/** * \file psa/crypto_values.h * * \brief PSA cryptography module: macros to build and analyze integer values. * * \note This file may not be included directly. Applications must * include psa/crypto.h. Drivers must include the appropriate driver * header file. * * This file contains portable definitions of macros to build and analyze * values of integral types that encode properties of cryptographic keys, * designations of cryptographic algorithms, and error codes returned by * the library. * * This header file only defines preprocessor macros. */ /* * Copyright (C) 2018, ARM Limited, All Rights Reserved * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the "License"); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * This file is part of mbed TLS (https://tls.mbed.org) */ #ifndef PSA_CRYPTO_VALUES_H #define PSA_CRYPTO_VALUES_H /** \defgroup error Error codes * @{ */ /* PSA error codes */ /** The action was completed successfully. */ #define PSA_SUCCESS ((psa_status_t)0) /** An error occurred that does not correspond to any defined * failure cause. * * Implementations may use this error code if none of the other standard * error codes are applicable. */ #define PSA_ERROR_GENERIC_ERROR ((psa_status_t)-132) /** The requested operation or a parameter is not supported * by this implementation. * * Implementations should return this error code when an enumeration * parameter such as a key type, algorithm, etc. is not recognized. * If a combination of parameters is recognized and identified as * not valid, return #PSA_ERROR_INVALID_ARGUMENT instead. */ #define PSA_ERROR_NOT_SUPPORTED ((psa_status_t)-134) /** The requested action is denied by a policy. * * Implementations should return this error code when the parameters * are recognized as valid and supported, and a policy explicitly * denies the requested operation. * * If a subset of the parameters of a function call identify a * forbidden operation, and another subset of the parameters are * not valid or not supported, it is unspecified whether the function * returns #PSA_ERROR_NOT_PERMITTED, #PSA_ERROR_NOT_SUPPORTED or * #PSA_ERROR_INVALID_ARGUMENT. */ #define PSA_ERROR_NOT_PERMITTED ((psa_status_t)-133) /** An output buffer is too small. * * Applications can call the \c PSA_xxx_SIZE macro listed in the function * description to determine a sufficient buffer size. * * Implementations should preferably return this error code only * in cases when performing the operation with a larger output * buffer would succeed. However implementations may return this * error if a function has invalid or unsupported parameters in addition * to the parameters that determine the necessary output buffer size. */ #define PSA_ERROR_BUFFER_TOO_SMALL ((psa_status_t)-138) /** Asking for an item that already exists * * Implementations should return this error, when attempting * to write an item (like a key) that already exists. */ #define PSA_ERROR_ALREADY_EXISTS ((psa_status_t)-139) /** Asking for an item that doesn't exist * * Implementations should return this error, if a requested item (like * a key) does not exist. */ #define PSA_ERROR_DOES_NOT_EXIST ((psa_status_t)-140) /** The requested action cannot be performed in the current state. * * Multipart operations return this error when one of the * functions is called out of sequence. Refer to the function * descriptions for permitted sequencing of functions. * * Implementations shall not return this error code to indicate * that a key either exists or not, * but shall instead return #PSA_ERROR_ALREADY_EXISTS or #PSA_ERROR_DOES_NOT_EXIST * as applicable. * * Implementations shall not return this error code to indicate that a * key handle is invalid, but shall return #PSA_ERROR_INVALID_HANDLE * instead. */ #define PSA_ERROR_BAD_STATE ((psa_status_t)-137) /** The parameters passed to the function are invalid. * * Implementations may return this error any time a parameter or * combination of parameters are recognized as invalid. * * Implementations shall not return this error code to indicate that a * key handle is invalid, but shall return #PSA_ERROR_INVALID_HANDLE * instead. */ #define PSA_ERROR_INVALID_ARGUMENT ((psa_status_t)-135) /** There is not enough runtime memory. * * If the action is carried out across multiple security realms, this * error can refer to available memory in any of the security realms. */ #define PSA_ERROR_INSUFFICIENT_MEMORY ((psa_status_t)-141) /** There is not enough persistent storage. * * Functions that modify the key storage return this error code if * there is insufficient storage space on the host media. In addition, * many functions that do not otherwise access storage may return this * error code if the implementation requires a mandatory log entry for * the requested action and the log storage space is full. */ #define PSA_ERROR_INSUFFICIENT_STORAGE ((psa_status_t)-142) /** There was a communication failure inside the implementation. * * This can indicate a communication failure between the application * and an external cryptoprocessor or between the cryptoprocessor and * an external volatile or persistent memory. A communication failure * may be transient or permanent depending on the cause. * * \warning If a function returns this error, it is undetermined * whether the requested action has completed or not. Implementations * should return #PSA_SUCCESS on successful completion whenever * possible, however functions may return #PSA_ERROR_COMMUNICATION_FAILURE * if the requested action was completed successfully in an external * cryptoprocessor but there was a breakdown of communication before * the cryptoprocessor could report the status to the application. */ #define PSA_ERROR_COMMUNICATION_FAILURE ((psa_status_t)-145) /** There was a storage failure that may have led to data loss. * * This error indicates that some persistent storage is corrupted. * It should not be used for a corruption of volatile memory * (use #PSA_ERROR_CORRUPTION_DETECTED), for a communication error * between the cryptoprocessor and its external storage (use * #PSA_ERROR_COMMUNICATION_FAILURE), or when the storage is * in a valid state but is full (use #PSA_ERROR_INSUFFICIENT_STORAGE). * * Note that a storage failure does not indicate that any data that was * previously read is invalid. However this previously read data may no * longer be readable from storage. * * When a storage failure occurs, it is no longer possible to ensure * the global integrity of the keystore. Depending on the global * integrity guarantees offered by the implementation, access to other * data may or may not fail even if the data is still readable but * its integrity cannot be guaranteed. * * Implementations should only use this error code to report a * permanent storage corruption. However application writers should * keep in mind that transient errors while reading the storage may be * reported using this error code. */ #define PSA_ERROR_STORAGE_FAILURE ((psa_status_t)-146) /** A hardware failure was detected. * * A hardware failure may be transient or permanent depending on the * cause. */ #define PSA_ERROR_HARDWARE_FAILURE ((psa_status_t)-147) /** A tampering attempt was detected. * * If an application receives this error code, there is no guarantee * that previously accessed or computed data was correct and remains * confidential. Applications should not perform any security function * and should enter a safe failure state. * * Implementations may return this error code if they detect an invalid * state that cannot happen during normal operation and that indicates * that the implementation's security guarantees no longer hold. Depending * on the implementation architecture and on its security and safety goals, * the implementation may forcibly terminate the application. * * This error code is intended as a last resort when a security breach * is detected and it is unsure whether the keystore data is still * protected. Implementations shall only return this error code * to report an alarm from a tampering detector, to indicate that * the confidentiality of stored data can no longer be guaranteed, * or to indicate that the integrity of previously returned data is now * considered compromised. Implementations shall not use this error code * to indicate a hardware failure that merely makes it impossible to * perform the requested operation (use #PSA_ERROR_COMMUNICATION_FAILURE, * #PSA_ERROR_STORAGE_FAILURE, #PSA_ERROR_HARDWARE_FAILURE, * #PSA_ERROR_INSUFFICIENT_ENTROPY or other applicable error code * instead). * * This error indicates an attack against the application. Implementations * shall not return this error code as a consequence of the behavior of * the application itself. */ #define PSA_ERROR_CORRUPTION_DETECTED ((psa_status_t)-151) /** There is not enough entropy to generate random data needed * for the requested action. * * This error indicates a failure of a hardware random generator. * Application writers should note that this error can be returned not * only by functions whose purpose is to generate random data, such * as key, IV or nonce generation, but also by functions that execute * an algorithm with a randomized result, as well as functions that * use randomization of intermediate computations as a countermeasure * to certain attacks. * * Implementations should avoid returning this error after psa_crypto_init() * has succeeded. Implementations should generate sufficient * entropy during initialization and subsequently use a cryptographically * secure pseudorandom generator (PRNG). However implementations may return * this error at any time if a policy requires the PRNG to be reseeded * during normal operation. */ #define PSA_ERROR_INSUFFICIENT_ENTROPY ((psa_status_t)-148) /** The signature, MAC or hash is incorrect. * * Verification functions return this error if the verification * calculations completed successfully, and the value to be verified * was determined to be incorrect. * * If the value to verify has an invalid size, implementations may return * either #PSA_ERROR_INVALID_ARGUMENT or #PSA_ERROR_INVALID_SIGNATURE. */ #define PSA_ERROR_INVALID_SIGNATURE ((psa_status_t)-149) /** The decrypted padding is incorrect. * * \warning In some protocols, when decrypting data, it is essential that * the behavior of the application does not depend on whether the padding * is correct, down to precise timing. Applications should prefer * protocols that use authenticated encryption rather than plain * encryption. If the application must perform a decryption of * unauthenticated data, the application writer should take care not * to reveal whether the padding is invalid. * * Implementations should strive to make valid and invalid padding * as close as possible to indistinguishable to an external observer. * In particular, the timing of a decryption operation should not * depend on the validity of the padding. */ #define PSA_ERROR_INVALID_PADDING ((psa_status_t)-150) /** Return this error when there's insufficient data when attempting * to read from a resource. */ #define PSA_ERROR_INSUFFICIENT_DATA ((psa_status_t)-143) /** The key handle is not valid. See also :ref:\`key-handles\`. */ #define PSA_ERROR_INVALID_HANDLE ((psa_status_t)-136) /**@}*/ /** \defgroup crypto_types Key and algorithm types * @{ */ /** An invalid key type value. * * Zero is not the encoding of any key type. */ #define PSA_KEY_TYPE_NONE ((psa_key_type_t)0x00000000) /** Vendor-defined flag * * Key types defined by this standard will never have the * #PSA_KEY_TYPE_VENDOR_FLAG bit set. Vendors who define additional key types * must use an encoding with the #PSA_KEY_TYPE_VENDOR_FLAG bit set and should * respect the bitwise structure used by standard encodings whenever practical. */ #define PSA_KEY_TYPE_VENDOR_FLAG ((psa_key_type_t)0x80000000) #define PSA_KEY_TYPE_CATEGORY_MASK ((psa_key_type_t)0x70000000) #define PSA_KEY_TYPE_CATEGORY_SYMMETRIC ((psa_key_type_t)0x40000000) #define PSA_KEY_TYPE_CATEGORY_RAW ((psa_key_type_t)0x50000000) #define PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY ((psa_key_type_t)0x60000000) #define PSA_KEY_TYPE_CATEGORY_KEY_PAIR ((psa_key_type_t)0x70000000) #define PSA_KEY_TYPE_CATEGORY_FLAG_PAIR ((psa_key_type_t)0x10000000) /** Whether a key type is vendor-defined. */ #define PSA_KEY_TYPE_IS_VENDOR_DEFINED(type) \ (((type) & PSA_KEY_TYPE_VENDOR_FLAG) != 0) /** Whether a key type is an unstructured array of bytes. * * This encompasses both symmetric keys and non-key data. */ #define PSA_KEY_TYPE_IS_UNSTRUCTURED(type) \ (((type) & PSA_KEY_TYPE_CATEGORY_MASK & ~(psa_key_type_t)0x10000000) == \ PSA_KEY_TYPE_CATEGORY_SYMMETRIC) /** Whether a key type is asymmetric: either a key pair or a public key. */ #define PSA_KEY_TYPE_IS_ASYMMETRIC(type) \ (((type) & PSA_KEY_TYPE_CATEGORY_MASK \ & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR) == \ PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY) /** Whether a key type is the public part of a key pair. */ #define PSA_KEY_TYPE_IS_PUBLIC_KEY(type) \ (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY) /** Whether a key type is a key pair containing a private part and a public * part. */ #define PSA_KEY_TYPE_IS_KEY_PAIR(type) \ (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_KEY_PAIR) /** The key pair type corresponding to a public key type. * * You may also pass a key pair type as \p type, it will be left unchanged. * * \param type A public key type or key pair type. * * \return The corresponding key pair type. * If \p type is not a public key or a key pair, * the return value is undefined. */ #define PSA_KEY_TYPE_KEY_PAIR_OF_PUBLIC_KEY(type) \ ((type) | PSA_KEY_TYPE_CATEGORY_FLAG_PAIR) /** The public key type corresponding to a key pair type. * * You may also pass a key pair type as \p type, it will be left unchanged. * * \param type A public key type or key pair type. * * \return The corresponding public key type. * If \p type is not a public key or a key pair, * the return value is undefined. */ #define PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) \ ((type) & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR) /** Raw data. * * A "key" of this type cannot be used for any cryptographic operation. * Applications may use this type to store arbitrary data in the keystore. */ #define PSA_KEY_TYPE_RAW_DATA ((psa_key_type_t)0x50000001) /** HMAC key. * * The key policy determines which underlying hash algorithm the key can be * used for. * * HMAC keys should generally have the same size as the underlying hash. * This size can be calculated with #PSA_HASH_SIZE(\c alg) where * \c alg is the HMAC algorithm or the underlying hash algorithm. */ #define PSA_KEY_TYPE_HMAC ((psa_key_type_t)0x51000000) /** A secret for key derivation. * * The key policy determines which key derivation algorithm the key * can be used for. */ #define PSA_KEY_TYPE_DERIVE ((psa_key_type_t)0x52000000) /** Key for a cipher, AEAD or MAC algorithm based on the AES block cipher. * * The size of the key can be 16 bytes (AES-128), 24 bytes (AES-192) or * 32 bytes (AES-256). */ #define PSA_KEY_TYPE_AES ((psa_key_type_t)0x40000001) /** Key for a cipher or MAC algorithm based on DES or 3DES (Triple-DES). * * The size of the key can be 8 bytes (single DES), 16 bytes (2-key 3DES) or * 24 bytes (3-key 3DES). * * Note that single DES and 2-key 3DES are weak and strongly * deprecated and should only be used to decrypt legacy data. 3-key 3DES * is weak and deprecated and should only be used in legacy protocols. */ #define PSA_KEY_TYPE_DES ((psa_key_type_t)0x40000002) /** Key for a cipher, AEAD or MAC algorithm based on the * Camellia block cipher. */ #define PSA_KEY_TYPE_CAMELLIA ((psa_key_type_t)0x40000003) /** Key for the RC4 stream cipher. * * Note that RC4 is weak and deprecated and should only be used in * legacy protocols. */ #define PSA_KEY_TYPE_ARC4 ((psa_key_type_t)0x40000004) /** Key for the ChaCha20 stream cipher or the Chacha20-Poly1305 AEAD algorithm. * * ChaCha20 and the ChaCha20_Poly1305 construction are defined in RFC 7539. * * Implementations must support 12-byte nonces, may support 8-byte nonces, * and should reject other sizes. */ #define PSA_KEY_TYPE_CHACHA20 ((psa_key_type_t)0x40000005) /** RSA public key. */ #define PSA_KEY_TYPE_RSA_PUBLIC_KEY ((psa_key_type_t)0x60010000) /** RSA key pair (private and public key). */ #define PSA_KEY_TYPE_RSA_KEY_PAIR ((psa_key_type_t)0x70010000) /** Whether a key type is an RSA key (pair or public-only). */ #define PSA_KEY_TYPE_IS_RSA(type) \ (PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) == PSA_KEY_TYPE_RSA_PUBLIC_KEY) #define PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE ((psa_key_type_t)0x60030000) #define PSA_KEY_TYPE_ECC_KEY_PAIR_BASE ((psa_key_type_t)0x70030000) #define PSA_KEY_TYPE_ECC_CURVE_MASK ((psa_key_type_t)0x0000ffff) /** Elliptic curve key pair. * * \param curve A value of type ::psa_ecc_curve_t that identifies the * ECC curve to be used. */ #define PSA_KEY_TYPE_ECC_KEY_PAIR(curve) \ (PSA_KEY_TYPE_ECC_KEY_PAIR_BASE | (curve)) /** Elliptic curve public key. * * \param curve A value of type ::psa_ecc_curve_t that identifies the * ECC curve to be used. */ #define PSA_KEY_TYPE_ECC_PUBLIC_KEY(curve) \ (PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE | (curve)) /** Whether a key type is an elliptic curve key (pair or public-only). */ #define PSA_KEY_TYPE_IS_ECC(type) \ ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & \ ~PSA_KEY_TYPE_ECC_CURVE_MASK) == PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE) /** Whether a key type is an elliptic curve key pair. */ #define PSA_KEY_TYPE_IS_ECC_KEY_PAIR(type) \ (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \ PSA_KEY_TYPE_ECC_KEY_PAIR_BASE) /** Whether a key type is an elliptic curve public key. */ #define PSA_KEY_TYPE_IS_ECC_PUBLIC_KEY(type) \ (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \ PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE) /** Extract the curve from an elliptic curve key type. */ #define PSA_KEY_TYPE_GET_CURVE(type) \ ((psa_ecc_curve_t) (PSA_KEY_TYPE_IS_ECC(type) ? \ ((type) & PSA_KEY_TYPE_ECC_CURVE_MASK) : \ 0)) /* The encoding of curve identifiers is currently aligned with the * TLS Supported Groups Registry (formerly known as the * TLS EC Named Curve Registry) * https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml#tls-parameters-8 * The values are defined by RFC 8422 and RFC 7027. */ #define PSA_ECC_CURVE_SECT163K1 ((psa_ecc_curve_t) 0x0001) #define PSA_ECC_CURVE_SECT163R1 ((psa_ecc_curve_t) 0x0002) #define PSA_ECC_CURVE_SECT163R2 ((psa_ecc_curve_t) 0x0003) #define PSA_ECC_CURVE_SECT193R1 ((psa_ecc_curve_t) 0x0004) #define PSA_ECC_CURVE_SECT193R2 ((psa_ecc_curve_t) 0x0005) #define PSA_ECC_CURVE_SECT233K1 ((psa_ecc_curve_t) 0x0006) #define PSA_ECC_CURVE_SECT233R1 ((psa_ecc_curve_t) 0x0007) #define PSA_ECC_CURVE_SECT239K1 ((psa_ecc_curve_t) 0x0008) #define PSA_ECC_CURVE_SECT283K1 ((psa_ecc_curve_t) 0x0009) #define PSA_ECC_CURVE_SECT283R1 ((psa_ecc_curve_t) 0x000a) #define PSA_ECC_CURVE_SECT409K1 ((psa_ecc_curve_t) 0x000b) #define PSA_ECC_CURVE_SECT409R1 ((psa_ecc_curve_t) 0x000c) #define PSA_ECC_CURVE_SECT571K1 ((psa_ecc_curve_t) 0x000d) #define PSA_ECC_CURVE_SECT571R1 ((psa_ecc_curve_t) 0x000e) #define PSA_ECC_CURVE_SECP160K1 ((psa_ecc_curve_t) 0x000f) #define PSA_ECC_CURVE_SECP160R1 ((psa_ecc_curve_t) 0x0010) #define PSA_ECC_CURVE_SECP160R2 ((psa_ecc_curve_t) 0x0011) #define PSA_ECC_CURVE_SECP192K1 ((psa_ecc_curve_t) 0x0012) #define PSA_ECC_CURVE_SECP192R1 ((psa_ecc_curve_t) 0x0013) #define PSA_ECC_CURVE_SECP224K1 ((psa_ecc_curve_t) 0x0014) #define PSA_ECC_CURVE_SECP224R1 ((psa_ecc_curve_t) 0x0015) #define PSA_ECC_CURVE_SECP256K1 ((psa_ecc_curve_t) 0x0016) #define PSA_ECC_CURVE_SECP256R1 ((psa_ecc_curve_t) 0x0017) #define PSA_ECC_CURVE_SECP384R1 ((psa_ecc_curve_t) 0x0018) #define PSA_ECC_CURVE_SECP521R1 ((psa_ecc_curve_t) 0x0019) #define PSA_ECC_CURVE_BRAINPOOL_P256R1 ((psa_ecc_curve_t) 0x001a) #define PSA_ECC_CURVE_BRAINPOOL_P384R1 ((psa_ecc_curve_t) 0x001b) #define PSA_ECC_CURVE_BRAINPOOL_P512R1 ((psa_ecc_curve_t) 0x001c) /** Curve25519. * * This is the curve defined in Bernstein et al., * _Curve25519: new Diffie-Hellman speed records_, LNCS 3958, 2006. * The algorithm #PSA_ALG_ECDH performs X25519 when used with this curve. */ #define PSA_ECC_CURVE_CURVE25519 ((psa_ecc_curve_t) 0x001d) /** Curve448 * * This is the curve defined in Hamburg, * _Ed448-Goldilocks, a new elliptic curve_, NIST ECC Workshop, 2015. * The algorithm #PSA_ALG_ECDH performs X448 when used with this curve. */ #define PSA_ECC_CURVE_CURVE448 ((psa_ecc_curve_t) 0x001e) /** Minimum value for a vendor-defined ECC curve identifier * * The range for vendor-defined curve identifiers is a subset of the IANA * registry private use range, `0xfe00` - `0xfeff`. */ #define PSA_ECC_CURVE_VENDOR_MIN ((psa_ecc_curve_t) 0xfe00) /** Maximum value for a vendor-defined ECC curve identifier * * The range for vendor-defined curve identifiers is a subset of the IANA * registry private use range, `0xfe00` - `0xfeff`. */ #define PSA_ECC_CURVE_VENDOR_MAX ((psa_ecc_curve_t) 0xfe7f) #define PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE ((psa_key_type_t)0x60040000) #define PSA_KEY_TYPE_DH_KEY_PAIR_BASE ((psa_key_type_t)0x70040000) #define PSA_KEY_TYPE_DH_GROUP_MASK ((psa_key_type_t)0x0000ffff) /** Diffie-Hellman key pair. * * \param group A value of type ::psa_dh_group_t that identifies the * Diffie-Hellman group to be used. */ #define PSA_KEY_TYPE_DH_KEY_PAIR(group) \ (PSA_KEY_TYPE_DH_KEY_PAIR_BASE | (group)) /** Diffie-Hellman public key. * * \param group A value of type ::psa_dh_group_t that identifies the * Diffie-Hellman group to be used. */ #define PSA_KEY_TYPE_DH_PUBLIC_KEY(group) \ (PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE | (group)) /** Whether a key type is a Diffie-Hellman key (pair or public-only). */ #define PSA_KEY_TYPE_IS_DH(type) \ ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & \ ~PSA_KEY_TYPE_DH_GROUP_MASK) == PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE) /** Whether a key type is a Diffie-Hellman key pair. */ #define PSA_KEY_TYPE_IS_DH_KEY_PAIR(type) \ (((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) == \ PSA_KEY_TYPE_DH_KEY_PAIR_BASE) /** Whether a key type is a Diffie-Hellman public key. */ #define PSA_KEY_TYPE_IS_DH_PUBLIC_KEY(type) \ (((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) == \ PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE) /** Extract the group from a Diffie-Hellman key type. */ #define PSA_KEY_TYPE_GET_GROUP(type) \ ((psa_dh_group_t) (PSA_KEY_TYPE_IS_DH(type) ? \ ((type) & PSA_KEY_TYPE_DH_GROUP_MASK) : \ 0)) /* The encoding of group identifiers is currently aligned with the * TLS Supported Groups Registry (formerly known as the * TLS EC Named Curve Registry) * https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml#tls-parameters-8 * The values are defined by RFC 7919. */ #define PSA_DH_GROUP_FFDHE2048 ((psa_dh_group_t) 0x0100) #define PSA_DH_GROUP_FFDHE3072 ((psa_dh_group_t) 0x0101) #define PSA_DH_GROUP_FFDHE4096 ((psa_dh_group_t) 0x0102) #define PSA_DH_GROUP_FFDHE6144 ((psa_dh_group_t) 0x0103) #define PSA_DH_GROUP_FFDHE8192 ((psa_dh_group_t) 0x0104) /** Minimum value for a vendor-defined Diffie Hellman group identifier * * The range for vendor-defined group identifiers is a subset of the IANA * registry private use range, `0x01fc` - `0x01ff`. */ #define PSA_DH_GROUP_VENDOR_MIN ((psa_dh_group_t) 0x01fc) /** Maximum value for a vendor-defined Diffie Hellman group identifier * * The range for vendor-defined group identifiers is a subset of the IANA * registry private use range, `0x01fc` - `0x01ff`. */ #define PSA_DH_GROUP_VENDOR_MAX ((psa_dh_group_t) 0x01fd) /** The block size of a block cipher. * * \param type A cipher key type (value of type #psa_key_type_t). * * \return The block size for a block cipher, or 1 for a stream cipher. * The return value is undefined if \p type is not a supported * cipher key type. * * \note It is possible to build stream cipher algorithms on top of a block * cipher, for example CTR mode (#PSA_ALG_CTR). * This macro only takes the key type into account, so it cannot be * used to determine the size of the data that #psa_cipher_update() * might buffer for future processing in general. * * \note This macro returns a compile-time constant if its argument is one. * * \warning This macro may evaluate its argument multiple times. */ #define PSA_BLOCK_CIPHER_BLOCK_SIZE(type) \ ( \ (type) == PSA_KEY_TYPE_AES ? 16 : \ (type) == PSA_KEY_TYPE_DES ? 