#endif

#ifndef PUT_UINT32_BE
#define PUT_UINT32_BE(n,b,i)                            \
{                                                       \
    (b)[(i)    ] = (unsigned char) ( (n) >> 24 );       \
    (b)[(i) + 1] = (unsigned char) ( (n) >> 16 );       \
    (b)[(i) + 2] = (unsigned char) ( (n) >>  8 );       \
    (b)[(i) + 3] = (unsigned char) ( (n)       );       \
}
#endif


/*----------------------------------------------------------------------------*/
/* Global variables */


static struct
{
    int failed;
    const char *test;
    const char *filename;
    int line_no;
}
test_info;


/*----------------------------------------------------------------------------*/
/* Helper flags for complex dependencies */

/* Indicates whether we expect mbedtls_entropy_init
 * to initialize some strong entropy source. */
#if defined(MBEDTLS_TEST_NULL_ENTROPY) ||             \
    ( !defined(MBEDTLS_NO_DEFAULT_ENTROPY_SOURCES) && \
      ( !defined(MBEDTLS_NO_PLATFORM_ENTROPY)  ||     \
         defined(MBEDTLS_HAVEGE_C)             ||     \
         defined(MBEDTLS_ENTROPY_HARDWARE_ALT) ||     \
         defined(ENTROPY_NV_SEED) ) )
#define ENTROPY_HAVE_STRONG
#endif


/*----------------------------------------------------------------------------*/
/* Helper Functions */

void test_fail( const char *test, int line_no, const char* filename )
{
    test_info.failed = 1;
    test_info.test = test;
    test_info.line_no = line_no;
    test_info.filename = filename;
}

#if defined(__unix__) || (defined(__APPLE__) && defined(__MACH__))
static int redirect_output( FILE* out_stream, const char* path )
{
    int out_fd, dup_fd;
    FILE* path_stream;

    out_fd = fileno( out_stream );
    dup_fd = dup( out_fd );

    if( dup_fd == -1 )
    {
        return( -1 );
    }

    path_stream = fopen( path, "w" );
    if( path_stream == NULL )
    {
        close( dup_fd );
        return( -1 );
    }

    fflush( out_stream );
    if( dup2( fileno( path_stream ), out_fd ) == -1 )
    {
        close( dup_fd );
        fclose( path_stream );
        return( -1 );
    }

    fclose( path_stream );
    return( dup_fd );
}

static int restore_output( FILE* out_stream, int dup_fd )
{
    int out_fd = fileno( out_stream );

    fflush( out_stream );
    if( dup2( dup_fd, out_fd ) == -1 )
    {
        close( out_fd );
        close( dup_fd );
        return( -1 );
    }

    close( dup_fd );
    return( 0 );
}
#endif /* __unix__ || __APPLE__ __MACH__ */

int unhexify( unsigned char *obuf, const char *ibuf )
{
    unsigned char c, c2;
    int len = strlen( ibuf ) / 2;
    assert( strlen( ibuf ) % 2 == 0 ); /* must be even number of bytes */

    while( *ibuf != 0 )
    {
        c = *ibuf++;
        if( c >= '0' && c <= '9' )
            c -= '0';
        else if( c >= 'a' && c <= 'f' )
            c -= 'a' - 10;
        else if( c >= 'A' && c <= 'F' )
            c -= 'A' - 10;
        else
            assert( 0 );

        c2 = *ibuf++;
        if( c2 >= '0' && c2 <= '9' )
            c2 -= '0';
        else if( c2 >= 'a' && c2 <= 'f' )
            c2 -= 'a' - 10;
        else if( c2 >= 'A' && c2 <= 'F' )
            c2 -= 'A' - 10;
        else
            assert( 0 );

        *obuf++ = ( c << 4 ) | c2;
    }

    return len;
}

void hexify( unsigned char *obuf, const unsigned char *ibuf, int len )
{
    unsigned char l, h;

    while( len != 0 )
    {
        h = *ibuf / 16;
        l = *ibuf % 16;

        if( h < 10 )
            *obuf++ = '0' + h;
        else
            *obuf++ = 'a' + h - 10;

        if( l < 10 )
            *obuf++ = '0' + l;
        else
            *obuf++ = 'a' + l - 10;

