/* * FIPS-197 compliant AES implementation * * Copyright (C) 2006-2015, ARM Limited, All Rights Reserved * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the "License"); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * This file is part of mbed TLS (https://tls.mbed.org) */ /* * The AES block cipher was designed by Vincent Rijmen and Joan Daemen. * * http://csrc.nist.gov/encryption/aes/rijndael/Rijndael.pdf * http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf */ #if !defined(MBEDTLS_CONFIG_FILE) #include "mbedtls/config.h" #else #include MBEDTLS_CONFIG_FILE #endif #if defined(MBEDTLS_AES_C) #include #include "mbedtls/aes.h" #include "mbedtls/platform.h" #include "mbedtls/platform_util.h" #if defined(MBEDTLS_PADLOCK_C) #include "mbedtls/padlock.h" #endif #if defined(MBEDTLS_AESNI_C) #include "mbedtls/aesni.h" #endif #if defined(MBEDTLS_SELF_TEST) #if defined(MBEDTLS_PLATFORM_C) #include "mbedtls/platform.h" #else #include #define mbedtls_printf printf #endif /* MBEDTLS_PLATFORM_C */ #endif /* MBEDTLS_SELF_TEST */ #if !defined(MBEDTLS_AES_ALT) /* Parameter validation macros based on platform_util.h */ #define AES_VALIDATE_RET( cond ) \ MBEDTLS_INTERNAL_VALIDATE_RET( cond, MBEDTLS_ERR_AES_BAD_INPUT_DATA ) #define AES_VALIDATE( cond ) \ MBEDTLS_INTERNAL_VALIDATE( cond ) /* * 32-bit integer manipulation macros (little endian) */ #ifndef GET_UINT32_LE #define GET_UINT32_LE(n,b,i) \ { \ (n) = ( (uint32_t) (b)[(i) ] ) \ | ( (uint32_t) (b)[(i) + 1] << 8 ) \ | ( (uint32_t) (b)[(i) + 2] << 16 ) \ | ( (uint32_t) (b)[(i) + 3] << 24 ); \ } #endif #ifndef PUT_UINT32_LE #define PUT_UINT32_LE(n,b,i) \ { \ (b)[(i) ] = (unsigned char) ( ( (n) ) & 0xFF ); \ (b)[(i) + 1] = (unsigned char) ( ( (n) >> 8 ) & 0xFF ); \ (b)[(i) + 2] = (unsigned char) ( ( (n) >> 16 ) & 0xFF ); \ (b)[(i) + 3] = (unsigned char) ( ( (n) >> 24 ) & 0xFF ); \ } #endif /* * Data structure for AES round data */ typedef struct { uint32_t *rk_ptr; /* Round Key */ uint32_t xy_values[8]; /* X0, X1, X2, X3, Y0, Y1, Y2, Y3 */ #if defined(MBEDTLS_AES_128_BIT_MASKED) uint32_t round; #endif } aes_r_data_t; #if defined(MBEDTLS_AES_SCA_COUNTERMEASURES) /* Number of additional AES dummy rounds added for SCA countermeasures */ #define AES_SCA_CM_ROUNDS 5 #if defined (MBEDTLS_AES_128_BIT_MASKED) #define Nb (4) /* number of columns (32-bit words) comprising the state */ #define Nk (4) /* number of 32-bit words comprising the key */ #define Nr (10) /* number of rounds */ // state - array holding the intermediate results during aes operation. typedef uint8_t masked_state_t[4][4]; #endif #endif /* MBEDTLS_AES_SCA_COUNTERMEASURES */ #if defined(MBEDTLS_PADLOCK_C) && \ ( defined(MBEDTLS_HAVE_X86) || defined(MBEDTLS_PADLOCK_ALIGN16) ) static int aes_padlock_ace = -1; #endif #if defined(MBEDTLS_AES_ROM_TABLES) /* * Forward S-box */ static const unsigned char FSb[256] = { 0x63, 0x7C, 0x77, 0x7B, 0xF2, 0x6B, 0x6F, 0xC5, 0x30, 0x01, 0x67, 0x2B, 0xFE, 0xD7, 0xAB, 0x76, 0xCA, 0x82, 0xC9, 0x7D, 0xFA, 0x59, 0x47, 0xF0, 0xAD, 0xD4, 0xA2, 0xAF, 0x9C, 0xA4, 0x72, 0xC0, 0xB7, 0xFD, 0x93, 0x26, 0x36, 0x3F, 0xF7, 0xCC, 0x34, 0xA5, 0xE5, 0xF1, 0x71, 0xD8, 0x31, 0x15, 0x04, 0xC7, 0x23, 0xC3, 0x18, 0x96, 0x05, 0x9A, 0x07, 0x12, 0x80, 0xE2, 0xEB, 0x27, 0xB2, 0x75, 0x09, 0x83, 0x2C, 0x1A, 0x1B, 0x6E, 0x5A, 0xA0, 0x52, 0x3B, 0xD6, 0xB3, 0x29, 0xE3, 0x2F, 0x84, 0x53, 0xD1, 0x00, 0xED, 0x20, 0xFC, 0xB1, 0x5B, 0x6A, 0xCB, 0xBE, 0x39, 0x4A, 0x4C, 0x58, 0xCF, 0xD0, 0xEF, 0xAA, 0xFB, 0x43, 0x4D, 0x33, 0x85, 0x45, 0xF9, 0x02, 0x7F, 0x50, 0x3C, 0x9F, 0xA8, 0x51, 0xA3, 0x40, 0x8F, 0x92, 0x9D, 0x38, 0xF5, 0xBC, 0xB6, 0xDA, 0x21, 0x10, 0xFF, 0xF3, 0xD2, 0xCD, 0x0C, 0x13, 0xEC, 0x5F, 0x97, 0x44, 0x17, 0xC4, 0xA7, 0x7E, 0x3D, 0x64, 0x5D, 0x19, 0x73, 0x60, 0x81, 0x4F, 0xDC, 0x22, 0x2A, 0x90, 0x88, 0x46, 0xEE, 0xB8, 0x14, 0xDE, 0x5E, 0x0B, 0xDB, 0xE0, 0x32, 0x3A, 0x0A, 0x49, 0x06, 0x24, 0x5C, 0xC2, 0xD3, 0xAC, 0x62, 0x91, 0x95, 0xE4, 0x79, 0xE7, 0xC8, 0x37, 0x6D, 0x8D, 0xD5, 0x4E, 0xA9, 0x6C, 0x56, 0xF4, 0xEA, 0x65, 0x7A, 0xAE, 0x08, 0xBA, 0x78, 0x25, 0x2E, 0x1C, 0xA6, 0xB4, 0xC6, 0xE8, 0xDD, 0x74, 0x1F, 0x4B, 0xBD, 0x8B, 0x8A, 0x70, 0x3E, 0xB5, 0x66, 0x48, 0x03, 0xF6, 0x0E, 0x61, 0x35, 0x57, 0xB9, 0x86, 0xC1, 0x1D, 0x9E, 0xE1, 0xF8, 0x98, 0x11, 0x69, 0xD9, 0x8E, 0x94, 0x9B, 0x1E, 0x87, 0xE9, 0xCE, 0x55, 0x28, 0xDF, 0x8C, 0xA1, 0x89, 0x0D, 0xBF, 0xE6, 0x42, 0x68, 0x41, 0x99, 0x2D, 0x0F, 0xB0, 0x54, 0xBB, 0x16 }; #if !defined(MBEDTLS_AES_128_BIT_MASKED) /* * Forward tables */ #define FT \ \ V(A5,63,63,C6), V(84,7C,7C,F8), V(99,77,77,EE), V(8D,7B,7B,F6), \ V(0D,F2,F2,FF), V(BD,6B,6B,D6), V(B1,6F,6F,DE), V(54,C5,C5,91), \ V(50,30,30,60), V(03,01,01,02), V(A9,67,67,CE), V(7D,2B,2B,56), \ V(19,FE,FE,E7), V(62,D7,D7,B5), V(E6,AB,AB,4D), V(9A,76,76,EC), \ V(45,CA,CA,8F), V(9D,82,82,1F), V(40,C9,C9,89), V(87,7D,7D,FA), \ V(15,FA,FA,EF), V(EB,59,59,B2), V(C9,47,47,8E), V(0B,F0,F0,FB), \ V(EC,AD,AD,41), V(67,D4,D4,B3), V(FD,A2,A2,5F), V(EA,AF,AF,45), \ V(BF,9C,9C,23), V(F7,A4,A4,53), V(96,72,72,E4), V(5B,C0,C0,9B), \ V(C2,B7,B7,75), V(1C,FD,FD,E1), V(AE,93,93,3D), V(6A,26,26,4C), \ V(5A,36,36,6C), V(41,3F,3F,7E), V(02,F7,F7,F5), V(4F,CC,CC,83), \ V(5C,34,34,68), V(F4,A5,A5,51), V(34,E5,E5,D1), V(08,F1,F1,F9), \ V(93,71,71,E2), V(73,D8,D8,AB), V(53,31,31,62), V(3F,15,15,2A), \ V(0C,04,04,08), V(52,C7,C7,95), V(65,23,23,46), V(5E,C3,C3,9D), \ V(28,18,18,30), V(A1,96,96,37), V(0F,05,05,0A), V(B5,9A,9A,2F), \ V(09,07,07,0E), V(36,12,12,24), V(9B,80,80,1B), V(3D,E2,E2,DF), \ V(26,EB,EB,CD), V(69,27,27,4E), V(CD,B2,B2,7F), V(9F,75,75,EA), \ V(1B,09,09,12), V(9E,83,83,1D), V(74,2C,2C,58), V(2E,1A,1A,34), \ V(2D,1B,1B,36), V(B2,6E,6E,DC), V(EE,5A,5A,B4), V(FB,A0,A0,5B), \ V(F6,52,52,A4), V(4D,3B,3B,76), V(61,D6,D6,B7), V(CE,B3,B3,7D), \ V(7B,29,29,52), V(3E,E3,E3,DD), V(71,2F,2F,5E), V(97,84,84,13), \ V(F5,53,53,A6), V(68,D1,D1,B9), V(00,00,00,00), V(2C,ED,ED,C1), \ V(60,20,20,40), V(1F,FC,FC,E3), V(C8,B1,B1,79), V(ED,5B,5B,B6), \ V(BE,6A,6A,D4), V(46,CB,CB,8D), V(D9,BE,BE,67), V(4B,39,39,72), \ V(DE,4A,4A,94), V(D4,4C,4C,98), V(E8,58,58,B0), V(4A,CF,CF,85), \ V(6B,D0,D0,BB), V(2A,EF,EF,C5), V(E5,AA,AA,4F), V(16,FB,FB,ED), \ V(C5,43,43,86), V(D7,4D,4D,9A), V(55,33,33,66), V(94,85,85,11), \ V(CF,45,45,8A), V(10,F9,F9,E9), V(06,02,02,04), V(81,7F,7F,FE), \ V(F0,50,50,A0), V(44,3C,3C,78), V(BA,9F,9F,25), V(E3,A8,A8,4B), \ V(F3,51,51,A2), V(FE,A3,A3,5D), V(C0,40,40,80), V(8A,8F,8F,05), \ V(AD,92,92,3F), V(BC,9D,9D,21), V(48,38,38,70), V(04,F5,F5,F1), \ V(DF,BC,BC,63), V(C1,B6,B6,77), V(75,DA,DA,AF), V(63,21,21,42), \ V(30,10,10,20), V(1A,FF,FF,E5), V(0E,F3,F3,FD), V(6D,D2,D2,BF), \ V(4C,CD,CD,81), V(14,0C,0C,18), V(35,13,13,26), V(2F,EC,EC,C3), \ V(E1,5F,5F,BE), V(A2,97,97,35), V(CC,44,44,88), V(39,17,17,2E), \ V(57,C4,C4,93), V(F2,A7,A7,55), V(82,7E,7E,FC), V(47,3D,3D,7A), \ V(AC,64,64,C8), V(E7,5D,5D,BA), V(2B,19,19,32), V(95,73,73,E6), \ V(A0,60,60,C0), V(98,81,81,19), V(D1,4F,4F,9E), V(7F,DC,DC,A3), \ V(66,22,22,44), V(7E,2A,2A,54), V(AB,90,90,3B), V(83,88,88,0B), \ V(CA,46,46,8C), V(29,EE,EE,C7), V(D3,B8,B8,6B), V(3C,14,14,28), \ V(79,DE,DE,A7), V(E2,5E,5E,BC), V(1D,0B,0B,16), V(76,DB,DB,AD), \ V(3B,E0,E0,DB), V(56,32,32,64), V(4E,3A,3A,74), V(1E,0A,0A,14), \ V(DB,49,49,92), V(0A,06,06,0C), V(6C,24,24,48), V(E4,5C,5C,B8), \ V(5D,C2,C2,9F), V(6E,D3,D3,BD), V(EF,AC,AC,43), V(A6,62,62,C4), \ V(A8,91,91,39), V(A4,95,95,31), V(37,E4,E4,D3), V(8B,79,79,F2), \ V(32,E7,E7,D5), V(43,C8,C8,8B), V(59,37,37,6E), V(B7,6D,6D,DA), \ V(8C,8D,8D,01), V(64,D5,D5,B1), V(D2,4E,4E,9C), V(E0,A9,A9,49), \ V(B4,6C,6C,D8), V(FA,56,56,AC), V(07,F4,F4,F3), V(25,EA,EA,CF), \ V(AF,65,65,CA), V(8E,7A,7A,F4), V(E9,AE,AE,47), V(18,08,08,10), \ V(D5,BA,BA,6F), V(88,78,78,F0), V(6F,25,25,4A), V(72,2E,2E,5C), \ V(24,1C,1C,38), V(F1,A6,A6,57), V(C7,B4,B4,73), V(51,C6,C6,97), \ V(23,E8,E8,CB), V(7C,DD,DD,A1), V(9C,74,74,E8), V(21,1F,1F,3E), \ V(DD,4B,4B,96), V(DC,BD,BD,61), V(86,8B,8B,0D), V(85,8A,8A,0F), \ V(90,70,70,E0), V(42,3E,3E,7C), V(C4,B5,B5,71), V(AA,66,66,CC), \ V(D8,48,48,90), V(05,03,03,06), V(01,F6,F6,F7), V(12,0E,0E,1C), \ V(A3,61,61,C2), V(5F,35,35,6A), V(F9,57,57,AE), V(D0,B9,B9,69), \ V(91,86,86,17), V(58,C1,C1,99), V(27,1D,1D,3A), V(B9,9E,9E,27), \ V(38,E1,E1,D9), V(13,F8,F8,EB), V(B3,98,98,2B), V(33,11,11,22), \ V(BB,69,69,D2), V(70,D9,D9,A9), V(89,8E,8E,07), V(A7,94,94,33), \ V(B6,9B,9B,2D), V(22,1E,1E,3C), V(92,87,87,15), V(20,E9,E9,C9), \ V(49,CE,CE,87), V(FF,55,55,AA), V(78,28,28,50), V(7A,DF,DF,A5), \ V(8F,8C,8C,03), V(F8,A1,A1,59), V(80,89,89,09), V(17,0D,0D,1A), \ V(DA,BF,BF,65), V(31,E6,E6,D7), V(C6,42,42,84), V(B8,68,68,D0), \ V(C3,41,41,82), V(B0,99,99,29), V(77,2D,2D,5A), V(11,0F,0F,1E), \ V(CB,B0,B0,7B), V(FC,54,54,A8), V(D6,BB,BB,6D), V(3A,16,16,2C) #define V(a,b,c,d) 0x##a##b##c##d static const uint32_t FT0[256] = { FT }; #undef V #if !defined(MBEDTLS_AES_FEWER_TABLES) #define V(a,b,c,d) 0x##b##c##d##a static const uint32_t FT1[256] = { FT }; #undef V #define V(a,b,c,d) 0x##c##d##a##b static const uint32_t FT2[256] = { FT }; #undef V #define V(a,b,c,d) 0x##d##a##b##c static const uint32_t FT3[256] = { FT }; #undef V #endif /* !MBEDTLS_AES_FEWER_TABLES */ #undef FT #endif //ifndef MBEDTLS_AES_128_BIT_MASKED #if !defined(MBEDTLS_AES_ONLY_ENCRYPT) /* * Reverse S-box */ static const unsigned char RSb[256] = { 0x52, 0x09, 0x6A, 0xD5, 0x30, 0x36, 0xA5, 0x38, 0xBF, 0x40, 