8 : \ (type) == PSA_KEY_TYPE_CAMELLIA ? 16 : \ (type) == PSA_KEY_TYPE_ARC4 ? 1 : \ 0) #define PSA_ALG_VENDOR_FLAG ((psa_algorithm_t)0x80000000) #define PSA_ALG_CATEGORY_MASK ((psa_algorithm_t)0x7f000000) #define PSA_ALG_CATEGORY_HASH ((psa_algorithm_t)0x01000000) #define PSA_ALG_CATEGORY_MAC ((psa_algorithm_t)0x02000000) #define PSA_ALG_CATEGORY_CIPHER ((psa_algorithm_t)0x04000000) #define PSA_ALG_CATEGORY_AEAD ((psa_algorithm_t)0x06000000) #define PSA_ALG_CATEGORY_SIGN ((psa_algorithm_t)0x10000000) #define PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION ((psa_algorithm_t)0x12000000) #define PSA_ALG_CATEGORY_KEY_DERIVATION ((psa_algorithm_t)0x20000000) #define PSA_ALG_CATEGORY_KEY_AGREEMENT ((psa_algorithm_t)0x30000000) #define PSA_ALG_IS_VENDOR_DEFINED(alg) \ (((alg) & PSA_ALG_VENDOR_FLAG) != 0) /** Whether the specified algorithm is a hash algorithm. * * \param alg An algorithm identifier (value of type #psa_algorithm_t). * * \return 1 if \p alg is a hash algorithm, 0 otherwise. * This macro may return either 0 or 1 if \p alg is not a supported * algorithm identifier. */ #define PSA_ALG_IS_HASH(alg) \ (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_HASH) /** Whether the specified algorithm is a MAC algorithm. * * \param alg An algorithm identifier (value of type #psa_algorithm_t). * * \return 1 if \p alg is a MAC algorithm, 0 otherwise. * This macro may return either 0 or 1 if \p alg is not a supported * algorithm identifier. */ #define PSA_ALG_IS_MAC(alg) \ (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_MAC) /** Whether the specified algorithm is a symmetric cipher algorithm. * * \param alg An algorithm identifier (value of type #psa_algorithm_t). * * \return 1 if \p alg is a symmetric cipher algorithm, 0 otherwise. * This macro may return either 0 or 1 if \p alg is not a supported * algorithm identifier. */ #define PSA_ALG_IS_CIPHER(alg) \ (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_CIPHER) /** Whether the specified algorithm is an authenticated encryption * with associated data (AEAD) algorithm. * * \param alg An algorithm identifier (value of type #psa_algorithm_t). * * \return 1 if \p alg is an AEAD algorithm, 0 otherwise. * This macro may return either 0 or 1 if \p alg is not a supported * algorithm identifier. */ #define PSA_ALG_IS_AEAD(alg) \ (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_AEAD) /** Whether the specified algorithm is a public-key signature algorithm. * * \param alg An algorithm identifier (value of type #psa_algorithm_t). * * \return 1 if \p alg is a public-key signature algorithm, 0 otherwise. * This macro may return either 0 or 1 if \p alg is not a supported * algorithm identifier. */ #define PSA_ALG_IS_SIGN(alg) \ (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_SIGN) /** Whether the specified algorithm is a public-key encryption algorithm. * * \param alg An algorithm identifier (value of type #psa_algorithm_t). * * \return 1 if \p alg is a public-key encryption algorithm, 0 otherwise. * This macro may return either 0 or 1 if \p alg is not a supported * algorithm identifier. */ #define PSA_ALG_IS_ASYMMETRIC_ENCRYPTION(alg) \ (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION) /** Whether the specified algorithm is a key agreement algorithm. * * \param alg An algorithm identifier (value of type #psa_algorithm_t). * * \return 1 if \p alg is a key agreement algorithm, 0 otherwise. * This macro may return either 0 or 1 if \p alg is not a supported * algorithm identifier. */ #define PSA_ALG_IS_KEY_AGREEMENT(alg) \ (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_AGREEMENT) /** Whether the specified algorithm is a key derivation algorithm. * * \param alg An algorithm identifier (value of type #psa_algorithm_t). * * \return 1 if \p alg is a key derivation algorithm, 0 otherwise. * This macro may return either 0 or 1 if \p alg is not a supported * algorithm identifier. */ #define PSA_ALG_IS_KEY_DERIVATION(alg) \ (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_DERIVATION) #define PSA_ALG_HASH_MASK ((psa_algorithm_t)0x000000ff) #define PSA_ALG_MD2 ((psa_algorithm_t)0x01000001) #define PSA_ALG_MD4 ((psa_algorithm_t)0x01000002) #define PSA_ALG_MD5 ((psa_algorithm_t)0x01000003) #define PSA_ALG_RIPEMD160 ((psa_algorithm_t)0x01000004) #define PSA_ALG_SHA_1 ((psa_algorithm_t)0x01000005) /** SHA2-224 */ #define PSA_ALG_SHA_224 ((psa_algorithm_t)0x01000008) /** SHA2-256 */ #define PSA_ALG_SHA_256 ((psa_algorithm_t)0x01000009) /** SHA2-384 */ #define PSA_ALG_SHA_384 ((psa_algorithm_t)0x0100000a) /** SHA2-512 */ #define PSA_ALG_SHA_512 ((psa_algorithm_t)0x0100000b) /** SHA2-512/224 */ #define PSA_ALG_SHA_512_224 ((psa_algorithm_t)0x0100000c) /** SHA2-512/256 */ #define PSA_ALG_SHA_512_256 ((psa_algorithm_t)0x0100000d) /** SHA3-224 */ #define PSA_ALG_SHA3_224 ((psa_algorithm_t)0x01000010) /** SHA3-256 */ #define PSA_ALG_SHA3_256 ((psa_algorithm_t)0x01000011) /** SHA3-384 */ #define PSA_ALG_SHA3_384 ((psa_algorithm_t)0x01000012) /** SHA3-512 */ #define PSA_ALG_SHA3_512 ((psa_algorithm_t)0x01000013) /** In a hash-and-sign algorithm policy, allow any hash algorithm. * * This value may be used to form the algorithm usage field of a policy * for a signature algorithm that is parametrized by a hash. The key * may then be used to perform operations using the same signature * algorithm parametrized with any supported hash. * * That is, suppose that `PSA_xxx_SIGNATURE` is one of the following macros: * - #PSA_ALG_RSA_PKCS1V15_SIGN, #PSA_ALG_RSA_PSS, * - #PSA_ALG_ECDSA, #PSA_ALG_DETERMINISTIC_ECDSA. * Then you may create and use a key as follows: * - Set the key usage field using #PSA_ALG_ANY_HASH, for example: * ``` * psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_SIGN); // or VERIFY * psa_set_key_algorithm(&attributes, PSA_xxx_SIGNATURE(PSA_ALG_ANY_HASH)); * ``` * - Import or generate key material. * - Call psa_asymmetric_sign() or psa_asymmetric_verify(), passing * an algorithm built from `PSA_xxx_SIGNATURE` and a specific hash. Each * call to sign or verify a message may use a different hash. * ``` * psa_asymmetric_sign(handle, PSA_xxx_SIGNATURE(PSA_ALG_SHA_256), ...); * psa_asymmetric_sign(handle, PSA_xxx_SIGNATURE(PSA_ALG_SHA_512), ...); * psa_asymmetric_sign(handle, PSA_xxx_SIGNATURE(PSA_ALG_SHA3_256), ...); * ``` * * This value may not be used to build other algorithms that are * parametrized over a hash. For any valid use of this macro to build * an algorithm \c alg, #PSA_ALG_IS_HASH_AND_SIGN(\c alg) is true. * * This value may not be used to build an algorithm specification to * perform an operation. It is only valid to build policies. */ #define PSA_ALG_ANY_HASH ((psa_algorithm_t)0x010000ff) #define PSA_ALG_MAC_SUBCATEGORY_MASK ((psa_algorithm_t)0x00c00000) #define PSA_ALG_HMAC_BASE ((psa_algorithm_t)0x02800000) /** Macro to build an HMAC algorithm. * * For example, #PSA_ALG_HMAC(#PSA_ALG_SHA_256) is HMAC-SHA-256. * * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that * #PSA_ALG_IS_HASH(\p hash_alg) is true). * * \return The corresponding HMAC algorithm. * \return Unspecified if \p hash_alg is not a supported * hash algorithm. */ #define PSA_ALG_HMAC(hash_alg) \ (PSA_ALG_HMAC_BASE | ((hash_alg) & PSA_ALG_HASH_MASK)) #define PSA_ALG_HMAC_GET_HASH(hmac_alg) \ (PSA_ALG_CATEGORY_HASH | ((hmac_alg) & PSA_ALG_HASH_MASK)) /** Whether the specified algorithm is an HMAC algorithm. * * HMAC is a family of MAC algorithms that are based on a hash function. * * \param alg An algorithm identifier (value of type #psa_algorithm_t). * * \return 1 if \p alg is an HMAC algorithm, 0 otherwise. * This macro may return either 0 or 1 if \p alg is not a supported * algorithm identifier. */ #define PSA_ALG_IS_HMAC(alg) \ (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \ PSA_ALG_HMAC_BASE) /* In the encoding of a MAC algorithm, the bits corresponding to * PSA_ALG_MAC_TRUNCATION_MASK encode the length to which the MAC is * truncated. As an exception, the value 0 means the untruncated algorithm, * whatever its length is. The length is encoded in 6 bits, so it can * reach up to 63; the largest MAC is 64 bytes so its trivial truncation * to full length is correctly