        ++ibuf;
        len--;
    }
}

/**
 * Allocate and zeroize a buffer.
 *
 * If the size if zero, a pointer to a zeroized 1-byte buffer is returned.
 *
 * For convenience, dies if allocation fails.
 */
static unsigned char *zero_alloc( size_t len )
{
    void *p;
    size_t actual_len = ( len != 0 ) ? len : 1;

    p = mbedtls_calloc( 1, actual_len );
    assert( p != NULL );

    memset( p, 0x00, actual_len );

    return( p );
}

/**
 * Allocate and fill a buffer from hex data.
 *
 * The buffer is sized exactly as needed. This allows to detect buffer
 * overruns (including overreads) when running the test suite under valgrind.
 *
 * If the size if zero, a pointer to a zeroized 1-byte buffer is returned.
 *
 * For convenience, dies if allocation fails.
 */
unsigned char *unhexify_alloc( const char *ibuf, size_t *olen )
{
    unsigned char *obuf;

    *olen = strlen( ibuf ) / 2;

    if( *olen == 0 )
        return( zero_alloc( *olen ) );

    obuf = mbedtls_calloc( 1, *olen );
    assert( obuf != NULL );

    (void) unhexify( obuf, ibuf );

    return( obuf );
}

/**
 * This function just returns data from rand().
 * Although predictable and often similar on multiple
 * runs, this does not result in identical random on
 * each run. So do not use this if the results of a
 * test depend on the random data that is generated.
 *
 * rng_state shall be NULL.
 */
static int rnd_std_rand( void *rng_state, unsigned char *output, size_t len )
{
#if !defined(__OpenBSD__) && !defined(__NetBSD__)
    size_t i;

    if( rng_state != NULL )
        rng_state  = NULL;

    for( i = 0; i < len; ++i )
        output[i] = rand();
#else
    if( rng_state != NULL )
        rng_state = NULL;

    arc4random_buf( output, len );
#endif /* !OpenBSD && !NetBSD */

    return( 0 );
}

/**
 * This function only returns zeros
 *
 * rng_state shall be NULL.
 */
int rnd_zero_rand( void *rng_state, unsigned char *output, size_t len )
{
    if( rng_state != NULL )
        rng_state  = NULL;

    memset( output, 0, len );

    return( 0 );
}

typedef struct
{
    unsigned char *buf;
    size_t length;
} rnd_buf_info;

/**
 * This function returns random based on a buffer it receives.
 *
 * rng_state shall be a pointer to a rnd_buf_info structure.
 *
 * The number of bytes released from the buffer on each call to
 * the random function is specified by per_call. (Can be between
 * 1 and 4)
 *
 * After the buffer is empty it will return rand();
 */
int rnd_buffer_rand( void *rng_state, unsigned char *output, size_t len )
{
    rnd_buf_info *info = (rnd_buf_info *) rng_state;
    size_t use_len;

    if( rng_state == NULL )
        return( rnd_std_rand( NULL, output, len ) );

    use_len = len;
    if( len > info->length )
        use_len = info->length;

    if( use_len )
    {
        memcpy( output, info->buf, use_len );
        info->buf += use_len;
        info->length -= use_len;
    }

    if( len - use_len > 0 )
        return( rnd_std_rand( NULL, output + use_len, len - use_len ) );

    return( 0 );
}

/**
 * Info structure for the pseudo random function
 *
 * Key should be set at the start to a test-unique value.
 * Do not forget endianness!
 * State( v0, v1 ) should be set to zero.
 */
typedef struct
{
    uint32_t key[16];
    uint32_t v0, v1;
} rnd_pseudo_info;

/**
 * This function returns random based on a pseudo random function.
 * This means the results should be identical on all systems.
 * Pseudo random is based on the XTEA encryption algorithm to
 * generate pseudorandom.
 *
 * rng_state shall be a pointer to a rnd_pseudo_info structure.
 */
int rnd_pseudo_rand( void *rng_state, unsigned char *output, size_t len )
{
    rnd_pseudo_info *info = (rnd_pseudo_info *) rng_state;
    uint32_t i, *k, sum, delta=0x9E3779B9;
    unsigned char result[4], *out = output;

    if( rng_state == NULL )
        return( rnd_std_rand( NULL, output, len ) );

    k = info->key;

    while( len > 0 )
    {
        size_t use_len = ( len > 4 ) ? 4 : len;
        sum = 0;

        for( i = 0; i < 32; i++ )
        {
            info->v0 += ( ( ( info->v1 << 4 ) ^ ( info->v1 >> 5 ) )
                            + info->v1 ) ^ ( sum + k[sum & 3] );
            sum += delta;
            info->v1 += ( ( ( info->v0 << 4 ) ^ ( info->v0 >> 5 ) )
                            + info->v0 ) ^ ( sum + k[( sum>>11 ) & 3] );
        }

        PUT_UINT32_BE( info->v0, result, 0 );
        memcpy( out, result, use_len );
        len -= use_len;
        out += 4;
    }

    return( 0 );
}