0xA3, 0x9E, 0x81, 0xF3, 0xD7, 0xFB, 0x7C, 0xE3, 0x39, 0x82, 0x9B, 0x2F, 0xFF, 0x87, 0x34, 0x8E, 0x43, 0x44, 0xC4, 0xDE, 0xE9, 0xCB, 0x54, 0x7B, 0x94, 0x32, 0xA6, 0xC2, 0x23, 0x3D, 0xEE, 0x4C, 0x95, 0x0B, 0x42, 0xFA, 0xC3, 0x4E, 0x08, 0x2E, 0xA1, 0x66, 0x28, 0xD9, 0x24, 0xB2, 0x76, 0x5B, 0xA2, 0x49, 0x6D, 0x8B, 0xD1, 0x25, 0x72, 0xF8, 0xF6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xD4, 0xA4, 0x5C, 0xCC, 0x5D, 0x65, 0xB6, 0x92, 0x6C, 0x70, 0x48, 0x50, 0xFD, 0xED, 0xB9, 0xDA, 0x5E, 0x15, 0x46, 0x57, 0xA7, 0x8D, 0x9D, 0x84, 0x90, 0xD8, 0xAB, 0x00, 0x8C, 0xBC, 0xD3, 0x0A, 0xF7, 0xE4, 0x58, 0x05, 0xB8, 0xB3, 0x45, 0x06, 0xD0, 0x2C, 0x1E, 0x8F, 0xCA, 0x3F, 0x0F, 0x02, 0xC1, 0xAF, 0xBD, 0x03, 0x01, 0x13, 0x8A, 0x6B, 0x3A, 0x91, 0x11, 0x41, 0x4F, 0x67, 0xDC, 0xEA, 0x97, 0xF2, 0xCF, 0xCE, 0xF0, 0xB4, 0xE6, 0x73, 0x96, 0xAC, 0x74, 0x22, 0xE7, 0xAD, 0x35, 0x85, 0xE2, 0xF9, 0x37, 0xE8, 0x1C, 0x75, 0xDF, 0x6E, 0x47, 0xF1, 0x1A, 0x71, 0x1D, 0x29, 0xC5, 0x89, 0x6F, 0xB7, 0x62, 0x0E, 0xAA, 0x18, 0xBE, 0x1B, 0xFC, 0x56, 0x3E, 0x4B, 0xC6, 0xD2, 0x79, 0x20, 0x9A, 0xDB, 0xC0, 0xFE, 0x78, 0xCD, 0x5A, 0xF4, 0x1F, 0xDD, 0xA8, 0x33, 0x88, 0x07, 0xC7, 0x31, 0xB1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xEC, 0x5F, 0x60, 0x51, 0x7F, 0xA9, 0x19, 0xB5, 0x4A, 0x0D, 0x2D, 0xE5, 0x7A, 0x9F, 0x93, 0xC9, 0x9C, 0xEF, 0xA0, 0xE0, 0x3B, 0x4D, 0xAE, 0x2A, 0xF5, 0xB0, 0xC8, 0xEB, 0xBB, 0x3C, 0x83, 0x53, 0x99, 0x61, 0x17, 0x2B, 0x04, 0x7E, 0xBA, 0x77, 0xD6, 0x26, 0xE1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0C, 0x7D }; #endif /* !MBEDTLS_AES_ONLY_ENCRYPT */ /* * Reverse tables */ #define RT \ \ V(50,A7,F4,51), V(53,65,41,7E), V(C3,A4,17,1A), V(96,5E,27,3A), \ V(CB,6B,AB,3B), V(F1,45,9D,1F), V(AB,58,FA,AC), V(93,03,E3,4B), \ V(55,FA,30,20), V(F6,6D,76,AD), V(91,76,CC,88), V(25,4C,02,F5), \ V(FC,D7,E5,4F), V(D7,CB,2A,C5), V(80,44,35,26), V(8F,A3,62,B5), \ V(49,5A,B1,DE), V(67,1B,BA,25), V(98,0E,EA,45), V(E1,C0,FE,5D), \ V(02,75,2F,C3), V(12,F0,4C,81), V(A3,97,46,8D), V(C6,F9,D3,6B), \ V(E7,5F,8F,03), V(95,9C,92,15), V(EB,7A,6D,BF), V(DA,59,52,95), \ V(2D,83,BE,D4), V(D3,21,74,58), V(29,69,E0,49), V(44,C8,C9,8E), \ V(6A,89,C2,75), V(78,79,8E,F4), V(6B,3E,58,99), V(DD,71,B9,27), \ V(B6,4F,E1,BE), V(17,AD,88,F0), V(66,AC,20,C9), V(B4,3A,CE,7D), \ V(18,4A,DF,63), V(82,31,1A,E5), V(60,33,51,97), V(45,7F,53,62), \ V(E0,77,64,B1), V(84,AE,6B,BB), V(1C,A0,81,FE), V(94,2B,08,F9), \ V(58,68,48,70), V(19,FD,45,8F), V(87,6C,DE,94), V(B7,F8,7B,52), \ V(23,D3,73,AB), V(E2,02,4B,72), V(57,8F,1F,E3), V(2A,AB,55,66), \ V(07,28,EB,B2), V(03,C2,B5,2F), V(9A,7B,C5,86), V(A5,08,37,D3), \ V(F2,87,28,30), V(B2,A5,BF,23), V(BA,6A,03,02), V(5C,82,16,ED), \ V(2B,1C,CF,8A), V(92,B4,79,A7), V(F0,F2,07,F3), V(A1,E2,69,4E), \ V(CD,F4,DA,65), V(D5,BE,05,06), V(1F,62,34,D1), V(8A,FE,A6,C4), \ V(9D,53,2E,34), V(A0,55,F3,A2), V(32,E1,8A,05), V(75,EB,F6,A4), \ V(39,EC,83,0B), V(AA,EF,60,40), V(06,9F,71,5E), V(51,10,6E,BD), \ V(F9,8A,21,3E), V(3D,06,DD,96), V(AE,05,3E,DD), V(46,BD,E6,4D), \ V(B5,8D,54,91), V(05,5D,C4,71), V(6F,D4,06,04), V(FF,15,50,60), \ V(24,FB,98,19), V(97,E9,BD,D6), V(CC,43,40,89), V(77,9E,D9,67), \ V(BD,42,E8,B0), V(88,8B,89,07), V(38,5B,19,E7), V(DB,EE,C8,79), \ V(47,0A,7C,A1), V(E9,0F,42,7C), V(C9,1E,84,F8), V(00,00,00,00), \ V(83,86,80,09), V(48,ED,2B,32), V(AC,70,11,1E), V(4E,72,5A,6C), \ V(FB,FF,0E,FD), V(56,38,85,0F), V(1E,D5,AE,3D), V(27,39,2D,36), \ V(64,D9,0F,0A), V(21,A6,5C,68), V(D1,54,5B,9B), V(3A,2E,36,24), \ V(B1,67,0A,0C), V(0F,E7,57,93), V(D2,96,EE,B4), V(9E,91,9B,1B), \ V(4F,C5,C0,80), V(A2,20,DC,61), V(69,4B,77,5A), V(16,1A,12,1C), \ V(0A,BA,93,E2), V(E5,2A,A0,C0), V(43,E0,22,3C), V(1D,17,1B,12), \ V(0B,0D,09,0E), V(AD,C7,8B,F2), V(B9,A8,B6,2D), V(C8,A9,1E,14), \ V(85,19,F1,57), V(4C,07,75,AF), V(BB,DD,99,EE), V(FD,60,7F,A3), \ V(9F,26,01,F7), V(BC,F5,72,5C), V(C5,3B,66,44), V(34,7E,FB,5B), \ V(76,29,43,8B), V(DC,C6,23,CB), V(68,FC,ED,B6), V(63,F1,E4,B8), \ V(CA,DC,31,D7), V(10,85,63,42), V(40,22,97,13), V(20,11,C6,84), \ V(7D,24,4A,85), V(F8,3D,BB,D2), V(11,32,F9,AE), V(6D,A1,29,C7), \ V(4B,2F,9E,1D), V(F3,30,B2,DC), V(EC,52,86,0D), V(D0,E3,C1,77), \ V(6C,16,B3,2B), V(99,B9,70,A9), V(FA,48,94,11), V(22,64,E9,47), \ V(C4,8C,FC,A8), V(1A,3F,F0,A0), V(D8,2C,7D,56), V(EF,90,33,22), \ V(C7,4E,49,87), V(C1,D1,38,D9), V(FE,A2,CA,8C), V(36,0B,D4,98), \ V(CF,81,F5,A6), V(28,DE,7A,A5), V(26,8E,B7,DA), V(A4,BF,AD,3F), \ V(E4,9D,3A,2C), V(0D,92,78,50), V(9B,CC,5F,6A), V(62,46,7E,54), \ V(C2,13,8D,F6), V(E8,B8,D8,90), V(5E,F7,39,2E), V(F5,AF,C3,82), \ V(BE,80,5D,9F), V(7C,93,D0,69), V(A9,2D,D5,6F), V(B3,12,25,CF), \ V(3B,99,AC,C8), V(A7,7D,18,10), V(6E,63,9C,E8), V(7B,BB,3B,DB), \ V(09,78,26,CD), V(F4,18,59,6E), V(01,B7,9A,EC), V(A8,9A,4F,83), \ V(65,6E,95,E6), V(7E,E6,FF,AA), V(08,CF,BC,21), V(E6,E8,15,EF), \ V(D9,9B,E7,BA), V(CE,36,6F,4A), V(D4,09,9F,EA), V(D6,7C,B0,29), \ V(AF,B2,A4,31), V(31,23,3F,2A), V(30,94,A5,C6), V(C0,66,A2,35), \ V(37,BC,4E,74), V(A6,CA,82,FC), V(B0,D0,90,E0), V(15,D8,A7,33), \ V(4A,98,04,F1), V(F7,DA,EC,41), V(0E,50,CD,7F), V(2F,F6,91,17), \ V(8D,D6,4D,76), V(4D,B0,EF,43), V(54,4D,AA,CC), V(DF,04,96,E4), \ V(E3,B5,D1,9E), V(1B,88,6A,4C), V(B8,1F,2C,C1), V(7F,51,65,46), \ V(04,EA,5E,9D), V(5D,35,8C,01), V(73,74,87,FA), V(2E,41,0B,FB), \ V(5A,1D,67,B3), V(52,D2,DB,92), V(33,56,10,E9), V(13,47,D6,6D), \ V(8C,61,D7,9A), V(7A,0C,A1,37), V(8E,14,F8,59), V(89,3C,13,EB), \ V(EE,27,A9,CE), V(35,C9,61,B7), V(ED,E5,1C,E1), V(3C,B1,47,7A), \ V(59,DF,D2,9C), V(3F,73,F2,55), V(79,CE,14,18), V(BF,37,C7,73), \ V(EA,CD,F7,53), V(5B,AA,FD,5F), V(14,6F,3D,DF), V(86,DB,44,78), \ V(81,F3,AF,CA), V(3E,C4,68,B9), V(2C,34,24,38), V(5F,40,A3,C2), \ V(72,C3,1D,16), V(0C,25,E2,BC), V(8B,49,3C,28), V(41,95,0D,FF), \ V(71,01,A8,39), V(DE,B3,0C,08), V(9C,E4,B4,D8), V(90,C1,56,64), \ V(61,84,CB,7B), V(70,B6,32,D5), V(74,5C,6C,48), V(42,57,B8,D0) #if !defined(MBEDTLS_AES_ONLY_ENCRYPT) #define V(a,b,c,d) 0x##a##b##c##d static const uint32_t RT0[256] = { RT }; #undef V #if !defined(MBEDTLS_AES_FEWER_TABLES) #define V(a,b,c,d) 0x##b##c##d##a static const uint32_t RT1[256] = { RT }; #undef V #define V(a,b,c,d) 0x##c##d##a##b static const uint32_t RT2[256] = { RT }; #undef V #define V(a,b,c,d) 0x##d##a##b##c static const uint32_t RT3[256] = { RT }; #undef V #endif /* !MBEDTLS_AES_FEWER_TABLES */ #endif /* !MBEDTLS_AES_ONLY_ENCRYPT */ #undef RT /* * Round constants */ static const uint32_t RCON[10] = { 0x00000001, 0x00000002, 0x00000004, 0x00000008, 0x00000010, 0x00000020, 0x00000040, 0x00000080, 0x0000001B, 0x00000036 }; #else /* MBEDTLS_AES_ROM_TABLES */ /* * Forward S-box & tables */ static unsigned char FSb[256]; #if !defined(MBEDTLS_AES_128_BIT_MASKED) static uint32_t FT0[256]; #endif #if !defined(MBEDTLS_AES_FEWER_TABLES) static uint32_t FT1[256]; static uint32_t FT2[256]; static uint32_t FT3[256]; #endif /* !MBEDTLS_AES_FEWER_TABLES */ /* * Reverse S-box & tables */ #if !defined(MBEDTLS_AES_ONLY_ENCRYPT) static unsigned char RSb[256]; static uint32_t RT0[256]; #if !defined(MBEDTLS_AES_FEWER_TABLES) static uint32_t RT1[256]; static uint32_t RT2[256]; static uint32_t RT3[256]; #endif /* !MBEDTLS_AES_FEWER_TABLES */ #endif /* !MBEDTLS_AES_ONLY_ENCRYPT */ /* * Round constants */ static uint32_t RCON[10]; /* * Tables generation code */ #define XTIME(x) ( ( (x) << 1 ) ^ ( ( (x) & 0x80 ) ? 0x1B : 0x00 ) ) #if !defined(MBEDTLS_AES_128_BIT_MASKED) #define ROTL8(x) ( ( (x) << 8 ) & 0xFFFFFFFF ) | ( (x) >> 24 ) #define MUL(x,y) ( ( (x) && (y) ) ? pow[(log[(x)]+log[(y)]) % 255] : 0 ) #endif static int aes_init_done = 0; static void aes_gen_tables( void ) { int i, x, y; #if !defined(MBEDTLS_AES_128_BIT_MASKED) int z; #endif int pow[256]; int log[256]; /* * compute pow and log tables over GF(2^8) */ for( i = 0, x = 1; i < 256; i++ ) { pow[i] = x; log[x] = i; x = ( x ^ XTIME( x ) ) & 0xFF; } /* * calculate the round constants */ for( i = 0, x = 1; i < 10; i++ ) { RCON[i] = (uint32_t) x; x = XTIME( x ) & 0xFF; } /* * generate the forward and reverse S-boxes */ FSb[0x00] = 0x63; #if !defined(MBEDTLS_AES_ONLY_ENCRYPT) RSb[0x63] = 0x00; #endif for( i = 1; i < 256; i++ ) { x = pow[255 - log[i]]; y = x; y = ( ( y << 1 ) | ( y >> 7 ) ) & 0xFF; x ^= y; y = ( ( y << 1 ) | ( y >> 7 ) ) & 0xFF; x ^= y; y = ( ( y << 1 ) | ( y >> 7 ) ) & 0xFF; x ^= y; y = ( ( y << 1 ) | ( y >> 7 ) ) & 0xFF; x ^= y ^ 0x63; FSb[i] = (unsigned char) x; #if !defined(MBEDTLS_AES_ONLY_ENCRYPT) RSb[x] = (unsigned char) i; #endif } #if !defined(MBEDTLS_AES_128_BIT_MASKED) /* * generate the forward and reverse tables */ for( i = 0; i < 256; i++ ) { x = FSb[i]; y = XTIME( x ) & 0xFF; z = ( y ^ x ) & 0xFF; FT0[i] = ( (uint32_t) y ) ^ ( (uint32_t) x << 8 ) ^ ( (uint32_t) x << 16 ) ^ ( (uint32_t) z << 24 ); #if !defined(MBEDTLS_AES_FEWER_TABLES) FT1[i] = ROTL8( FT0[i] ); FT2[i] = ROTL8( FT1[i] ); FT3[i] = ROTL8( FT2[i] ); #endif /* !MBEDTLS_AES_FEWER_TABLES */ #if !defined(MBEDTLS_AES_ONLY_ENCRYPT) x = RSb[i]; RT0[i] = ( (uint32_t) MUL( 0x0E, x ) ) ^ ( (uint32_t) MUL( 0x09, x ) << 8 ) ^ ( (uint32_t) MUL( 0x0D, x ) << 16 ) ^ ( (uint32_t) MUL( 0x0B, x ) << 24 ); #if !defined(MBEDTLS_AES_FEWER_TABLES) RT1[i] = ROTL8( RT0[i] ); RT2[i] = ROTL8( RT1[i] ); RT3[i] = ROTL8( RT2[i] ); #endif /* !MBEDTLS_AES_FEWER_TABLES */ #endif /* !MBEDTLS_AES_ONLY_ENCRYPT */ } #endif //MBEDTLS_AES_128_BIT_MASKED } #undef ROTL8 #endif /* MBEDTLS_AES_ROM_TABLES */ /** * Randomize positions for AES SCA countermeasures if AES countermeasures are * enabled. If the countermeasures are not enabled then we fill the given table * with only real AES rounds to be executed. * * Dummy rounds are added as follows: * 1. One dummy round added to the initial round key addition (executed in * random order). * 2. Random number of dummy rounds added as first and/or last AES calculation * round. Total number of dummy rounds is AES_SCA_CM_ROUNDS. * * Description of the bytes in the table are as follows: * - 2 bytes for initial round key addition * - remaining bytes for AES calculation with real or dummy data * * Each byte indicates one AES calculation round: * -4 high bit = table to use 0x10 for dummy data, 0x00 real data * -bit 2 = offset for even/odd rounds * -bit 0-1: stop mark (0x03) to indicate calculation end * * Return Number of additional AES rounds * * Example of the control bytes: * R = real data in actual AES calculation round * Ri = Real data in initial round key addition phase * F = fake data in actual AES calculation round * Fi = fake data in initial round key addition phase * * 1. No countermeasures enabled and AES-128, only real data (R) used: * | Ri | R | R | R | R | R | R | R | R | R | R | * |0x03|0x04|0x00|0x04|0x00|0x04|0x00|0x04|0x00|0x07|0x03| * * 2. Countermeasures enabled, 3 (F) dummy rounds in start and 1 at end: * | Fi | Ri | F | F | F | R | R | ... | R | R | R | R | F | * |0x10|0x03|0x10|0x10|0x10|0x04|0x00| ... |0x04|0x00|0x04|0x03|0x07| */ #if defined(MBEDTLS_AES_SCA_COUNTERMEASURES) static int aes_sca_cm_data_randomize( uint8_t *tbl, int tbl_len ) { int i = 0, j, is_even_pos, dummy_rounds, num; mbedtls_platform_memset( tbl, 0, tbl_len ); // get random from 0x0fff num = mbedtls_platform_random_in_range( 0x1000 ); // Randomize execution order of initial round key addition if ( ( num & 0x0100 ) == 0 ) { tbl[i++] = 0x10; // dummy data tbl[i++] = 0x00 | 0x03; // real data + stop marker } else { tbl[i++] = 0x00; // real data tbl[i++] = 0x10 | 0x03; // dummy data + stop marker } // Randomize number of dummy AES rounds dummy_rounds = AES_SCA_CM_ROUNDS - ( ( num & 0x0010 ) >> 4 ); tbl_len = tbl_len - (AES_SCA_CM_ROUNDS - dummy_rounds); // randomize positions for the dummy rounds num = ( num & 0x0fff ) % ( dummy_rounds + 1 ); // add dummy rounds after initial round key addition (if needed) for ( ; i < num + 2; i++ ) { tbl[i] = 0x10; // dummy data } // add dummy rounds to the end, (AES_SCA_CM_ROUNDS - num) rounds if needed for ( j = tbl_len - dummy_rounds + num; j < tbl_len; j++ ) { tbl[j] = 0x10; // dummy data } // Fill real AES data to the remaining places is_even_pos = 1; for( ; i < tbl_len; i++ ) { if( tbl[i] == 0 ) { if( is_even_pos == 1 ) { tbl[i] = 0x04; // real data, offset for rounds 1,3,5, etc... is_even_pos = 0; } else { tbl[i] = 0x00; // real data, offset for rounds 2,4,6,... is_even_pos = 1; } j = i; // remember the final round position in table } } tbl[( tbl_len - 1)] |= 0x03; // Stop marker for the last item in tbl tbl[( j - 1 )] |= 0x03; // stop marker for final - 1 real data return( dummy_rounds ); } #endif /* MBEDTLS_AES_SCA_COUNTERMEASURES */ #if !defined(MBEDTLS_AES_128_BIT_MASKED) #if defined(MBEDTLS_AES_FEWER_TABLES) #define ROTL8(x) ( (uint32_t)( ( x ) << 8 ) + (uint32_t)( ( x ) >> 24 ) ) #define ROTL16(x) ( (uint32_t)( ( x ) << 16 ) + (uint32_t)( ( x ) >> 16 ) ) #define ROTL24(x) ( (uint32_t)( ( x ) << 24 ) + (uint32_t)( ( x ) >> 8 ) ) #define AES_RT0(idx) RT0[idx] #define AES_RT1(idx) ROTL8( RT0[idx] ) #define AES_RT2(idx) ROTL16( RT0[idx] ) #define AES_RT3(idx) ROTL24( RT0[idx] ) #define AES_FT0(idx) FT0[idx] #define AES_FT1(idx) ROTL8( FT0[idx] ) #define AES_FT2(idx) ROTL16( FT0[idx] ) #define AES_FT3(idx) ROTL24( FT0[idx] ) #else /* MBEDTLS_AES_FEWER_TABLES */ #define AES_RT0(idx) RT0[idx] #define AES_RT1(idx) RT1[idx] #define AES_RT2(idx) RT2[idx] #define AES_RT3(idx) RT3[idx] #define AES_FT0(idx) FT0[idx] #define AES_FT1(idx) FT1[idx] #define AES_FT2(idx) FT2[idx] #define AES_FT3(idx) FT3[idx] #endif /* MBEDTLS_AES_FEWER_TABLES */ #endif void mbedtls_aes_init( mbedtls_aes_context *ctx ) { AES_VALIDATE( ctx != NULL ); memset( ctx, 0, sizeof( mbedtls_aes_context ) ); } void mbedtls_aes_free( mbedtls_aes_context *ctx ) { if( ctx == NULL ) return; mbedtls_platform_zeroize( ctx, sizeof( mbedtls_aes_context ) ); } #if defined(MBEDTLS_CIPHER_MODE_XTS) void mbedtls_aes_xts_init( mbedtls_aes_xts_context *ctx ) { AES_VALIDATE( ctx != NULL ); mbedtls_aes_init( &ctx->crypt ); mbedtls_aes_init( &ctx->tweak ); } void mbedtls_aes_xts_free( mbedtls_aes_xts_context *ctx ) { if( ctx == NULL ) return; mbedtls_aes_free( &ctx->crypt ); mbedtls_aes_free( &ctx->tweak ); } #endif /* MBEDTLS_CIPHER_MODE_XTS */ #if defined(MBEDTLS_AES_SCA_COUNTERMEASURES) static void mbedtls_generate_fake_key( unsigned int keybits, mbedtls_aes_context *ctx ) { unsigned int qword; for( qword = keybits >> 5; qword > 0; qword-- ) { ctx->frk[ qword - 1 ] = mbedtls_platform_random_uint32(); } } #endif /* MBEDTLS_AES_SCA_COUNTERMEASURES */ /* * AES key schedule (encryption) */ #if !defined(MBEDTLS_AES_SETKEY_ENC_ALT) int mbedtls_aes_setkey_enc( mbedtls_aes_context *ctx, const unsigned char *key, unsigned int keybits ) { unsigned int j = 0; unsigned int flow_ctrl = 0; volatile unsigned int i = 0; volatile int ret = MBEDTLS_ERR_PLATFORM_FAULT_DETECTED; uint32_t *RK; uint32_t offset = 0; AES_VALIDATE_RET( ctx != NULL ); AES_VALIDATE_RET( key != NULL ); (void) ret; switch( keybits ) { case 128: ctx->nr = 10; break; #if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH) case 192: ctx->nr = 12; break; case 256: ctx->nr = 14; break; #endif /* !MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH */ default : return( MBEDTLS_ERR_AES_INVALID_KEY_LENGTH ); } #if !defined(MBEDTLS_AES_ROM_TABLES) if( aes_init_done == 0 ) { aes_gen_tables(); aes_init_done = 1; } #endif #if defined(MBEDTLS_PADLOCK_C) && defined(MBEDTLS_PADLOCK_ALIGN16) if( aes_padlock_ace == -1 ) aes_padlock_ace = mbedtls_padlock_has_support( MBEDTLS_PADLOCK_ACE ); if( aes_padlock_ace ) ctx->rk = RK = MBEDTLS_PADLOCK_ALIGN16( ctx->buf ); else #endif ctx->rk = RK = ctx->buf; #if defined(MBEDTLS_AES_SCA_COUNTERMEASURES) mbedtls_generate_fake_key( keybits, ctx ); #endif #if defined(MBEDTLS_AESNI_C) && defined(MBEDTLS_HAVE_X86_64) if( mbedtls_aesni_has_support( MBEDTLS_AESNI_AES ) ) return( mbedtls_aesni_setkey_enc( (unsigned char *) ctx->rk, key, keybits ) ); #endif /* Three least significant bits are truncated from keybits, which is * expected to be a multiple of 8. */ mbedtls_platform_memset( RK, 0, keybits >> 3 ); offset = mbedtls_platform_random_in_range( keybits >> 5 ); for( j = offset; j < ( keybits >> 5 ); j++ ) { GET_UINT32_LE( RK[j], key, j << 2 ); flow_ctrl++; } for( j = 0; j < offset; j++ ) { GET_UINT32_LE( RK[j], key, j << 2 ); flow_ctrl++; } switch( ctx->nr ) { case 10: for( i = 0; i < 10; i++, RK += 4 ) { RK[4] = RK[0] ^ RCON[i] ^ ( (uint32_t) FSb[ ( RK[3] >> 8 ) & 0xFF ] ) ^ ( (uint32_t) FSb[ ( RK[3] >> 16 ) & 0xFF ] << 8 ) ^ ( (uint32_t) FSb[ ( RK[3] >> 24 ) & 0xFF ] << 16 ) ^ ( (uint32_t) FSb[ ( RK[3] ) & 0xFF ] << 24 ); RK[5] = RK[1] ^ RK[4]; RK[6] = RK[2] ^ RK[5]; RK[7] = RK[3] ^ RK[6]; } break; #if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH) case 12: for( i = 0; i < 8; i++, RK += 6 ) { RK[6] = RK[0] ^ RCON[i] ^ ( (uint32_t) FSb[ ( RK[5] >> 8 ) & 0xFF ] ) ^ ( (uint32_t) FSb[ ( RK[5] >> 16 ) & 0xFF ] << 8 ) ^ ( (uint32_t) FSb[ ( RK[5] >> 24 ) & 0xFF ] << 16 ) ^ ( (uint32_t) FSb[ ( RK[5] ) & 0xFF ] << 24 ); RK[7] = RK[1] ^ RK[6]; RK[8] = RK[2] ^ RK[7]; RK[9] = RK[3] ^ RK[8]; RK[10] = RK[4] ^ RK[9]; RK[11] = RK[5] ^ RK[10]; } break; case 14: for( i = 0; i < 7; i++, RK += 8 ) { RK[8] = RK[0] ^ RCON[i] ^ ( (uint32_t) FSb[ ( RK[7] >> 8 ) & 0xFF ] ) ^ ( (uint32_t) FSb[ ( RK[7] >> 16 ) & 0xFF ] << 8 ) ^ ( (uint32_t) FSb[ ( RK[7] >> 24 ) & 0xFF ] << 16 ) ^ ( (uint32_t) FSb[ ( RK[7] ) & 0xFF ] << 24 ); RK[9] = RK[1] ^ RK[8]; RK[10] = RK[2] ^ RK[9]; RK[11] = RK[3] ^ RK[10]; RK[12] = RK[4] ^ ( (uint32_t) FSb[ ( RK[11] ) & 0xFF ] ) ^ ( (uint32_t) FSb[ ( RK[11] >> 8 ) & 0xFF ] << 8 ) ^ ( (uint32_t) FSb[ ( RK[11] >> 16 ) & 0xFF ] << 16 ) ^ ( (uint32_t) FSb[ ( RK[11] >> 24 ) & 0xFF ] << 24 ); RK[13] = RK[5] ^ RK[12]; RK[14] = RK[6] ^ RK[13]; RK[15] = RK[7] ^ RK[14]; } break; #endif /* !MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH */ } /* Validate execution path */ if( ( flow_ctrl == keybits >> 5 ) && ( ( ctx->nr == 10 && i == 10 ) #if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH) || ( ctx->nr == 12 && i == 8 ) || ( ctx->nr == 14 && i == 7 ) #endif ) ) { #if defined(MBEDTLS_VALIDATE_AES_KEYS_INTEGRITY) ctx->hash = mbedtls_hash( ctx->rk, keybits >> 3 ); #endif return 0; } mbedtls_platform_memset( RK, 0, ( keybits >> 5 ) * 4 ); return( MBEDTLS_ERR_PLATFORM_FAULT_DETECTED ); } #endif /* !MBEDTLS_AES_SETKEY_ENC_ALT */ /* * AES key schedule (decryption) */ #if !defined(MBEDTLS_AES_SETKEY_DEC_ALT) int mbedtls_aes_setkey_dec( mbedtls_aes_context *ctx, const unsigned char *key, unsigned int keybits ) { #if defined(MBEDTLS_AES_ONLY_ENCRYPT) (void) ctx; (void) key; (void) keybits; return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH; #else /* */ volatile unsigned int i = 0, j = 0; volatile int ret = MBEDTLS_ERR_PLATFORM_FAULT_DETECTED; mbedtls_aes_context