encoded as 0 and any non-trivial truncation * is correctly encoded as a value between 1 and 63. */ #define PSA_ALG_MAC_TRUNCATION_MASK ((psa_algorithm_t)0x00003f00) #define PSA_MAC_TRUNCATION_OFFSET 8 /** Macro to build a truncated MAC algorithm. * * A truncated MAC algorithm is identical to the corresponding MAC * algorithm except that the MAC value for the truncated algorithm * consists of only the first \p mac_length bytes of the MAC value * for the untruncated algorithm. * * \note This macro may allow constructing algorithm identifiers that * are not valid, either because the specified length is larger * than the untruncated MAC or because the specified length is * smaller than permitted by the implementation. * * \note It is implementation-defined whether a truncated MAC that * is truncated to the same length as the MAC of the untruncated * algorithm is considered identical to the untruncated algorithm * for policy comparison purposes. * * \param mac_alg A MAC algorithm identifier (value of type * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p alg) * is true). This may be a truncated or untruncated * MAC algorithm. * \param mac_length Desired length of the truncated MAC in bytes. * This must be at most the full length of the MAC * and must be at least an implementation-specified * minimum. The implementation-specified minimum * shall not be zero. * * \return The corresponding MAC algorithm with the specified * length. * \return Unspecified if \p alg is not a supported * MAC algorithm or if \p mac_length is too small or * too large for the specified MAC algorithm. */ #define PSA_ALG_TRUNCATED_MAC(mac_alg, mac_length) \ (((mac_alg) & ~PSA_ALG_MAC_TRUNCATION_MASK) | \ ((mac_length) << PSA_MAC_TRUNCATION_OFFSET & PSA_ALG_MAC_TRUNCATION_MASK)) /** Macro to build the base MAC algorithm corresponding to a truncated * MAC algorithm. * * \param mac_alg A MAC algorithm identifier (value of type * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p alg) * is true). This may be a truncated or untruncated * MAC algorithm. * * \return The corresponding base MAC algorithm. * \return Unspecified if \p alg is not a supported * MAC algorithm. */ #define PSA_ALG_FULL_LENGTH_MAC(mac_alg) \ ((mac_alg) & ~PSA_ALG_MAC_TRUNCATION_MASK) /** Length to which a MAC algorithm is truncated. * * \param mac_alg A MAC algorithm identifier (value of type * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p alg) * is true). * * \return Length of the truncated MAC in bytes. * \return 0 if \p alg is a non-truncated MAC algorithm. * \return Unspecified if \p alg is not a supported * MAC algorithm. */ #define PSA_MAC_TRUNCATED_LENGTH(mac_alg) \ (((mac_alg) & PSA_ALG_MAC_TRUNCATION_MASK) >> PSA_MAC_TRUNCATION_OFFSET) #define PSA_ALG_CIPHER_MAC_BASE ((psa_algorithm_t)0x02c00000) /** The CBC-MAC construction over a block cipher * * \warning CBC-MAC is insecure in many cases. * A more secure mode, such as #PSA_ALG_CMAC, is recommended. */ #define PSA_ALG_CBC_MAC ((psa_algorithm_t)0x02c00001) /** The CMAC construction over a block cipher */ #define PSA_ALG_CMAC ((psa_algorithm_t)0x02c00002) /** Whether the specified algorithm is a MAC algorithm based on a block cipher. * * \param alg An algorithm identifier (value of type #psa_algorithm_t). * * \return 1 if \p alg is a MAC algorithm based on a block cipher, 0 otherwise. * This macro may return either 0 or 1 if \p alg is not a supported * algorithm identifier. */ #define PSA_ALG_IS_BLOCK_CIPHER_MAC(alg) \ (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \ PSA_ALG_CIPHER_MAC_BASE) #define PSA_ALG_CIPHER_STREAM_FLAG ((psa_algorithm_t)0x00800000) #define PSA_ALG_CIPHER_FROM_BLOCK_FLAG ((psa_algorithm_t)0x00400000) /** Whether the specified algorithm is a stream cipher. * * A stream cipher is a symmetric cipher that encrypts or decrypts messages * by applying a bitwise-xor with a stream of bytes that is generated * from a key. * * \param alg An algorithm identifier (value of type #psa_algorithm_t). * * \return 1 if \p alg is a stream cipher algorithm, 0 otherwise. * This macro may return either 0 or 1 if \p alg is not a supported * algorithm identifier or if it is not a symmetric cipher algorithm. */ #define PSA_ALG_IS_STREAM_CIPHER(alg) \ (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_CIPHER_STREAM_FLAG)) == \ (PSA_ALG_CATEGORY_CIPHER | PSA_ALG_CIPHER_STREAM_FLAG)) /** The ARC4 stream cipher algorithm. */ #define PSA_ALG_ARC4 ((psa_algorithm_t)0x04800001) /** The ChaCha20 stream cipher. * * ChaCha20 is defined in RFC 7539. * * The nonce size for psa_cipher_set_iv() or psa_cipher_generate_iv() * must be 12. * * The initial block counter is always 0. * */ #define PSA_ALG_CHACHA20 ((psa_algorithm_t)0x04800005) /** The CTR stream cipher mode. * * CTR is a stream cipher which is built from a block cipher. * The underlying block cipher is determined by the key type. * For example, to use AES-128-CTR, use this algorithm with * a key of type #PSA_KEY_TYPE_AES and a length of 128 bits (16 bytes). */ #define PSA_ALG_CTR ((psa_algorithm_t)0x04c00001) /** The CFB stream cipher mode. * * The underlying block cipher is determined by the key type. */ #define PSA_ALG_CFB ((psa_algorithm_t)0x04c00002) /** The OFB stream cipher mode. * * The underlying block cipher is determined by the key type. */ #define PSA_ALG_OFB ((psa_algorithm_t)0x04c00003) /** The XTS cipher mode. * * XTS is a cipher mode which is built from a block cipher. It requires at * least one full block of input, but beyond this minimum the input * does not need to be a whole number of blocks. */ #define PSA_ALG_XTS ((psa_algorithm_t)0x044000ff) /** The CBC block cipher chaining mode, with no padding. * * The underlying block cipher is determined by the key type. * * This symmetric cipher mode can only be used with messages whose lengths * are whole number of blocks for the chosen block cipher. */ #define PSA_ALG_CBC_NO_PADDING ((psa_algorithm_t)0x04600100) /** The CBC block cipher chaining mode with PKCS#7 padding. * * The underlying block cipher is determined by the key type. * * This is the padding method defined by PKCS#7 (RFC 2315) §10.3. */ #define PSA_ALG_CBC_PKCS7 ((psa_algorithm_t)0x04600101) #define PSA_ALG_AEAD_FROM_BLOCK_FLAG ((psa_algorithm_t)0x00400000) /** Whether the specified algorithm is an AEAD mode on a block cipher. * * \param alg An algorithm identifier (value of type #psa_algorithm_t). * * \return 1 if \p alg is an AEAD algorithm which is an AEAD mode based on * a block cipher, 0 otherwise. * This macro may return either 0 or 1 if \p alg is not a supported * algorithm identifier. */ #define PSA_ALG_IS_AEAD_ON_BLOCK_CIPHER(alg) \ (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_AEAD_FROM_BLOCK_FLAG)) == \ (PSA_ALG_CATEGORY_AEAD | PSA_ALG_AEAD_FROM_BLOCK_FLAG)) /** The CCM authenticated encryption algorithm. * * The underlying block cipher is determined by the key type. */ #define PSA_ALG_CCM ((psa_algorithm_t)0x06401001) /** The GCM authenticated encryption algorithm. * * The underlying block cipher is determined by the key type. */ #define PSA_ALG_GCM ((psa_algorithm_t)0x06401002) /** The Chacha20-Poly1305 AEAD algorithm. * * The ChaCha20_Poly1305 construction is defined in RFC 7539. * * Implementations must support 12-byte nonces, may support 8-byte nonces, * and should reject other sizes. * * Implementations must support 16-byte tags and should reject other sizes. */ #define PSA_ALG_CHACHA20_POLY1305 ((psa_algorithm_t)0x06001005) /* In the encoding of a AEAD algorithm, the bits corresponding to * PSA_ALG_AEAD_TAG_LENGTH_MASK encode the length of the AEAD tag. * The constants for default lengths follow this encoding. */ #define PSA_ALG_AEAD_TAG_LENGTH_MASK ((psa_algorithm_t)0x00003f00) #define PSA_AEAD_TAG_LENGTH_OFFSET 8 /** Macro to build a shortened AEAD algorithm. * * A shortened AEAD algorithm is similar to the corresponding AEAD * algorithm, but has an authentication tag that consists of fewer bytes. * Depending on the algorithm, the tag length may affect the calculation * of the ciphertext. * * \param aead_alg An AEAD algorithm identifier (value of type * #psa_algorithm_t such that #PSA_ALG_IS_AEAD(\p alg) * is true). * \param