cty; uint32_t *RK; uint32_t *SK; AES_VALIDATE_RET( ctx != NULL ); AES_VALIDATE_RET( key != NULL ); mbedtls_aes_init( &cty ); #if defined(MBEDTLS_PADLOCK_C) && defined(MBEDTLS_PADLOCK_ALIGN16) if( aes_padlock_ace == -1 ) aes_padlock_ace = mbedtls_padlock_has_support( MBEDTLS_PADLOCK_ACE ); if( aes_padlock_ace ) ctx->rk = RK = MBEDTLS_PADLOCK_ALIGN16( ctx->buf ); else #endif ctx->rk = RK = ctx->buf; #if defined(MBEDTLS_AES_SCA_COUNTERMEASURES) mbedtls_generate_fake_key( keybits, ctx ); #endif /* Also checks keybits */ if( ( ret = mbedtls_aes_setkey_enc( &cty, key, keybits ) ) != 0 ) goto exit; ctx->nr = cty.nr; #if defined(MBEDTLS_AESNI_C) && defined(MBEDTLS_HAVE_X86_64) if( mbedtls_aesni_has_support( MBEDTLS_AESNI_AES ) ) { mbedtls_aesni_inverse_key( (unsigned char *) ctx->rk, (const unsigned char *) cty.rk, ctx->nr ); i = 0; j = 4; goto exit; } #endif SK = cty.rk + cty.nr * 4; *RK++ = *SK++; *RK++ = *SK++; *RK++ = *SK++; *RK++ = *SK++; for( i = ctx->nr - 1, SK -= 8; i > 0; i--, SK -= 8 ) { for( j = 0; j < 4; j++, SK++ ) { *RK++ = AES_RT0( FSb[ ( *SK ) & 0xFF ] ) ^ AES_RT1( FSb[ ( *SK >> 8 ) & 0xFF ] ) ^ AES_RT2( FSb[ ( *SK >> 16 ) & 0xFF ] ) ^ AES_RT3( FSb[ ( *SK >> 24 ) & 0xFF ] ); } } *RK++ = *SK++; *RK++ = *SK++; *RK++ = *SK++; *RK++ = *SK++; exit: mbedtls_aes_free( &cty ); if( ret != 0 ) { return( ret ); } else if( ( i == 0 ) && ( j == 4 ) ) { #if defined(MBEDTLS_VALIDATE_AES_KEYS_INTEGRITY) ctx->hash = mbedtls_hash( ctx->rk, keybits >> 3 ); #endif return( ret ); } else { return( MBEDTLS_ERR_PLATFORM_FAULT_DETECTED ); } #endif /* MBEDTLS_AES_ONLY_ENCRYPT */ } #if defined(MBEDTLS_CIPHER_MODE_XTS) static int mbedtls_aes_xts_decode_keys( const unsigned char *key, unsigned int keybits, const unsigned char **key1, unsigned int *key1bits, const unsigned char **key2, unsigned int *key2bits ) { const unsigned int half_keybits = keybits / 2; const unsigned int half_keybytes = half_keybits / 8; switch( keybits ) { case 256: break; case 512: break; default : return( MBEDTLS_ERR_AES_INVALID_KEY_LENGTH ); } *key1bits = half_keybits; *key2bits = half_keybits; *key1 = &key[0]; *key2 = &key[half_keybytes]; return 0; } int mbedtls_aes_xts_setkey_enc( mbedtls_aes_xts_context *ctx, const unsigned char *key, unsigned int keybits) { int ret; const unsigned char *key1, *key2; unsigned int key1bits, key2bits; AES_VALIDATE_RET( ctx != NULL ); AES_VALIDATE_RET( key != NULL ); ret = mbedtls_aes_xts_decode_keys( key, keybits, &key1, &key1bits, &key2, &key2bits ); if( ret != 0 ) return( ret ); /* Set the tweak key. Always set tweak key for the encryption mode. */ ret = mbedtls_aes_setkey_enc( &ctx->tweak, key2, key2bits ); if( ret != 0 ) return( ret ); /* Set crypt key for encryption. */ return mbedtls_aes_setkey_enc( &ctx->crypt, key1, key1bits ); } int mbedtls_aes_xts_setkey_dec( mbedtls_aes_xts_context *ctx, const unsigned char *key, unsigned int keybits) { int ret; const unsigned char *key1, *key2; unsigned int key1bits, key2bits; AES_VALIDATE_RET( ctx != NULL ); AES_VALIDATE_RET( key != NULL ); ret = mbedtls_aes_xts_decode_keys( key, keybits, &key1, &key1bits, &key2, &key2bits ); if( ret != 0 ) return( ret ); /* Set the tweak key. Always set tweak key for encryption. */ ret = mbedtls_aes_setkey_enc( &ctx->tweak, key2, key2bits ); if( ret != 0 ) return( ret ); /* Set crypt key for decryption. */ return mbedtls_aes_setkey_dec( &ctx->crypt, key1, key1bits ); } #endif /* MBEDTLS_CIPHER_MODE_XTS */ #endif /* !MBEDTLS_AES_SETKEY_DEC_ALT */ /* * AES-ECB block encryption */ #if !defined(MBEDTLS_AES_ENCRYPT_ALT) #if defined(MBEDTLS_AES_SCA_COUNTERMEASURES) #if defined(MBEDTLS_AES_128_BIT_MASKED) static uint8_t xtime( uint8_t x ) { return ( ( x << 1 ) ^ ( ( ( x >> 7 ) & 1 ) * 0x1b ) ); } static int sub_bytes_masked( uint32_t *data, uint8_t sbox_masked[256] ) { volatile unsigned int i; for ( i = 0; i < 4; i++ ) { data[i] = ( (uint32_t)sbox_masked[(data[i]) & 0xFF] ) ^ ( (uint32_t)sbox_masked[(data[i] >> 8 ) & 0xFF] << 8 ) ^ ( (uint32_t)sbox_masked[(data[i] >> 16 ) & 0xFF] << 16 ) ^ ( (uint32_t)sbox_masked[(data[i] >> 24 ) & 0xFF] << 24 ); } if ( i == 4 ) { return 0; } return ( MBEDTLS_ERR_PLATFORM_FAULT_DETECTED ); } static int mix_columns( uint8_t *s ) { masked_state_t *state = (masked_state_t *)s; volatile unsigned int i = 0; uint8_t Tmp, Tm, t; for ( i = 0; i < 4; ++i ) { t = (*state)[i][0]; Tmp = (*state)[i][0] ^ (*state)[i][1] ^ (*state)[i][2] ^ (*state)[i][3]; Tm = (*state)[i][0] ^ (*state)[i][1]; Tm = xtime(Tm); (*state)[i][0] ^= Tm ^ Tmp; Tm = (*state)[i][1] ^ (*state)[i][2]; Tm = xtime(Tm); (*state)[i][1] ^= Tm ^ Tmp; Tm = (*state)[i][2] ^ (*state)[i][3]; Tm = xtime(Tm); (*state)[i][2] ^= Tm ^ Tmp; Tm = (*state)[i][3] ^ t; Tm = xtime(Tm); (*state)[i][3] ^= Tm ^ Tmp; } if ( i == 4 ) { return 0; } return ( MBEDTLS_ERR_PLATFORM_FAULT_DETECTED ); } static void shift_rows( uint8_t *s ) { uint8_t temp; masked_state_t *state = (masked_state_t *)s; // Rotate first row 1 columns to left temp = (*state)[0][1]; (*state)[0][1] = (*state)[1][1]; (*state)[1][1] = (*state)[2][1]; (*state)[2][1] = (*state)[3][1]; (*state)[3][1] = temp; // Rotate second row 2 columns to left temp = (*state)[0][2]; (*state)[0][2] = (*state)[2][2]; (*state)[2][2] = temp; temp = (*state)[1][2]; (*state)[1][2] = (*state)[3][2]; (*state)[3][2] = temp; // Rotate third row 3 columns to left temp = (*state)[0][3]; (*state)[0][3] = (*state)[3][3]; (*state)[3][3] = (*state)[2][3]; (*state)[2][3] = (*state)[1][3]; (*state)[1][3] = temp; } #define mul_02( num ) ( ( num << 1 ) ^ ( 0x11b & - ( num >> 7 ) ) ) #define mul_03( num ) ( mul_02( num ) ^ num ) static void calc_mix_colmn_mask( uint32_t mask[10] ) { mask[6] = mul_02( mask[0] ) ^ mul_03( mask[1] ) ^ mask[2] ^ mask[3]; mask[7] = mask[0] ^ mul_02( mask[1] ) ^ mul_03( mask[2] ) ^ mask[3]; mask[8] = mask[0] ^ mask[1] ^ mul_02( mask[2] ) ^ mul_03( mask[3] ); mask[9] = mul_03( mask[0] ) ^ mask[1] ^ mask[2] ^ mul_02( mask[3] ); } //Calculate the the invSbox to change from Mask m to Mask m' static int calc_sbox_masked( uint32_t mask[10], uint8_t sbox_masked[256] ) { volatile unsigned int i = 0; for ( i = 0; i < 256; i++ ) { sbox_masked[i ^ mask[4]] = FSb[i] ^ mask[5]; } if ( i == 256 ) { return 0; } return ( MBEDTLS_ERR_PLATFORM_FAULT_DETECTED ); } static int remask( uint32_t *data, uint32_t m1, uint32_t m2, uint32_t m3, uint32_t m4, uint32_t m5, uint32_t m6, uint32_t m7, uint32_t m8 ) { volatile unsigned int i = 0; for ( i = 0; i < 4; i++ ) { data[i] = data[i] ^ ( ( m1 ^ m5 ) ); data[i] = data[i] ^ ( ( m2 ^ m6 ) << 8 ); data[i] = data[i] ^ ( ( m3 ^ m7 ) << 16 ); data[i] = data[i] ^ ( ( m4 ^ m8 ) << 24 ); } if ( i == 4 ) { return 0; } return ( MBEDTLS_ERR_PLATFORM_FAULT_DETECTED ); } #define MASK_INIT_CONTROL 19 static int init_masking_encrypt( const uint8_t *rk, uint8_t *rk_masked, uint32_t mask[10], uint8_t sbox_masked[256] ) { volatile int flow_control = 0; unsigned int i = 0; mbedtls_platform_memcpy( rk_masked, rk, MBEDTLS_AES_128_EXPANDED_KEY_SIZE_IN_WORDS * 4 ); //Randomly generate the masks: m1 m2 m3 m4 m m' for ( i = 0; i < 6; i++ ) { mask[i] = mbedtls_platform_random_in_range( 0xFF ); flow_control++; } //Calculate m1',m2',m3',m4' calc_mix_colmn_mask( mask ); flow_control++; //Calculate the masked Sbox if ( calc_sbox_masked( mask, sbox_masked ) == 0 ) { flow_control++; } //Init masked key if ( remask( (uint32_t *)&rk_masked[(Nr * Nb * 4)], 0, 0, 0, 0, mask[5], mask[5], mask[5], mask[5]) == 0 ) { flow_control++; } // Mask change from M1',M2',M3',M4' to M for ( i = 0; i < Nr; i++ ) { if ( remask( (uint32_t *)&rk_masked[( i * Nb * 4 )], mask[6], mask[7], mask[8], mask[9], mask[4], mask[4], mask[4], mask[4]) == 0 ) { flow_control++; } } if ( flow_control == MASK_INIT_CONTROL ) { mbedtls_platform_random_delay(); if (flow_control == MASK_INIT_CONTROL) { return MASK_INIT_CONTROL; } } return ( MBEDTLS_ERR_PLATFORM_FAULT_DETECTED ); } static int add_rk_masked( uint32_t round, uint32_t *data, const uint32_t * rk_masked ) { volatile unsigned int i; unsigned int offset = round * 4; for ( i = 0; i < 4; i++ ) { data[i] ^= rk_masked[offset + i]; } if ( i == 4 ) { return 0; } return ( MBEDTLS_ERR_PLATFORM_FAULT_DETECTED ); } static int aes_masked_round( uint32_t *data, uint32_t *key, uint32_t round, uint32_t mask[10], uint8_t sbox_masked[256] ) { volatile uint32_t flow_control = 0; // Mask changes from M to M' if ( sub_bytes_masked( data, sbox_masked ) == 0 ) { flow_control++; } //No impact on mask shift_rows((uint8_t *)data); //Change mask from M' to // M1 for first row // M2 for second row // M3 for third row // M4 for fourth row if ( remask( data, mask[0], mask[1], mask[2], mask[3], mask[5], mask[5], mask[5], mask[5]) == 0 ) { flow_control++; } // Masks change from M1,M2,M3,M4 to M1',M2',M3',M4' if ( mix_columns( (uint8_t *)data ) == 0 ) { flow_control++; } // Add the First round key to the state before starting the rounds. // Masks change from M1',M2',M3',M4' to M if ( add_rk_masked( round, data, key ) == 0 ) { flow_control++; } if ( flow_control == 4 ) { return 0; } return ( MBEDTLS_ERR_PLATFORM_FAULT_DETECTED ); } static int aes_masked_round_final( uint32_t *data, uint32_t *key, uint8_t sbox_masked[256] ) { volatile uint32_t flow_control = 0; if ( sub_bytes_masked(data, sbox_masked) == 0 ) { flow_control++; } shift_rows( (uint8_t *)data ); // Mask are removed by the last addroundkey // From M' to 0 if( add_rk_masked( Nr, data, key ) == 0 ) { flow_control++; } if ( flow_control == 2 ) { return 0; } return ( MBEDTLS_ERR_PLATFORM_FAULT_DETECTED ); } //2 comes from initial data remask of real and fake data #define MASKING_FLOW_CONTORL ( MASK_INIT_CONTROL + 2 ) #else // end of MBEDTLS_AES_128_BIT_MASKED #define MASKING_FLOW_CONTORL 0 static uint32_t *aes_fround( uint32_t *R, uint32_t *X0, uint32_t *X1, uint32_t *X2, uint32_t *X3, uint32_t Y0, uint32_t Y1, uint32_t Y2, uint32_t Y3 ) { *X0 = *R++ ^ AES_FT0( ( Y0 ) & 0xFF ) ^ AES_FT1( ( Y1 >> 8 ) & 0xFF ) ^ AES_FT2( ( Y2 >> 16 ) & 0xFF ) ^ AES_FT3( ( Y3 >> 24 ) & 0xFF ); *X1 = *R++ ^ AES_FT0( ( Y1 ) & 0xFF ) ^ AES_FT1( ( Y2 >> 8 ) & 0xFF ) ^ AES_FT2( ( Y3 >> 16 ) & 0xFF ) ^ AES_FT3( ( Y0 >> 24 ) & 0xFF ); *X2 = *R++ ^ AES_FT0( ( Y2 ) & 0xFF ) ^ AES_FT1( ( Y3 >> 8 ) & 0xFF ) ^ AES_FT2( ( Y0 >> 16 ) & 0xFF ) ^ AES_FT3( ( Y1 >> 24 ) & 0xFF ); *X3 = *R++ ^ AES_FT0( ( Y3 ) & 0xFF ) ^ AES_FT1( ( Y0 >> 8 ) & 0xFF ) ^ AES_FT2( ( Y1 >> 16 ) & 0xFF ) ^ AES_FT3( ( Y2 >> 24 ) & 0xFF ); return R; } static void aes_fround_final( uint32_t *R, uint32_t *X0, uint32_t *X1, uint32_t *X2, uint32_t *X3, uint32_t Y0, uint32_t Y1, uint32_t Y2, uint32_t Y3 ) { *X0 = *R++ ^ ( (uint32_t) FSb[ ( (Y0) ) & 0xFF ] ) ^ ( (uint32_t) FSb[ ( (Y1) >> 8 ) & 0xFF ] << 8 ) ^ ( (uint32_t) FSb[ ( (Y2) >> 16 ) & 0xFF ] << 16 ) ^ ( (uint32_t) FSb[ ( (Y3) >> 24 ) & 0xFF ] << 24 ); *X1 = *R++ ^ ( (uint32_t) FSb[ ( (Y1) ) & 0xFF ] ) ^ ( (uint32_t) FSb[ ( (Y2) >> 8 ) & 0xFF ] << 8 ) ^ ( (uint32_t) FSb[ ( (Y3) >> 16 ) & 0xFF ] << 16 ) ^ ( (uint32_t) FSb[ ( (Y0) >> 24 ) & 0xFF ] << 24 ); *X2 = *R++ ^ ( (uint32_t) FSb[ ( (Y2) ) & 0xFF ] ) ^ ( (uint32_t) FSb[ ( (Y3) >> 8 ) & 0xFF ] << 8 ) ^ ( (uint32_t) FSb[ ( (Y0) >> 16 ) & 0xFF ] << 16 ) ^ ( (uint32_t) FSb[ ( (Y1) >> 24 ) & 0xFF ] << 24 ); *X3 = *R++ ^ ( (uint32_t) FSb[ ( (Y3) ) & 0xFF ] ) ^ ( (uint32_t) FSb[ ( (Y0) >> 8 ) & 0xFF ] << 8 ) ^ ( (uint32_t) FSb[ ( (Y1) >> 16 ) & 0xFF ] << 16 ) ^ ( (uint32_t) FSb[ ( (Y2) >> 24 ) & 0xFF ] << 24 ); } #endif // MBEDTLS_AES_128_BIT_MASKED int mbedtls_internal_aes_encrypt( mbedtls_aes_context *ctx, const unsigned char input[16], unsigned char output[16] ) { int i, tindex, offset, stop_mark, dummy_rounds; aes_r_data_t aes_data_real; // real data aes_r_data_t aes_data_fake; // fake data aes_r_data_t *aes_data_ptr; // pointer to real or fake data aes_r_data_t *aes_data_table[2] = {0}; // pointers to real and fake data int round_ctrl_table_len = ctx->nr + 2 + AES_SCA_CM_ROUNDS; volatile int flow_control = 0; // control bytes for AES calculation rounds, // reserve based on max rounds + dummy rounds + 2 (for initial key addition) uint8_t round_ctrl_table[( 14 + AES_SCA_CM_ROUNDS + 2 )]; #if defined MBEDTLS_AES_128_BIT_MASKED uint32_t rk_masked[MBEDTLS_AES_128_EXPANDED_KEY_SIZE_IN_WORDS] = {0}; static uint8_t sbox_masked[256] = {0}; uint32_t mask[10] = {0}; #endif #if defined(MBEDTLS_VALIDATE_AES_KEYS_INTEGRITY) unsigned key_bytes = 0; uint32_t check_hash = 0; switch( ctx->nr ) { case 10: key_bytes = 16; break; #if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH) case 12: key_bytes = 24; break; case 14: key_bytes = 32; break; #endif /* !MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH */ default : return( MBEDTLS_ERR_AES_INVALID_KEY_LENGTH ); } check_hash = mbedtls_hash( ctx->rk, key_bytes ); #endif #if defined (MBEDTLS_AES_128_BIT_MASKED) /* Flow control should be MASK_INIT_CONTROL and it will be checked as a part last flow control verification */ flow_control = init_masking_encrypt( (uint8_t *)ctx->rk, (uint8_t *)rk_masked, mask, sbox_masked ); aes_data_real.rk_ptr = &rk_masked[0]; #else aes_data_real.rk_ptr = ctx->rk; #endif aes_data_fake.rk_ptr = ctx->frk; aes_data_table[0] = &aes_data_real; aes_data_table[1] = &aes_data_fake; // Get AES calculation control bytes dummy_rounds = aes_sca_cm_data_randomize( round_ctrl_table, round_ctrl_table_len ); flow_control += dummy_rounds; // SCA countermeasure, safely clear the aes_data_real.xy_values mbedtls_platform_memset( aes_data_real.xy_values, 0, 16 ); // SCA countermeasure, randomize secret data location by initializing it in // a random order and writing randomized fake data between the real data // writes. offset = mbedtls_platform_random_in_range( 4 ); i = offset; do { GET_UINT32_LE( aes_data_real.xy_values[i], input, ( i * 4 ) ); aes_data_fake.xy_values[i] = mbedtls_platform_random_uint32(); flow_control++; } while( ( i = ( i + 1 ) % 4 ) != offset ); #if defined (MBEDTLS_AES_128_BIT_MASKED) //Plain text masked with m1',m2',m3',m4' if (remask( &aes_data_real.xy_values[0], mask[6], mask[7], mask[8], mask[9], 0, 0, 0, 0) == 0 ) { flow_control++; } if (remask( &aes_data_fake.xy_values[0], mask[6], mask[7], mask[8], mask[9], 0, 0, 0, 0) == 0 ) { flow_control++; } #endif tindex = 0; do { // Get pointer to the real or fake data aes_data_ptr = aes_data_table[round_ctrl_table[tindex] >> 4]; stop_mark = round_ctrl_table[tindex] & 0x03; // initial round key addition #if defined (MBEDTLS_AES_128_BIT_MASKED) if ( add_rk_masked( 0, &aes_data_ptr->xy_values[0], aes_data_ptr->rk_ptr ) == 0 ) { flow_control++; } aes_data_ptr->round = 1; #else for( i = 0; i < 4; i++ ) { aes_data_ptr->xy_values[i] ^= *aes_data_ptr->rk_ptr++; } flow_control++; #endif tindex++; } while( stop_mark == 0 ); // Calculate AES rounds (9, 11 or 13 rounds) + dummy rounds do { // Get pointer to the real or fake data aes_data_ptr = aes_data_table[round_ctrl_table[tindex] >> 4]; offset = round_ctrl_table[tindex] & 0x04; stop_mark = round_ctrl_table[tindex] & 0x03; #if defined (MBEDTLS_AES_128_BIT_MASKED) if ( aes_masked_round( &aes_data_ptr->xy_values[0], aes_data_ptr->rk_ptr, aes_data_ptr->round, mask, sbox_masked ) == 0 ) { flow_control++; } aes_data_ptr->round ++; #else aes_data_ptr->rk_ptr = aes_fround( aes_data_ptr->rk_ptr, &aes_data_ptr->xy_values[0 + offset], &aes_data_ptr->xy_values[1 + offset], &aes_data_ptr->xy_values[2 + offset], &aes_data_ptr->xy_values[3 + offset], aes_data_ptr->xy_values[4 - offset], aes_data_ptr->xy_values[5 - offset], aes_data_ptr->xy_values[6 - offset], aes_data_ptr->xy_values[7 - offset] ); flow_control++; #endif tindex++; } while( stop_mark == 0 ); // Calculate final AES round + dummy rounds do { aes_data_ptr = aes_data_table[round_ctrl_table[tindex] >> 4]; stop_mark = round_ctrl_table[tindex] & 0x03; #if defined (MBEDTLS_AES_128_BIT_MASKED) if ( aes_masked_round_final( &aes_data_ptr->xy_values[0], aes_data_ptr->rk_ptr, sbox_masked ) == 0 ) { flow_control++; } //Cleanup the masked key mbedtls_platform_memset( rk_masked, 0, sizeof(rk_masked) ); #else aes_fround_final( aes_data_ptr->rk_ptr, &aes_data_ptr->xy_values[0], &aes_data_ptr->xy_values[1], &aes_data_ptr->xy_values[2], &aes_data_ptr->xy_values[3], aes_data_ptr->xy_values[4], aes_data_ptr->xy_values[5], aes_data_ptr->xy_values[6], aes_data_ptr->xy_values[7] ); flow_control++; #endif tindex++; } while( stop_mark == 0 ); // SCA countermeasure, safely clear the output mbedtls_platform_memset( output, 0, 16 ); // SCA countermeasure, randomize secret data location by writing to it in // a random order. offset = mbedtls_platform_random_in_range( 4 ); i = offset; do { PUT_UINT32_LE( aes_data_real.xy_values[i], output, ( i * 4 ) ); flow_control++; } while( ( i = ( i + 1 ) % 4 ) != offset ); #if defined (MBEDTLS_AES_128_BIT_MASKED) mbedtls_platform_memset( rk_masked, 0, sizeof(rk_masked) ); #endif /* Double negation is used to silence an "extraneous parentheses" warning */ if( ! ( flow_control != tindex + dummy_rounds + MASKING_FLOW_CONTORL + 8 ) #if defined(MBEDTLS_VALIDATE_AES_KEYS_INTEGRITY) && check_hash == ctx->hash #endif ) { #if defined(MBEDTLS_VALIDATE_AES_KEYS_INTEGRITY) mbedtls_platform_random_delay(); if( mbedtls_hash( ctx->rk, key_bytes ) == ctx->hash ) #endif { return 0; } } // Clear the output in case of a FI mbedtls_platform_memset( output, 0, 16 ); mbedtls_platform_memset( (uint8_t*)&aes_data_real, 0, sizeof(aes_data_real) ); mbedtls_platform_memset ( aes_data_table, 0, sizeof(aes_data_table) ); #if defined (MBEDTLS_AES_128_BIT_MASKED) //Clear masked key, masked sbox and mask in case of a FI mbedtls_platform_memset( rk_masked, 0, sizeof(rk_masked) ); mbedtls_platform_memset( mask, 0, sizeof(mask) ); mbedtls_platform_memset( sbox_masked, 0, sizeof(sbox_masked) ); #endif return( MBEDTLS_ERR_PLATFORM_FAULT_DETECTED ); } #else /* MBEDTLS_AES_SCA_COUNTERMEASURES */ #define AES_FROUND(X0,X1,X2,X3,Y0,Y1,Y2,Y3) \ do \ { \ (X0) = *RK++ ^ AES_FT0( ( (Y0) ) & 0xFF ) ^ \ AES_FT1( ( (Y1) >> 8 ) & 0xFF ) ^ \ AES_FT2( ( (Y2) >> 16 ) & 0xFF ) ^ \ AES_FT3( ( (Y3) >> 24 ) & 0xFF ); \ \ (X1) = *RK++ ^ AES_FT0( ( (Y1) ) & 0xFF ) ^ \ AES_FT1( ( (Y2) >> 8 ) & 0xFF ) ^ \ AES_FT2( ( (Y3) >> 16 ) & 0xFF ) ^ \ AES_FT3( ( (Y0) >> 24 ) & 0xFF ); \ \ (X2) = *RK++ ^ AES_FT0( ( (Y2) ) & 0xFF ) ^ \ AES_FT1( ( (Y3) >> 8 ) & 0xFF ) ^ \ AES_FT2( ( (Y0) >> 16 ) & 0xFF ) ^ \ AES_FT3( ( (Y1) >> 24 ) & 0xFF ); \ \ (X3) = *RK++ ^ AES_FT0( ( (Y3) ) & 0xFF ) ^ \ AES_FT1( ( (Y0) >> 8 ) & 0xFF ) ^ \ AES_FT2( ( (Y1) >> 16 ) & 0xFF ) ^ \ AES_FT3( ( (Y2) >> 24 ) & 0xFF ); \ } while( 0 ) int mbedtls_internal_aes_encrypt( mbedtls_aes_context *ctx, const unsigned char input[16], unsigned char output[16] ) { int i; uint32_t *RK, X0, X1, X2, X3, Y0, Y1, Y2, Y3; RK = ctx->rk; GET_UINT32_LE( X0, input, 