tag_length Desired length of the authentication tag in bytes. * * \return The corresponding AEAD algorithm with the specified * length. * \return Unspecified if \p alg is not a supported * AEAD algorithm or if \p tag_length is not valid * for the specified AEAD algorithm. */ #define PSA_ALG_AEAD_WITH_TAG_LENGTH(aead_alg, tag_length) \ (((aead_alg) & ~PSA_ALG_AEAD_TAG_LENGTH_MASK) | \ ((tag_length) << PSA_AEAD_TAG_LENGTH_OFFSET & \ PSA_ALG_AEAD_TAG_LENGTH_MASK)) /** Calculate the corresponding AEAD algorithm with the default tag length. * * \param aead_alg An AEAD algorithm (\c PSA_ALG_XXX value such that * #PSA_ALG_IS_AEAD(\p alg) is true). * * \return The corresponding AEAD algorithm with the default * tag length for that algorithm. */ #define PSA_ALG_AEAD_WITH_DEFAULT_TAG_LENGTH(aead_alg) \ ( \ PSA_ALG_AEAD_WITH_DEFAULT_TAG_LENGTH_CASE(aead_alg, PSA_ALG_CCM) \ PSA_ALG_AEAD_WITH_DEFAULT_TAG_LENGTH_CASE(aead_alg, PSA_ALG_GCM) \ PSA_ALG_AEAD_WITH_DEFAULT_TAG_LENGTH_CASE(aead_alg, PSA_ALG_CHACHA20_POLY1305) \ 0) #define PSA_ALG_AEAD_WITH_DEFAULT_TAG_LENGTH_CASE(aead_alg, ref) \ PSA_ALG_AEAD_WITH_TAG_LENGTH(aead_alg, 0) == \ PSA_ALG_AEAD_WITH_TAG_LENGTH(ref, 0) ? \ ref : #define PSA_ALG_RSA_PKCS1V15_SIGN_BASE ((psa_algorithm_t)0x10020000) /** RSA PKCS#1 v1.5 signature with hashing. * * This is the signature scheme defined by RFC 8017 * (PKCS#1: RSA Cryptography Specifications) under the name * RSASSA-PKCS1-v1_5. * * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that * #PSA_ALG_IS_HASH(\p hash_alg) is true). * This includes #PSA_ALG_ANY_HASH * when specifying the algorithm in a usage policy. * * \return The corresponding RSA PKCS#1 v1.5 signature algorithm. * \return Unspecified if \p hash_alg is not a supported * hash algorithm. */ #define PSA_ALG_RSA_PKCS1V15_SIGN(hash_alg) \ (PSA_ALG_RSA_PKCS1V15_SIGN_BASE | ((hash_alg) & PSA_ALG_HASH_MASK)) /** Raw PKCS#1 v1.5 signature. * * The input to this algorithm is the DigestInfo structure used by * RFC 8017 (PKCS#1: RSA Cryptography Specifications), §9.2 * steps 3–6. */ #define PSA_ALG_RSA_PKCS1V15_SIGN_RAW PSA_ALG_RSA_PKCS1V15_SIGN_BASE #define PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) \ (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PKCS1V15_SIGN_BASE) #define PSA_ALG_RSA_PSS_BASE ((psa_algorithm_t)0x10030000) /** RSA PSS signature with hashing. * * This is the signature scheme defined by RFC 8017 * (PKCS#1: RSA Cryptography Specifications) under the name * RSASSA-PSS, with the message generation function MGF1, and with * a salt length equal to the length of the hash. The specified * hash algorithm is used to hash the input message, to create the * salted hash, and for the mask generation. * * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that * #PSA_ALG_IS_HASH(\p hash_alg) is true). * This includes #PSA_ALG_ANY_HASH * when specifying the algorithm in a usage policy. * * \return The corresponding RSA PSS signature algorithm. * \return Unspecified if \p hash_alg is not a supported * hash algorithm. */ #define PSA_ALG_RSA_PSS(hash_alg) \ (PSA_ALG_RSA_PSS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK)) #define PSA_ALG_IS_RSA_PSS(alg) \ (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PSS_BASE) #define PSA_ALG_ECDSA_BASE ((psa_algorithm_t)0x10060000) /** ECDSA signature with hashing. * * This is the ECDSA signature scheme defined by ANSI X9.62, * with a random per-message secret number (*k*). * * The representation of the signature as a byte string consists of * the concatentation of the signature values *r* and *s*. Each of * *r* and *s* is encoded as an *N*-octet string, where *N* is the length * of the base point of the curve in octets. Each value is represented * in big-endian order (most significant octet first). * * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that * #PSA_ALG_IS_HASH(\p hash_alg) is true). * This includes #PSA_ALG_ANY_HASH * when specifying the algorithm in a usage policy. * * \return The corresponding ECDSA signature algorithm. * \return Unspecified if \p hash_alg is not a supported * hash algorithm. */ #define PSA_ALG_ECDSA(hash_alg) \ (PSA_ALG_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK)) /** ECDSA signature without hashing. * * This is the same signature scheme as #PSA_ALG_ECDSA(), but * without specifying a hash algorithm. This algorithm may only be * used to sign or verify a sequence of bytes that should be an * already-calculated hash. Note that the input is padded with * zeros on the left or truncated on the left as required to fit * the curve size. */ #define PSA_ALG_ECDSA_ANY PSA_ALG_ECDSA_BASE #define PSA_ALG_DETERMINISTIC_ECDSA_BASE ((psa_algorithm_t)0x10070000) /** Deterministic ECDSA signature with hashing. * * This is the deterministic ECDSA signature scheme defined by RFC 6979. * * The representation of a signature is the same as with #PSA_ALG_ECDSA(). * * Note that when this algorithm is used for verification, signatures * made with randomized ECDSA (#PSA_ALG_ECDSA(\p hash_alg)) with the * same private key are accepted. In other words, * #PSA_ALG_DETERMINISTIC_ECDSA(\p hash_alg) differs from * #PSA_ALG_ECDSA(\p hash_alg) only for signature, not for verification. * * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that * #PSA_ALG_IS_HASH(\p hash_alg) is true). * This includes #PSA_ALG_ANY_HASH * when specifying the algorithm in a usage policy. * * \return The corresponding deterministic ECDSA signature * algorithm. * \return Unspecified if \p hash_alg is not a supported * hash algorithm. */ #define PSA_ALG_DETERMINISTIC_ECDSA(hash_alg) \ (PSA_ALG_DETERMINISTIC_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK)) #define PSA_ALG_IS_ECDSA(alg) \ (((alg) & ~PSA_ALG_HASH_MASK & ~PSA_ALG_DSA_DETERMINISTIC_FLAG) == \ PSA_ALG_ECDSA_BASE) #define PSA_ALG_ECDSA_IS_DETERMINISTIC(alg) \ (((alg) & PSA_ALG_DSA_DETERMINISTIC_FLAG) != 0) #define PSA_ALG_IS_DETERMINISTIC_ECDSA(alg) \ (PSA_ALG_IS_ECDSA(alg) && PSA_ALG_ECDSA_IS_DETERMINISTIC(alg)) #define PSA_ALG_IS_RANDOMIZED_ECDSA(alg) \ (PSA_ALG_IS_ECDSA(alg) && !PSA_ALG_ECDSA_IS_DETERMINISTIC(alg)) /** Whether the specified algorithm is a hash-and-sign algorithm. * * Hash-and-sign algorithms are public-key signature algorithms structured * in two parts: first the calculation of a hash in a way that does not * depend on the key, then the calculation of a signature from the * hash value and the key. * * \param alg An algorithm identifier (value of type #psa_algorithm_t). * * \return 1 if \p alg is a hash-and-sign algorithm, 0 otherwise. * This macro may return either 0 or 1 if \p alg is not a supported * algorithm identifier. */ #define PSA_ALG_IS_HASH_AND_SIGN(alg) \ (PSA_ALG_IS_RSA_PSS(alg) || PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) || \ PSA_ALG_IS_ECDSA(alg)) /** Get the hash used by a hash-and-sign signature algorithm. * * A hash-and-sign algorithm is a signature algorithm which is * composed of two phases: first a hashing phase which does not use * the key and produces a hash of the input message, then a signing * phase which only uses the hash and the key and not the message * itself. * * \param alg A signature algorithm (\c PSA_ALG_XXX value such that * #PSA_ALG_IS_SIGN(\p alg) is true). * * \return The underlying hash algorithm if \p alg is a hash-and-sign * algorithm. * \return 0 if \p alg is a signature algorithm that does not * follow the hash-and-sign structure. * \return Unspecified if \p alg is not a signature algorithm or * if it is not supported by the implementation. */ #define PSA_ALG_SIGN_GET_HASH(alg) \ (PSA_ALG_IS_HASH_AND_SIGN(alg) ? \ ((alg) & PSA_ALG_HASH_MASK) == 0 ? /*"raw" algorithm*/ 0 : \ ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \ 0) /** RSA PKCS#1 v1.5 encryption. */ #define PSA_ALG_RSA_PKCS1V15_CRYPT ((psa_algorithm_t)0x12020000) #define PSA_ALG_RSA_OAEP_BASE ((psa_algorithm_t)0x12030000) /** RSA OAEP encryption. * * This is the encryption scheme defined by RFC 8017 * (PKCS#1: RSA Cryptography Specifications) under the name * RSAES-OAEP, with the message generation function MGF1. * * \param hash_alg The hash algorithm (\c PSA_ALG_XXX value such that * #PSA_ALG_IS_HASH(\p hash_alg) is true) to use * for MGF1. * * \return The corresponding RSA OAEP signature algorithm. * \return Unspecified if \p hash_alg is not a supported * hash algorithm. */ #define PSA_ALG_RSA_OAEP(hash_alg) \ (PSA_ALG_RSA_OAEP_BASE | ((hash_alg) & PSA_ALG_HASH_MASK)) #define PSA_ALG_IS_RSA_OAEP(alg) \ (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_OAEP_BASE) #define PSA_ALG_RSA_OAEP_GET_HASH(alg) \ (PSA_ALG_IS_RSA_OAEP(alg) ? \ ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \ 0) #define PSA_ALG_HKDF_BASE ((psa_algorithm_t)0x20000100) /** Macro to build an HKDF algorithm. * * For example, `PSA_ALG_HKDF(PSA_ALG_SHA256)` is HKDF using HMAC-SHA-256. * * This key derivation algorithm uses the following inputs: * - #PSA_KEY_DERIVATION_INPUT_SALT is the salt used in the "extract" step. * It is optional; if omitted, the derivation uses an empty salt. * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key used in the "extract" step. * - #PSA_KEY_DERIVATION_INPUT_INFO is the info string used in the "expand" step. * You must pass #PSA_KEY_DERIVATION_INPUT_SALT before #PSA_KEY_DERIVATION_INPUT_SECRET. * You may pass #PSA_KEY_DERIVATION_INPUT_INFO at any time after steup and before * starting to generate output. * * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that * #PSA_ALG_IS_HASH(\p hash_alg) is true). * * \return The corresponding HKDF algorithm. * \return Unspecified if \p hash_alg is not a supported * hash algorithm. */ #define PSA_ALG_HKDF(hash_alg) \ (PSA_ALG_HKDF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK)) /** Whether the specified algorithm is an HKDF algorithm. * * HKDF is a family of key derivation algorithms that are based on a hash * function and the HMAC construction. * * \param alg An algorithm identifier (value of type #psa_algorithm_t). * * \return 1 if \c alg is an HKDF algorithm, 0 otherwise. * This macro may return either 0 or 1 if \c alg is not a supported * key derivation algorithm identifier. */ #define PSA_ALG_IS_HKDF(alg) \ (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_BASE) #define PSA_ALG_HKDF_GET_HASH(hkdf_alg) \ (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK)) #define PSA_ALG_TLS12_PRF_BASE ((psa_algorithm_t)0x20000200) /** Macro to build a TLS-1.2 PRF algorithm. * * TLS 1.2 uses a custom pseudorandom function (PRF) for key schedule, * specified in Section 5 of RFC 5246. It is based on HMAC and can be * used with either SHA-256 or SHA-384. * * This key derivation algorithm uses the following inputs, which must be * passed in the order given here: * - #PSA_KEY_DERIVATION_INPUT_SEED is the seed. * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key. * - #PSA_KEY_DERIVATION_INPUT_LABEL is the label. * * For the application to TLS-1.2 key expansion, the seed is the * concatenation of ServerHello.Random + ClientHello.Random, * and the label is "key expansion". * * For example, `PSA_ALG_TLS12_PRF(PSA_ALG_SHA256)` represents the * TLS 1.2 PRF using HMAC-SHA-256. * * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that * #PSA_ALG_IS_HASH(\p hash_alg) is true). * * \return The corresponding TLS-1.2 PRF algorithm. * \return Unspecified if \p hash_alg is not a supported * hash algorithm. */ #define PSA_ALG_TLS12_PRF(hash_alg) \ (PSA_ALG_TLS12_PRF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK)) /** Whether the specified algorithm is a TLS-1.2 PRF algorithm. * * \param alg An algorithm identifier (value of type #psa_algorithm_t). * * \return 1 if \c alg is a TLS-1.2 PRF algorithm, 0 otherwise. * This macro may return either 0 or 1 if \c alg is not a supported * key derivation algorithm identifier. */ #define PSA_ALG_IS_TLS12_PRF(alg) \ (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PRF_BASE) #define PSA_ALG_TLS12_PRF_GET_HASH(hkdf_alg) \ (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK)) #define PSA_ALG_TLS12_PSK_TO_MS_BASE ((psa_algorithm_t)0x20000300) /** Macro to build a TLS-1.2 PSK-to-MasterSecret algorithm. * * In a pure-PSK handshake in TLS 1.2, the master secret is derived * from the PreSharedKey (PSK) through the application of padding * (RFC 4279, Section 2) and the TLS-1.2 PRF (RFC 5246, Section 5). * The latter is based on HMAC and can be used with either SHA-256 * or SHA-384. * * This key derivation algorithm uses the following inputs, which must be * passed in the order given here: * - #PSA_KEY_DERIVATION_INPUT_SEED is the seed. * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key. * - #PSA_KEY_DERIVATION_INPUT_LABEL is the label. * * For the application to TLS-1.2, the seed (which is * forwarded to the TLS-1.2 PRF) is the concatenation of the * ClientHello.Random + ServerHello.Random, * and the label is "master secret" or "extended master secret". * * For example, `PSA_ALG_TLS12_PSK_TO_MS(PSA_ALG_SHA256)` represents the * TLS-1.2 PSK to MasterSecret derivation PRF using HMAC-SHA-256. * * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that * #PSA_ALG_IS_HASH(\p hash_alg) is true). * * \return The corresponding TLS-1.2 PSK to MS algorithm. * \return Unspecified if \p hash_alg is not a supported * hash algorithm. */ #define PSA_ALG_TLS12_PSK_TO_MS(hash_alg) \ (PSA_ALG_TLS12_PSK_TO_MS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK)) /** Whether the specified algorithm is a TLS-1.2 PSK to MS algorithm. * * \param alg An algorithm identifier (value of type #psa_algorithm_t). * * \return 1 if \c alg is a TLS-1.2 PSK to MS algorithm, 0 otherwise. * This macro may return either 0 or 1 if \c alg is not a supported * key derivation algorithm identifier. */ #define PSA_ALG_IS_TLS12_PSK_TO_MS(alg) \ (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PSK_TO_MS_BASE) #define PSA_ALG_TLS12_PSK_TO_MS_GET_HASH(hkdf_alg) \ (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK)) #define PSA_ALG_KEY_DERIVATION_MASK ((psa_algorithm_t)0x0803ffff) #define PSA_ALG_KEY_AGREEMENT_MASK ((psa_algorithm_t)0x10fc0000) /** Macro to build a combined algorithm that chains a key agreement with * a key derivation. * * \param ka_alg A key agreement algorithm (\c PSA_ALG_XXX value such * that #PSA_ALG_IS_KEY_AGREEMENT(\p ka_alg) is true). * \param kdf_alg A key derivation algorithm (\c PSA_ALG_XXX value such * that #PSA_ALG_IS_KEY_DERIVATION(\p kdf_alg) is true). * * \return The corresponding key agreement and derivation * algorithm. * \return Unspecified if \p ka_alg is not a supported * key agreement algorithm or \p kdf_alg is not a * supported key derivation algorithm. */ #define PSA_ALG_KEY_AGREEMENT(ka_alg, kdf_alg) \ ((ka_alg) | (kdf_alg)) #define PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) \ (((alg) & PSA_ALG_KEY_DERIVATION_MASK) | PSA_ALG_CATEGORY_KEY_DERIVATION) #define PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) \ (((alg) & PSA_ALG_KEY_AGREEMENT_MASK) | PSA_ALG_CATEGORY_KEY_AGREEMENT) /** Whether the specified algorithm is a raw key agreement algorithm. * * A raw key agreement algorithm is one that does not specify * a key derivation function. * Usually, raw key agreement algorithms are constructed directly with * a \c PSA_ALG_xxx macro while non-raw key agreement algorithms are * constructed with PSA_ALG_KEY_AGREEMENT(). * * \param alg An algorithm identifier (value of type #psa_algorithm_t). * * \return 1 if \p alg is a raw key agreement algorithm, 0 otherwise. * This macro may return either 0 or 1 if \p alg is not a supported * algorithm identifier. */ #define PSA_ALG_IS_RAW_KEY_AGREEMENT(alg) \ (PSA_ALG_IS_KEY_AGREEMENT(alg) && \ PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) == PSA_ALG_CATEGORY_KEY_DERIVATION) #define PSA_ALG_IS_KEY_DERIVATION_OR_AGREEMENT(alg) \ ((PSA_ALG_IS_KEY_DERIVATION(alg) || PSA_ALG_IS_KEY_AGREEMENT(alg))) /** The finite-field Diffie-Hellman (DH) key agreement algorithm. * * The shared secret produced by key agreement is * `g^{ab}` in big-endian format. * It is `ceiling(m / 8)` bytes long where `m` is the size of the prime `p` * in bits. */ #define PSA_ALG_FFDH ((psa_algorithm_t)0x30100000) /** Whether the specified algorithm is a finite field Diffie-Hellman algorithm. * * This includes the raw finite field Diffie-Hellman algorithm as well as * finite-field Diffie-Hellman followed by any supporter key