0 ); X0 ^= *RK++; GET_UINT32_LE( X1, input, 4 ); X1 ^= *RK++; GET_UINT32_LE( X2, input, 8 ); X2 ^= *RK++; GET_UINT32_LE( X3, input, 12 ); X3 ^= *RK++; for( i = ( ctx->nr >> 1 ) - 1; i > 0; i-- ) { AES_FROUND( Y0, Y1, Y2, Y3, X0, X1, X2, X3 ); AES_FROUND( X0, X1, X2, X3, Y0, Y1, Y2, Y3 ); } AES_FROUND( Y0, Y1, Y2, Y3, X0, X1, X2, X3 ); X0 = *RK++ ^ \ ( (uint32_t) FSb[ ( Y0 ) & 0xFF ] ) ^ ( (uint32_t) FSb[ ( Y1 >> 8 ) & 0xFF ] << 8 ) ^ ( (uint32_t) FSb[ ( Y2 >> 16 ) & 0xFF ] << 16 ) ^ ( (uint32_t) FSb[ ( Y3 >> 24 ) & 0xFF ] << 24 ); X1 = *RK++ ^ \ ( (uint32_t) FSb[ ( Y1 ) & 0xFF ] ) ^ ( (uint32_t) FSb[ ( Y2 >> 8 ) & 0xFF ] << 8 ) ^ ( (uint32_t) FSb[ ( Y3 >> 16 ) & 0xFF ] << 16 ) ^ ( (uint32_t) FSb[ ( Y0 >> 24 ) & 0xFF ] << 24 ); X2 = *RK++ ^ \ ( (uint32_t) FSb[ ( Y2 ) & 0xFF ] ) ^ ( (uint32_t) FSb[ ( Y3 >> 8 ) & 0xFF ] << 8 ) ^ ( (uint32_t) FSb[ ( Y0 >> 16 ) & 0xFF ] << 16 ) ^ ( (uint32_t) FSb[ ( Y1 >> 24 ) & 0xFF ] << 24 ); X3 = *RK++ ^ \ ( (uint32_t) FSb[ ( Y3 ) & 0xFF ] ) ^ ( (uint32_t) FSb[ ( Y0 >> 8 ) & 0xFF ] << 8 ) ^ ( (uint32_t) FSb[ ( Y1 >> 16 ) & 0xFF ] << 16 ) ^ ( (uint32_t) FSb[ ( Y2 >> 24 ) & 0xFF ] << 24 ); PUT_UINT32_LE( X0, output, 0 ); PUT_UINT32_LE( X1, output, 4 ); PUT_UINT32_LE( X2, output, 8 ); PUT_UINT32_LE( X3, output, 12 ); mbedtls_platform_zeroize( &X0, sizeof( X0 ) ); mbedtls_platform_zeroize( &X1, sizeof( X1 ) ); mbedtls_platform_zeroize( &X2, sizeof( X2 ) ); mbedtls_platform_zeroize( &X3, sizeof( X3 ) ); mbedtls_platform_zeroize( &Y0, sizeof( Y0 ) ); mbedtls_platform_zeroize( &Y1, sizeof( Y1 ) ); mbedtls_platform_zeroize( &Y2, sizeof( Y2 ) ); mbedtls_platform_zeroize( &Y3, sizeof( Y3 ) ); mbedtls_platform_zeroize( &RK, sizeof( RK ) ); return( 0 ); } #endif /* MBEDTLS_AES_SCA_COUNTERMEASURES */ #endif /* !MBEDTLS_AES_ENCRYPT_ALT */ #if !defined(MBEDTLS_DEPRECATED_REMOVED) void mbedtls_aes_encrypt( mbedtls_aes_context *ctx, const unsigned char input[16], unsigned char output[16] ) { mbedtls_internal_aes_encrypt( ctx, input, output ); } #endif /* !MBEDTLS_DEPRECATED_REMOVED */ /* * AES-ECB block decryption */ #if !defined(MBEDTLS_AES_DECRYPT_ALT) #if !defined(MBEDTLS_AES_ONLY_ENCRYPT) #if defined(MBEDTLS_AES_SCA_COUNTERMEASURES) static uint32_t *aes_rround( uint32_t *R, uint32_t *X0, uint32_t *X1, uint32_t *X2, uint32_t *X3, uint32_t Y0, uint32_t Y1, uint32_t Y2, uint32_t Y3 ) { *X0 = *R++ ^ AES_RT0( ( Y0 ) & 0xFF ) ^ AES_RT1( ( Y3 >> 8 ) & 0xFF ) ^ AES_RT2( ( Y2 >> 16 ) & 0xFF ) ^ AES_RT3( ( Y1 >> 24 ) & 0xFF ); *X1 = *R++ ^ AES_RT0( ( Y1 ) & 0xFF ) ^ AES_RT1( ( Y0 >> 8 ) & 0xFF ) ^ AES_RT2( ( Y3 >> 16 ) & 0xFF ) ^ AES_RT3( ( Y2 >> 24 ) & 0xFF ); *X2 = *R++ ^ AES_RT0( ( Y2 ) & 0xFF ) ^ AES_RT1( ( Y1 >> 8 ) & 0xFF ) ^ AES_RT2( ( Y0 >> 16 ) & 0xFF ) ^ AES_RT3( ( Y3 >> 24 ) & 0xFF ); *X3 = *R++ ^ AES_RT0( ( Y3 ) & 0xFF ) ^ AES_RT1( ( Y2 >> 8 ) & 0xFF ) ^ AES_RT2( ( Y1 >> 16 ) & 0xFF ) ^ AES_RT3( ( Y0 >> 24 ) & 0xFF ); return R; } static void aes_rround_final( uint32_t *R, uint32_t *X0, uint32_t *X1, uint32_t *X2, uint32_t *X3, uint32_t Y0, uint32_t Y1, uint32_t Y2, uint32_t Y3 ) { *X0 = *R++ ^ ( (uint32_t) RSb[ ( (Y0) ) & 0xFF ] ) ^ ( (uint32_t) RSb[ ( (Y3) >> 8 ) & 0xFF ] << 8 ) ^ ( (uint32_t) RSb[ ( (Y2) >> 16 ) & 0xFF ] << 16 ) ^ ( (uint32_t) RSb[ ( (Y1) >> 24 ) & 0xFF ] << 24 ); *X1 = *R++ ^ ( (uint32_t) RSb[ ( (Y1) ) & 0xFF ] ) ^ ( (uint32_t) RSb[ ( (Y0) >> 8 ) & 0xFF ] << 8 ) ^ ( (uint32_t) RSb[ ( (Y3) >> 16 ) & 0xFF ] << 16 ) ^ ( (uint32_t) RSb[ ( (Y2) >> 24 ) & 0xFF ] << 24 ); *X2 = *R++ ^ ( (uint32_t) RSb[ ( (Y2) ) & 0xFF ] ) ^ ( (uint32_t) RSb[ ( (Y1) >> 8 ) & 0xFF ] << 8 ) ^ ( (uint32_t) RSb[ ( (Y0) >> 16 ) & 0xFF ] << 16 ) ^ ( (uint32_t) RSb[ ( (Y3) >> 24 ) & 0xFF ] << 24 ); *X3 = *R++ ^ ( (uint32_t) RSb[ ( (Y3) ) & 0xFF ] ) ^ ( (uint32_t) RSb[ ( (Y2) >> 8 ) & 0xFF ] << 8 ) ^ ( (uint32_t) RSb[ ( (Y1) >> 16 ) & 0xFF ] << 16 ) ^ ( (uint32_t) RSb[ ( (Y0) >> 24 ) & 0xFF ] << 24 ); } int mbedtls_internal_aes_decrypt( mbedtls_aes_context *ctx, const unsigned char input[16], unsigned char output[16] ) { int i, tindex, offset, stop_mark, dummy_rounds; aes_r_data_t aes_data_real; // real data aes_r_data_t aes_data_fake; // fake data aes_r_data_t *aes_data_ptr; // pointer to real or fake data aes_r_data_t *aes_data_table[2]; // pointers to real and fake data int round_ctrl_table_len = ctx->nr + 2 + AES_SCA_CM_ROUNDS; volatile int flow_control; // control bytes for AES calculation rounds, // reserve based on max rounds + dummy rounds + 2 (for initial key addition) uint8_t round_ctrl_table[( 14 + AES_SCA_CM_ROUNDS + 2 )]; #if defined(MBEDTLS_VALIDATE_AES_KEYS_INTEGRITY) unsigned key_bytes = 0; uint32_t check_hash = 0; switch( ctx->nr ) { case 10: key_bytes = 16; break; #if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH) case 12: key_bytes = 24; break; case 14: key_bytes = 32; break; #endif /* !MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH */ default : return( MBEDTLS_ERR_AES_INVALID_KEY_LENGTH ); } check_hash = mbedtls_hash( ctx->rk, key_bytes ); #endif aes_data_real.rk_ptr = ctx->rk; aes_data_fake.rk_ptr = ctx->frk; aes_data_table[0] = &aes_data_real; aes_data_table[1] = &aes_data_fake; // Get AES calculation control bytes dummy_rounds = aes_sca_cm_data_randomize( round_ctrl_table, round_ctrl_table_len ); flow_control = dummy_rounds; // SCA countermeasure, safely clear the aes_data_real.xy_values mbedtls_platform_memset( aes_data_real.xy_values, 0, 16 ); // SCA countermeasure, randomize secret data location by initializing it in // a random order and writing randomized fake data between the real data // writes. offset = mbedtls_platform_random_in_range( 4 ); i = offset; do { GET_UINT32_LE( aes_data_real.xy_values[i], input, ( i * 4 ) ); aes_data_fake.xy_values[i] = mbedtls_platform_random_in_range( 0xffffffff ); flow_control++; } while( ( i = ( i + 1 ) % 4 ) != offset ); tindex = 0; do { // Get pointer to the real or fake data aes_data_ptr = aes_data_table[round_ctrl_table[tindex] >> 4]; stop_mark = round_ctrl_table[tindex] & 0x03; // initial round key addition for( i = 0; i < 4; i++ ) { aes_data_ptr->xy_values[i] ^= *aes_data_ptr->rk_ptr++; } tindex++; flow_control++; } while( stop_mark == 0 ); // Calculate AES rounds (9, 11 or 13 rounds) + dummy rounds do { // Get pointer to the real or fake data aes_data_ptr = aes_data_table[round_ctrl_table[tindex] >> 4]; offset = round_ctrl_table[tindex] & 0x04; stop_mark = round_ctrl_table[tindex] & 0x03; aes_data_ptr->rk_ptr = aes_rround( aes_data_ptr->rk_ptr, &aes_data_ptr->xy_values[0 + offset], &aes_data_ptr->xy_values[1 + offset], &aes_data_ptr->xy_values[2 + offset], &aes_data_ptr->xy_values[3 + offset], aes_data_ptr->xy_values[4 - offset], aes_data_ptr->xy_values[5 - offset], aes_data_ptr->xy_values[6 - offset], aes_data_ptr->xy_values[7 - offset] ); tindex++; flow_control++; } while( stop_mark == 0 ); // Calculate final AES round + dummy rounds do { aes_data_ptr = aes_data_table[round_ctrl_table[tindex] >> 4]; stop_mark = round_ctrl_table[tindex] & 0x03; aes_rround_final( aes_data_ptr->rk_ptr, &aes_data_ptr->xy_values[0], &aes_data_ptr->xy_values[1], &aes_data_ptr->xy_values[2], &aes_data_ptr->xy_values[3], aes_data_ptr->xy_values[4], aes_data_ptr->xy_values[5], aes_data_ptr->xy_values[6], aes_data_ptr->xy_values[7] ); flow_control++; tindex++; } while( stop_mark == 0 ); // SCA countermeasure, safely clear the output mbedtls_platform_memset( output, 0, 16 ); // SCA countermeasure, randomize secret data location by writing to it in // a random order. offset = mbedtls_platform_random_in_range( 4 ); i = offset; do { PUT_UINT32_LE( aes_data_real.xy_values[i], output, ( i * 4 ) ); flow_control++; } while( ( i = ( i + 1 ) % 4 ) != offset ); /* Double negation is used to silence an "extraneous parentheses" warning */ if( ! ( flow_control != tindex + dummy_rounds + 8 ) #if defined(MBEDTLS_VALIDATE_AES_KEYS_INTEGRITY) && check_hash == ctx->hash #endif ) { #if defined(MBEDTLS_VALIDATE_AES_KEYS_INTEGRITY) mbedtls_platform_random_delay(); if( mbedtls_hash( ctx->rk, key_bytes ) == ctx->hash ) #endif { return 0; } } // Clear the output in case of a FI mbedtls_platform_memset( output, 0, 16 ); return( MBEDTLS_ERR_PLATFORM_FAULT_DETECTED ); } #else /* MBEDTLS_AES_SCA_COUNTERMEASURES */ #define AES_RROUND(X0,X1,X2,X3,Y0,Y1,Y2,Y3) \ do \ { \ (X0) = *RK++ ^ AES_RT0( ( (Y0) ) & 0xFF ) ^ \ AES_RT1( ( (Y3) >> 8 ) & 0xFF ) ^ \ AES_RT2( ( (Y2) >> 16 ) & 0xFF ) ^ \ AES_RT3( ( (Y1) >> 24 ) & 0xFF ); \ \ (X1) = *RK++ ^ AES_RT0( ( (Y1) ) & 0xFF ) ^ \ AES_RT1( ( (Y0) >> 8 ) & 0xFF ) ^ \ AES_RT2( ( (Y3) >> 16 ) & 0xFF ) ^ \ AES_RT3( ( (Y2) >> 24 ) & 0xFF ); \ \ (X2) = *RK++ ^ AES_RT0( ( (Y2) ) & 0xFF ) ^ \ AES_RT1( ( (Y1) >> 8 ) & 0xFF ) ^ \ AES_RT2( ( (Y0) >> 16 ) & 0xFF ) ^ \ AES_RT3( ( (Y3) >> 24 ) & 0xFF ); \ \ (X3) = *RK++ ^ AES_RT0( ( (Y3) ) & 0xFF ) ^ \ AES_RT1( ( (Y2) >> 8 ) & 0xFF ) ^ \ AES_RT2( ( (Y1) >> 16 ) & 0xFF ) ^ \ AES_RT3( ( (Y0) >> 24 ) & 0xFF ); \ } while( 0 ) int mbedtls_internal_aes_decrypt( mbedtls_aes_context *ctx, const unsigned char input[16], unsigned char output[16] ) { int i; uint32_t *RK, X0, X1, X2, X3, Y0, Y1, Y2, Y3; RK = ctx->rk; GET_UINT32_LE( X0, input, 0 ); X0 ^= *RK++; GET_UINT32_LE( X1, input, 4 ); X1 ^= *RK++; GET_UINT32_LE( X2, input, 8 ); X2 ^= *RK++; GET_UINT32_LE( X3, input, 12 ); X3 ^= *RK++; for( i = ( ctx->nr >> 1 ) - 1; i > 