derivation * algorithm. * * \param alg An algorithm identifier (value of type #psa_algorithm_t). * * \return 1 if \c alg is a finite field Diffie-Hellman algorithm, 0 otherwise. * This macro may return either 0 or 1 if \c alg is not a supported * key agreement algorithm identifier. */ #define PSA_ALG_IS_FFDH(alg) \ (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_FFDH) /** The elliptic curve Diffie-Hellman (ECDH) key agreement algorithm. * * The shared secret produced by key agreement is the x-coordinate of * the shared secret point. It is always `ceiling(m / 8)` bytes long where * `m` is the bit size associated with the curve, i.e. the bit size of the * order of the curve's coordinate field. When `m` is not a multiple of 8, * the byte containing the most significant bit of the shared secret * is padded with zero bits. The byte order is either little-endian * or big-endian depending on the curve type. * * - For Montgomery curves (curve types `PSA_ECC_CURVE_CURVEXXX`), * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A` * in little-endian byte order. * The bit size is 448 for Curve448 and 255 for Curve25519. * - For Weierstrass curves over prime fields (curve types * `PSA_ECC_CURVE_SECPXXX` and `PSA_ECC_CURVE_BRAINPOOL_PXXX`), * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A` * in big-endian byte order. * The bit size is `m = ceiling(log_2(p))` for the field `F_p`. * - For Weierstrass curves over binary fields (curve types * `PSA_ECC_CURVE_SECTXXX`), * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A` * in big-endian byte order. * The bit size is `m` for the field `F_{2^m}`. */ #define PSA_ALG_ECDH ((psa_algorithm_t)0x30200000) /** Whether the specified algorithm is an elliptic curve Diffie-Hellman * algorithm. * * This includes the raw elliptic curve Diffie-Hellman algorithm as well as * elliptic curve Diffie-Hellman followed by any supporter key derivation * algorithm. * * \param alg An algorithm identifier (value of type #psa_algorithm_t). * * \return 1 if \c alg is an elliptic curve Diffie-Hellman algorithm, * 0 otherwise. * This macro may return either 0 or 1 if \c alg is not a supported * key agreement algorithm identifier. */ #define PSA_ALG_IS_ECDH(alg) \ (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_ECDH) /** Whether the specified algorithm encoding is a wildcard. * * Wildcard values may only be used to set the usage algorithm field in * a policy, not to perform an operation. * * \param alg An algorithm identifier (value of type #psa_algorithm_t). * * \return 1 if \c alg is a wildcard algorithm encoding. * \return 0 if \c alg is a non-wildcard algorithm encoding (suitable for * an operation). * \return This macro may return either 0 or 1 if \c alg is not a supported * algorithm identifier. */ #define PSA_ALG_IS_WILDCARD(alg) \ (PSA_ALG_IS_HASH_AND_SIGN(alg) ? \ PSA_ALG_SIGN_GET_HASH(alg) == PSA_ALG_ANY_HASH : \ (alg) == PSA_ALG_ANY_HASH) /**@}*/ /** \defgroup key_lifetimes Key lifetimes * @{ */ /** A volatile key only exists as long as the handle to it is not closed. * The key material is guaranteed to be erased on a power reset. */ #define PSA_KEY_LIFETIME_VOLATILE ((psa_key_lifetime_t)0x00000000) /** The default storage area for persistent keys. * * A persistent key remains in storage until it is explicitly destroyed or * until the corresponding storage area is wiped. This specification does * not define any mechanism to wipe a storage area, but implementations may * provide their own mechanism (for example to perform a factory reset, * to prepare for device refurbishment, or to uninstall an application). * * This lifetime value is the default storage area for the calling * application. Implementations may offer other storage areas designated * by other lifetime values as implementation-specific extensions. */ #define PSA_KEY_LIFETIME_PERSISTENT ((psa_key_lifetime_t)0x00000001) /** The minimum value for a key identifier chosen by the application. */ #define PSA_KEY_ID_USER_MIN ((psa_app_key_id_t)0x00000001) /** The maximum value for a key identifier chosen by the application. */ #define PSA_KEY_ID_USER_MAX ((psa_app_key_id_t)0x3fffffff) /** The minimum value for a key identifier chosen by the implementation. */ #define PSA_KEY_ID_VENDOR_MIN ((psa_app_key_id_t)0x40000000) /** The maximum value for a key identifier chosen by the implementation. */ #define PSA_KEY_ID_VENDOR_MAX ((psa_app_key_id_t)0x7fffffff) /**@}*/ /** \defgroup policy Key policies * @{ */ /** Whether the key may be exported. * * A public key or the public part of a key pair may always be exported * regardless of the value of this permission flag. * * If a key does not have export permission, implementations shall not * allow the key to be exported in plain form from the cryptoprocessor, * whether through psa_export_key() or through a proprietary interface. * The key may however be exportable in a wrapped form, i.e. in a form * where it is encrypted by another key. */ #define PSA_KEY_USAGE_EXPORT ((psa_key_usage_t)0x00000001) /** Whether the key may be copied. * * This flag allows the use of psa_copy_key() to make a copy of the key * with the same policy or a more restrictive policy. * * For lifetimes for which the key is located in a secure element which * enforce the non-exportability of keys, copying a key outside the secure * element also requires the usage flag #PSA_KEY_USAGE_EXPORT. * Copying the key inside the secure element is permitted with just * #PSA_KEY_USAGE_COPY if the secure element supports it. * For keys with the lifetime #PSA_KEY_LIFETIME_VOLATILE or * #PSA_KEY_LIFETIME_PERSISTENT, the usage flag #PSA_KEY_USAGE_COPY * is sufficient to permit the copy. */ #define PSA_KEY_USAGE_COPY ((psa_key_usage_t)0x00000002) /** Whether the key may be used to encrypt a message. * * This flag allows the key to be used for a symmetric encryption operation, * for an AEAD encryption-and-authentication operation, * or for an asymmetric encryption operation, * if otherwise permitted by the key's type and policy. * * For a key pair, this concerns the public key. */ #define PSA_KEY_USAGE_ENCRYPT ((psa_key_usage_t)0x00000100) /** Whether the key may be used to decrypt a message. * * This flag allows the key to be used for a symmetric decryption operation, * for an AEAD decryption-and-verification operation, * or for an asymmetric decryption operation, * if otherwise permitted by the key's type and policy. * * For a key pair, this concerns the private key. */ #define PSA_KEY_USAGE_DECRYPT ((psa_key_usage_t)0x00000200) /** Whether the key may be used to sign a message. * * This flag allows the key to be used for a MAC calculation operation * or for an asymmetric signature operation, * if otherwise permitted by the key's type and policy. * * For a key pair, this concerns the private key. */ #define PSA_KEY_USAGE_SIGN ((psa_key_usage_t)0x00000400) /** Whether the key may be used to verify a message signature. * * This flag allows the key to be used for a MAC verification operation * or for an asymmetric signature verification operation, * if otherwise permitted by by the key's type and policy. * * For a key pair, this concerns the public key. */ #define PSA_KEY_USAGE_VERIFY ((psa_key_usage_t)0x00000800) /** Whether the key may be used to derive other keys. */ #define PSA_KEY_USAGE_DERIVE ((psa_key_usage_t)0x00001000) /**@}*/ /** \defgroup derivation Key derivation * @{ */ /** A secret input for key derivation. * * This must be a key of type #PSA_KEY_TYPE_DERIVE. */ #define PSA_KEY_DERIVATION_INPUT_SECRET ((psa_key_derivation_step_t)0x0101) /** A label for key derivation. * * This must be a direct input. */ #define PSA_KEY_DERIVATION_INPUT_LABEL ((psa_key_derivation_step_t)0x0201) /** A salt for key derivation. * * This must be a direct input. */ #define PSA_KEY_DERIVATION_INPUT_SALT ((psa_key_derivation_step_t)0x0202) /** An information string for key derivation. * * This must be a direct input. */ #define PSA_KEY_DERIVATION_INPUT_INFO ((psa_key_derivation_step_t)0x0203) /** A seed for key derivation. * * This must be a direct input. */ #define PSA_KEY_DERIVATION_INPUT_SEED ((psa_key_derivation_step_t)0x0204) /**@}*/ #endif /* PSA_CRYPTO_VALUES_H */