0; i-- ) { AES_RROUND( Y0, Y1, Y2, Y3, X0, X1, X2, X3 ); AES_RROUND( X0, X1, X2, X3, Y0, Y1, Y2, Y3 ); } AES_RROUND( Y0, Y1, Y2, Y3, X0, X1, X2, X3 ); X0 = *RK++ ^ \ ( (uint32_t) RSb[ ( Y0 ) & 0xFF ] ) ^ ( (uint32_t) RSb[ ( Y3 >> 8 ) & 0xFF ] << 8 ) ^ ( (uint32_t) RSb[ ( Y2 >> 16 ) & 0xFF ] << 16 ) ^ ( (uint32_t) RSb[ ( Y1 >> 24 ) & 0xFF ] << 24 ); X1 = *RK++ ^ \ ( (uint32_t) RSb[ ( Y1 ) & 0xFF ] ) ^ ( (uint32_t) RSb[ ( Y0 >> 8 ) & 0xFF ] << 8 ) ^ ( (uint32_t) RSb[ ( Y3 >> 16 ) & 0xFF ] << 16 ) ^ ( (uint32_t) RSb[ ( Y2 >> 24 ) & 0xFF ] << 24 ); X2 = *RK++ ^ \ ( (uint32_t) RSb[ ( Y2 ) & 0xFF ] ) ^ ( (uint32_t) RSb[ ( Y1 >> 8 ) & 0xFF ] << 8 ) ^ ( (uint32_t) RSb[ ( Y0 >> 16 ) & 0xFF ] << 16 ) ^ ( (uint32_t) RSb[ ( Y3 >> 24 ) & 0xFF ] << 24 ); X3 = *RK++ ^ \ ( (uint32_t) RSb[ ( Y3 ) & 0xFF ] ) ^ ( (uint32_t) RSb[ ( Y2 >> 8 ) & 0xFF ] << 8 ) ^ ( (uint32_t) RSb[ ( Y1 >> 16 ) & 0xFF ] << 16 ) ^ ( (uint32_t) RSb[ ( Y0 >> 24 ) & 0xFF ] << 24 ); PUT_UINT32_LE( X0, output, 0 ); PUT_UINT32_LE( X1, output, 4 ); PUT_UINT32_LE( X2, output, 8 ); PUT_UINT32_LE( X3, output, 12 ); mbedtls_platform_zeroize( &X0, sizeof( X0 ) ); mbedtls_platform_zeroize( &X1, sizeof( X1 ) ); mbedtls_platform_zeroize( &X2, sizeof( X2 ) ); mbedtls_platform_zeroize( &X3, sizeof( X3 ) ); mbedtls_platform_zeroize( &Y0, sizeof( Y0 ) ); mbedtls_platform_zeroize( &Y1, sizeof( Y1 ) ); mbedtls_platform_zeroize( &Y2, sizeof( Y2 ) ); mbedtls_platform_zeroize( &Y3, sizeof( Y3 ) ); mbedtls_platform_zeroize( &RK, sizeof( RK ) ); return( 0 ); } #endif /* !MBEDTLS_AES_ONLY_ENCRYPT */ #endif /* MBEDTLS_AES_SCA_COUNTERMEASURES */ #endif /* !MBEDTLS_AES_DECRYPT_ALT */ #if !defined(MBEDTLS_DEPRECATED_REMOVED) void mbedtls_aes_decrypt( mbedtls_aes_context *ctx, const unsigned char input[16], unsigned char output[16] ) { #if defined(MBEDTLS_AES_ONLY_ENCRYPT) (void) ctx; (void) input; (void) output; #else /* MBEDTLS_AES_ONLY_ENCRYPT */ mbedtls_internal_aes_decrypt( ctx, input, output ); #endif /* MBEDTLS_AES_ONLY_ENCRYPT */ } #endif /* !MBEDTLS_DEPRECATED_REMOVED */ /* * AES-ECB block encryption/decryption */ int mbedtls_aes_crypt_ecb( mbedtls_aes_context *ctx, int mode, const unsigned char input[16], unsigned char output[16] ) { AES_VALIDATE_RET( ctx != NULL ); AES_VALIDATE_RET( input != NULL ); AES_VALIDATE_RET( output != NULL ); AES_VALIDATE_RET( mode == MBEDTLS_AES_ENCRYPT || mode == MBEDTLS_AES_DECRYPT ); (void) mode; #if defined(MBEDTLS_AESNI_C) && defined(MBEDTLS_HAVE_X86_64) if( mbedtls_aesni_has_support( MBEDTLS_AESNI_AES ) ) return( mbedtls_aesni_crypt_ecb( ctx, mode, input, output ) ); #endif #if defined(MBEDTLS_PADLOCK_C) && defined(MBEDTLS_HAVE_X86) if( aes_padlock_ace ) { if( mbedtls_padlock_xcryptecb( ctx, mode, input, output ) == 0 ) return( 0 ); // If padlock data misaligned, we just fall back to // unaccelerated mode // } #endif #if defined(MBEDTLS_AES_ONLY_ENCRYPT) return( mbedtls_internal_aes_encrypt( ctx, input, output ) ); #else /* MBEDTLS_AES_ONLY_ENCRYPT */ if( mode == MBEDTLS_AES_ENCRYPT ) return( mbedtls_internal_aes_encrypt( ctx, input, output ) ); else return( mbedtls_internal_aes_decrypt( ctx, input, output ) ); #endif /* MBEDTLS_AES_ONLY_ENCRYPT */ } #if defined(MBEDTLS_CIPHER_MODE_CBC) /* * AES-CBC buffer encryption/decryption */ int mbedtls_aes_crypt_cbc( mbedtls_aes_context *ctx, int mode, size_t length, unsigned char iv[16], const unsigned char *input, unsigned char *output ) { int i; unsigned char temp[16]; AES_VALIDATE_RET( ctx != NULL ); AES_VALIDATE_RET( mode == MBEDTLS_AES_ENCRYPT || mode == MBEDTLS_AES_DECRYPT ); AES_VALIDATE_RET( iv != NULL ); AES_VALIDATE_RET( input != NULL ); AES_VALIDATE_RET( output != NULL ); if( length % 16 ) return( MBEDTLS_ERR_AES_INVALID_INPUT_LENGTH ); #if defined(MBEDTLS_PADLOCK_C) && defined(MBEDTLS_HAVE_X86) if( aes_padlock_ace ) { if( mbedtls_padlock_xcryptcbc( ctx, mode, length, iv, input, output ) == 0 ) return( 0 ); // If padlock data misaligned, we just fall back to // unaccelerated mode // } #endif if( mode == MBEDTLS_AES_DECRYPT ) { while( length > 0 ) { mbedtls_platform_memcpy( temp, input, 16 ); mbedtls_aes_crypt_ecb( ctx, mode, input, output ); for( i = 0; i < 16; i++ ) output[i] = (unsigned char)( output[i] ^ iv[i] ); mbedtls_platform_memcpy( iv, temp, 16 ); input += 16; output += 16; length -= 16; } } else { while( length > 0 ) { for( i = 0; i < 16; i++ ) output[i] = (unsigned char)( input[i] ^ iv[i] ); mbedtls_aes_crypt_ecb( ctx, mode, output, output ); mbedtls_platform_memcpy( iv, output, 16 ); input += 16; output += 16; length -= 16; } } return( 0 ); } #endif /* MBEDTLS_CIPHER_MODE_CBC */ #if defined(MBEDTLS_CIPHER_MODE_XTS) /* Endianess with 64 bits values */ #ifndef GET_UINT64_LE #define GET_UINT64_LE(n,b,i) \ { \ (n) = ( (uint64_t) (b)[(i) + 7] << 56 ) \ | ( (uint64_t) (b)[(i) + 6] << 48 ) \ | ( (uint64_t) (b)[(i) + 5] << 40 ) \ | ( (uint64_t) (b)[(i) + 4] << 32 ) \ | ( (uint64_t) (b)[(i) + 3] << 24 ) \ | ( (uint64_t) (b)[(i) + 2] << 16 ) \ | ( (uint64_t) (b)[(i) + 1] << 8 ) \ | ( (uint64_t) (b)[(i) ] ); \ } #endif #ifndef PUT_UINT64_LE #define PUT_UINT64_LE(n,b,i) \ { \ (b)[(i) + 7] = (unsigned char) ( (n) >> 56 ); \ (b)[(i) + 6] = (unsigned char) ( (n) >> 48 ); \ (b)[(i) + 5] = (unsigned char) ( (n) >> 40 ); \ (b)[(i) + 4] = (unsigned char) ( (n) >> 32 ); \ (b)[(i) + 3] = (unsigned char) ( (n) >> 24 ); \ (b)[(i) + 2] = (unsigned char) ( (n) >> 16 ); \ (b)[(i) + 1] = (unsigned char) ( (n) >> 8 ); \ (b)[(i) ] = (unsigned char) ( (n) ); \ } #endif typedef unsigned char mbedtls_be128[16]; /* * GF(2^128) multiplication function * * This function multiplies a field element by x in the polynomial field * representation. It uses 64-bit word operations to gain speed but compensates * for machine endianess and hence works correctly on both big and little * endian machines. */ static void mbedtls_gf128mul_x_ble( unsigned char r[16], const unsigned char x[16] ) { uint64_t a, b, ra, rb; GET_UINT64_LE( a, x, 0 ); GET_UINT64_LE( b, x, 8 ); ra = ( a << 1 ) ^ 0x0087 >> ( 8 - ( ( b >> 63 ) << 3 ) ); rb = ( a >> 63 ) | ( b << 1 ); PUT_UINT64_LE( ra, r, 0 ); PUT_UINT64_LE( rb, r, 8 ); } /* * AES-XTS buffer encryption/decryption */ int mbedtls_aes_crypt_xts( mbedtls_aes_xts_context *ctx, int mode, size_t length, const unsigned char data_unit[16], const unsigned char *input, unsigned char *output ) { int ret; size_t blocks = length / 16; size_t leftover = length % 16; unsigned char tweak[16]; unsigned char prev_tweak[16]; unsigned char tmp[16]; AES_VALIDATE_RET( ctx != NULL ); AES_VALIDATE_RET( mode == MBEDTLS_AES_ENCRYPT || mode == MBEDTLS_AES_DECRYPT ); AES_VALIDATE_RET( data_unit != NULL ); AES_VALIDATE_RET( input != NULL ); AES_VALIDATE_RET( output != NULL ); /* Data units must be at least 16 bytes long. */ if( length < 16 ) return MBEDTLS_ERR_AES_INVALID_INPUT_LENGTH; /* NIST SP 800-38E disallows data units larger than 2**20 blocks. */ if( length > ( 1 << 20 ) * 16 ) return MBEDTLS_ERR_AES_INVALID_INPUT_LENGTH; /* Compute the tweak. */ ret = mbedtls_aes_crypt_ecb( &ctx->tweak, MBEDTLS_AES_ENCRYPT, data_unit, tweak ); if( ret != 0 ) return( ret ); while( blocks-- ) { size_t i; if( leftover && ( mode == MBEDTLS_AES_DECRYPT ) && blocks == 0 ) { /* We are on the last block in a decrypt operation that has * leftover bytes, so we need to use the next tweak for this block, * and this tweak for the lefover bytes. Save the current tweak for * the leftovers and then update the current tweak for use on this, * the last full block. */ mbedtls_platform_memcpy( prev_tweak, tweak, sizeof( tweak ) ); mbedtls_gf128mul_x_ble( tweak, tweak ); } for( i = 0; i < 16; i++ ) tmp[i] = input[i] ^ tweak[i]; ret = mbedtls_aes_crypt_ecb( &ctx->crypt, mode, tmp, tmp ); if( ret != 0 ) return( ret ); for( i = 0; i < 16; i++ ) output[i] = tmp[i] ^ tweak[i]; /* Update the tweak for the next block. */ mbedtls_gf128mul_x_ble( tweak, tweak ); output += 16; input += 16; } if( leftover ) { /* If we are on the leftover bytes in a decrypt operation, we need to * use the previous tweak for these bytes (as saved in prev_tweak). */ unsigned char *t = mode == MBEDTLS_AES_DECRYPT ? prev_tweak : tweak; /* We are now on the final part of the data unit, which doesn't divide * evenly by 16. It's time for ciphertext stealing. */ size_t i; unsigned char *prev_output = output - 16; /* Copy ciphertext bytes from the previous block to our output for each * byte of cyphertext we won't steal. At the same time, copy the * remainder of the input for this final round (since the loop bounds * are the same). */ for( i = 0; i < leftover; i++ ) { output[i] = prev_output[i]; tmp[i] = input[i] ^ t[i]; } /* Copy ciphertext bytes from the previous block for input in this * round. */ for( ; i < 16; i++ ) tmp[i] = prev_output[i] ^ t[i]; ret = mbedtls_aes_crypt_ecb( &ctx->crypt, mode, tmp, tmp ); if( ret != 0 ) return ret; /* Write the result back to the previous block, overriding the previous * output we copied. */ for( i = 0; i < 16; i++ ) prev_output[i] = tmp[i] ^ t[i]; } return( 0 ); } #endif /* MBEDTLS_CIPHER_MODE_XTS */ #if defined(MBEDTLS_CIPHER_MODE_CFB) /* * AES-CFB128 buffer encryption/decryption */ int mbedtls_aes_crypt_cfb128( mbedtls_aes_context *ctx, int mode, size_t length, size_t *iv_off, unsigned char iv[16], const unsigned char *input, unsigned char *output ) { int c; size_t n; AES_VALIDATE_RET( ctx != NULL ); AES_VALIDATE_RET( mode == MBEDTLS_AES_ENCRYPT || mode == MBEDTLS_AES_DECRYPT ); AES_VALIDATE_RET( iv_off != NULL ); AES_VALIDATE_RET( iv != NULL ); AES_VALIDATE_RET( input != NULL ); AES_VALIDATE_RET( output != NULL ); n = *iv_off; if( n > 15 ) return( MBEDTLS_ERR_AES_BAD_INPUT_DATA ); if( mode == MBEDTLS_AES_DECRYPT ) { while( length-- ) { if( n == 0 ) mbedtls_aes_crypt_ecb( ctx, MBEDTLS_AES_ENCRYPT, iv, iv ); c = *input++; *output++ = (unsigned char)( c ^ iv[n] ); iv[n] = (unsigned char) c; n = ( n + 1 ) & 0x0F; } } else { while( length-- ) { if( n == 0 ) mbedtls_aes_crypt_ecb( ctx, MBEDTLS_AES_ENCRYPT, iv, iv ); iv[n] = *output++ = (unsigned char)( iv[n] ^ *input++ ); n = ( n + 1 ) & 0x0F; } } *iv_off = n; return( 0 ); } /* * AES-CFB8 buffer encryption/decryption */ int mbedtls_aes_crypt_cfb8( mbedtls_aes_context *ctx, int mode, size_t length, unsigned char iv[16], const unsigned char *input, unsigned char *output ) { unsigned char c; unsigned char ov[17]; AES_VALIDATE_RET( ctx != NULL ); AES_VALIDATE_RET( mode == MBEDTLS_AES_ENCRYPT || mode == MBEDTLS_AES_DECRYPT ); AES_VALIDATE_RET( iv != NULL ); AES_VALIDATE_RET( input != NULL ); AES_VALIDATE_RET( output != NULL ); while( length-- ) { mbedtls_platform_memcpy( ov, iv, 16 ); mbedtls_aes_crypt_ecb( ctx, MBEDTLS_AES_ENCRYPT, iv, iv ); if( mode == MBEDTLS_AES_DECRYPT ) ov[16] = *input; c = *output++ = (unsigned char)( iv[0] ^ *input++ ); if( mode == MBEDTLS_AES_ENCRYPT ) ov[16] = c; mbedtls_platform_memcpy( iv, ov + 1, 16 ); } return( 0 ); } #endif /* MBEDTLS_CIPHER_MODE_CFB */ #if defined(MBEDTLS_CIPHER_MODE_OFB) /* * AES-OFB (Output Feedback Mode) buffer encryption/decryption */ int mbedtls_aes_crypt_ofb( mbedtls_aes_context *ctx, size_t length, size_t *iv_off, unsigned char iv[16], const unsigned char *input, unsigned char *output ) { int ret = 0; size_t n; AES_VALIDATE_RET( ctx != NULL ); AES_VALIDATE_RET( iv_off != NULL ); AES_VALIDATE_RET( iv != NULL ); AES_VALIDATE_RET( input != NULL ); AES_VALIDATE_RET( output != NULL ); n = *iv_off; if( n > 15 ) return( MBEDTLS_ERR_AES_BAD_INPUT_DATA ); while( length-- ) { if( n == 0 ) { ret = mbedtls_aes_crypt_ecb( ctx, MBEDTLS_AES_ENCRYPT, iv, iv ); if( ret != 0 ) goto exit; } *output++ = *input++ ^ iv[n]; n = ( n + 1 ) & 0x0F; } *iv_off = n; exit: return( ret ); } #endif /* MBEDTLS_CIPHER_MODE_OFB */ #if defined(MBEDTLS_CIPHER_MODE_CTR) /* * AES-CTR buffer encryption/decryption */ int mbedtls_aes_crypt_ctr( mbedtls_aes_context *ctx, size_t length, size_t *nc_off, unsigned char nonce_counter[16], unsigned char stream_block[16], const unsigned char *input, unsigned char *output ) { int c, i; size_t n; AES_VALIDATE_RET( ctx != NULL ); AES_VALIDATE_RET( nc_off != NULL ); AES_VALIDATE_RET( nonce_counter != NULL ); AES_VALIDATE_RET( stream_block != NULL ); AES_VALIDATE_RET( input != NULL ); AES_VALIDATE_RET( output != NULL ); n = *nc_off; if( n > 0x0F ) return( MBEDTLS_ERR_AES_BAD_INPUT_DATA ); while( length-- ) { if( n == 0 ) { mbedtls_aes_crypt_ecb( ctx, MBEDTLS_AES_ENCRYPT, nonce_counter, stream_block ); for( i = 16; i > 0; i-- ) if( ++nonce_counter[i - 1] != 0 ) break; } c = *input++; *output++ = (unsigned char)( c ^ stream_block[n] ); n = ( n + 1 ) & 0x0F; } *nc_off = n; return( 0 ); } #endif /* MBEDTLS_CIPHER_MODE_CTR */ #endif /* !MBEDTLS_AES_ALT */ #if defined(MBEDTLS_SELF_TEST) /* * AES test vectors from: * * http://csrc.nist.gov/archive/aes/rijndael/rijndael-vals.zip */ static const unsigned char aes_test_ecb_dec[3][16] = { { 0x44, 0x41, 0x6A, 0xC2, 0xD1, 0xF5, 0x3C, 0x58, 0x33, 0x03, 0x91, 0x7E, 0x6B, 0xE9, 0xEB, 0xE0 }, { 0x48, 0xE3, 0x1E, 0x9E, 0x25, 0x67, 0x18, 0xF2, 0x92, 0x29, 0x31, 0x9C, 0x19, 0xF1, 0x5B, 0xA4 }, { 0x05, 0x8C, 0xCF, 0xFD, 0xBB, 0xCB, 0x38, 0x2D, 0x1F, 0x6F, 0x56, 0x58, 0x5D, 0x8A, 0x4A, 0xDE } }; static const unsigned char aes_test_ecb_enc[3][16] = { { 0xC3, 0x4C, 0x05, 0x2C, 0xC0, 0xDA, 0x8D, 0x73, 0x45, 0x1A, 0xFE, 0x5F, 0x03, 0xBE, 0x29, 0x7F }, { 0xF3, 0xF6, 0x75, 0x2A, 0xE8, 0xD7, 0x83, 0x11, 0x38, 0xF0, 0x41, 0x56, 0x06, 0x31, 0xB1, 0x14 }, { 0x8B, 0x79, 0xEE, 0xCC, 0x93, 0xA0, 0xEE, 0x5D, 0xFF, 0x30, 0xB4, 0xEA, 0x21, 0x63, 0x6D, 0xA4 } }; #if defined(MBEDTLS_CIPHER_MODE_CBC) static const unsigned char aes_test_cbc_dec[3][16] = { { 0xFA, 0xCA, 0x37, 0xE0, 0xB0, 0xC8, 0x53, 0x73, 0xDF, 0x70, 0x6E, 0x73, 0xF7, 0xC9, 0xAF, 0x86 }, { 0x5D, 0xF6, 0x78, 0xDD, 0x17, 0xBA, 0x4E, 0x75, 0xB6, 0x17, 0x68, 0xC6, 0xAD, 0xEF, 0x7C, 0x7B }, { 0x48, 0x04, 0xE1, 0x81, 0x8F, 0xE6, 0x29, 0x75, 0x19, 0xA3, 0xE8, 0x8C, 0x57, 0x31, 0x04, 0x13 } }; static const unsigned char aes_test_cbc_enc[3][16] = { { 0x8A, 0x05, 0xFC, 0x5E, 0x09, 0x5A, 0xF4, 0x84, 0x8A, 0x08, 0xD3, 0x28, 0xD3, 0x68, 0x8E, 0x3D }, { 0x7B, 0xD9, 0x66, 0xD5, 0x3A, 0xD8, 0xC1, 0xBB, 0x85, 0xD2, 0xAD, 0xFA, 0xE8, 0x7B, 0xB1, 0x04 }, { 0xFE, 0x3C, 0x53, 0x65, 0x3E, 0x2F, 0x45, 0xB5, 0x6F, 0xCD, 0x88, 0xB2, 0xCC, 0x89, 0x8F, 0xF0 } }; #endif /* MBEDTLS_CIPHER_MODE_CBC */ #if defined(MBEDTLS_CIPHER_MODE_CFB) /* * AES-CFB128 test vectors from: * * http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf */ static const unsigned char aes_test_cfb128_key[3][32] = { { 0x2B, 0x7E, 0x15, 0x16, 0x28, 0xAE, 0xD2, 0xA6, 0xAB, 0xF7, 0x15, 0x88, 0x09, 0xCF, 0x4F, 0x3C }, { 0x8E, 0x73, 0xB0, 0xF7, 0xDA, 0x0E, 0x64, 0x52, 0xC8, 0x10, 0xF3, 0x2B, 0x80, 0x90, 0x79, 0xE5, 0x62, 0xF8, 0xEA, 0xD2, 0x52, 0x2C, 0x6B, 0x7B }, { 0x60, 0x3D, 0xEB, 0x10, 0x15, 0xCA, 0x71, 0xBE, 0x2B, 0x73, 0xAE, 0xF0, 0x85, 0x7D, 0x77, 0x81, 0x1F, 0x35, 0x2C, 0x07, 0x3B, 0x61, 0x08, 0xD7, 0x2D, 0x98, 0x10, 0xA3, 0x09, 0x14, 0xDF, 0xF4 } }; static const unsigned char aes_test_cfb128_iv[16] = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F }; static const unsigned char aes_test_cfb128_pt[64] = { 0x6B, 0xC1, 0xBE, 0xE2, 0x2E, 0x40, 0x9F, 0x96, 0xE9, 0x3D, 0x7E, 0x11, 0x73, 0x93, 0x17, 0x2A, 0xAE, 0x2D, 0x8A, 0x57, 0x1E, 0x03, 0xAC, 0x9C, 0x9E, 0xB7, 0x6F, 0xAC, 0x45, 0xAF, 0x8E, 0x51, 0x30, 0xC8, 0x1C, 0x46, 0xA3, 0x5C, 0xE4, 0x11, 0xE5, 0xFB, 0xC1, 0x19, 0x1A, 0x0A, 0x52, 0xEF, 0xF6, 0x9F, 0x24, 0x45, 0xDF, 0x4F, 0x9B, 0x17, 0xAD, 0x2B, 0x41, 0x7B, 0xE6, 0x6C, 0x37, 0x10 }; static const unsigned char aes_test_cfb128_ct[3][64] = { { 0x3B, 0x3F, 0xD9, 0x2E, 0xB7, 0x2D, 0xAD, 0x20, 0x33, 0x34, 0x49, 0xF8, 0xE8, 0x3C, 0xFB, 0x4A, 0xC8, 0xA6, 0x45, 0x37, 0xA0, 0xB3, 0xA9, 0x3F, 0xCD, 0xE3, 0xCD, 0xAD, 0x9F, 0x1C, 0xE5, 0x8B, 0x26, 0x75, 0x1F, 0x67, 0xA3, 0xCB, 0xB1, 0x40, 0xB1, 0x80, 0x8C, 0xF1, 0x87, 0xA4, 0xF4, 0xDF, 0xC0, 0x4B, 0x05, 0x35, 0x7C, 0x5D, 0x1C, 0x0E, 0xEA, 0xC4, 0xC6, 0x6F, 0x9F, 0xF7, 0xF2, 0xE6 }, { 0xCD, 0xC8, 0x0D, 0x6F, 0xDD, 0xF1, 0x8C, 0xAB, 0x34, 0xC2, 0x59, 0x09, 0xC9, 0x9A, 0x41, 0x74, 0x67, 0xCE, 0x7F, 0x7F, 0x81, 0x17, 0x36, 0x21, 0x96, 0x1A, 0x2B, 0x70, 0x17, 0x1D, 0x3D, 0x7A, 0x2E, 0x1E, 0x8A, 0x1D, 0xD5, 0x9B, 0x88, 0xB1, 0xC8, 0xE6, 0x0F, 0xED, 0x1E, 0xFA, 0xC4, 0xC9, 0xC0, 0x5F, 0x9F, 0x9C, 0xA9, 0x83, 0x4F, 0xA0, 0x42, 0xAE, 0x8F, 0xBA, 0x58, 0x4B, 0x09, 0xFF }, { 0xDC, 0x7E, 0x84, 0xBF, 0xDA, 0x79, 0x16, 0x4B, 0x7E, 0xCD, 0x84, 0x86, 0x98, 0x5D, 0x38, 0x60, 0x39, 0xFF, 0xED, 0x14, 0x3B, 0x28, 0xB1, 0xC8, 0x32, 0x11, 0x3C, 0x63, 0x31, 0xE5, 0x40, 0x7B, 0xDF, 0x10, 0x13, 0x24, 0x15, 0xE5, 0x4B, 0x92, 0xA1, 0x3E, 0xD0, 0xA8, 0x26, 0x7A, 0xE2, 0xF9, 0x75, 0xA3, 0x85, 0x74, 0x1A, 0xB9, 0xCE, 0xF8, 0x20, 0x31, 0x62, 0x3D, 0x55, 0xB1, 0xE4, 0x71 } }; #endif /* MBEDTLS_CIPHER_MODE_CFB */ #if defined(MBEDTLS_CIPHER_MODE_OFB) /* * AES-OFB test vectors from: * * https://csrc.nist.gov/publications/detail/sp/800-38a/final */ static const unsigned char aes_test_ofb_key[3][32] = { { 0x2B, 0x7E, 0x15, 0x16, 0x28, 0xAE, 0xD2, 0xA6, 0xAB, 0xF7, 0x15, 0x88, 0x09, 0xCF, 0x4F, 0x3C }, { 0x8E, 0x73, 0xB0, 0xF7, 0xDA, 0x0E, 0x64, 0x52, 0xC8, 0x10, 0xF3, 0x2B, 0x80, 0x90, 0x79, 0xE5, 0x62, 0xF8, 0xEA, 0xD2, 0x52, 0x2C, 0x6B, 0x7B }, { 0x60, 0x3D, 0xEB, 0x10, 0x15, 0xCA, 0x71, 0xBE, 0x2B, 0x73, 0xAE, 0xF0, 0x85, 0x7D, 0x77, 0x81, 0x1F, 0x35, 0x2C, 0x07, 0x3B, 0x61, 0x08, 0xD7, 0x2D, 0x98, 0x10, 0xA3, 0x09, 0x14, 0xDF, 0xF4 } }; static const unsigned char aes_test_ofb_iv[16] = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F }; static const unsigned char aes_test_ofb_pt[64] = { 0x6B, 0xC1, 0xBE, 0xE2, 0x2E, 0x40, 0x9F, 0x96, 0xE9, 0x3D, 0x7E, 0x11, 0x73, 0x93, 0x17, 0x2A, 0xAE, 0x2D, 0x8A, 0x57, 0x1E, 0x03, 0xAC, 0x9C, 0x9E, 0xB7, 0x6F, 0xAC, 0x45, 0xAF, 0x8E, 0x51, 0x30, 0xC8, 0x1C, 0x46, 0xA3, 0x5C, 0xE4, 0x11, 0xE5, 0xFB, 0xC1, 0x19, 0x1A, 0x0A, 0x52, 0xEF, 0xF6, 0x9F, 0x24, 0x45, 0xDF, 0x4F, 0x9B, 0x17, 0xAD, 0x2B, 0x41, 0x7B, 0xE6, 0x6C, 0x37, 0x10 }; static const unsigned char aes_test_ofb_ct[3][64] = { { 0x3B, 0x3F, 0xD9, 0x2E, 0xB7, 0x2D, 0xAD, 0x20, 0x33, 0x34, 0x49, 0xF8, 0xE8, 0x3C, 0xFB, 0x4A, 0x77, 0x89, 0x50, 0x8d, 0x16, 0x91, 0x8f, 0x03, 0xf5, 0x3c, 0x52, 0xda, 0xc5, 0x4e, 0xd8, 0x25, 0x97, 0x40, 0x05, 0x1e, 0x9c, 0x5f, 0xec, 0xf6, 0x43, 0x44, 0xf7, 0xa8, 0x22, 0x60, 0xed, 0xcc, 0x30, 0x4c, 0x65, 0x28, 0xf6, 0x59, 0xc7, 0x78, 0x66, 0xa5, 0x10, 0xd9, 0xc1, 0xd6, 0xae, 0x5e }, { 0xCD, 0xC8, 0x0D, 0x6F, 0xDD, 0xF1, 0x8C, 0xAB, 0x34, 0xC2, 0x59, 0x09, 0xC9, 0x9A, 0x41, 0x74, 0xfc, 0xc2, 0x8b, 0x8d, 0x4c, 0x63, 0x83, 0x7c, 0x09, 0xe8, 0x17, 0x00, 0xc1, 0x10, 0x04, 0x01, 0x8d, 0x9a, 0x9a, 0xea, 0xc0, 0xf6, 0x59, 0x6f, 0x55, 0x9c, 0x6d, 0x4d, 0xaf, 0x59, 0xa5, 0xf2, 0x6d, 0x9f, 0x20, 0x08, 0x57, 0xca, 0x6c, 0x3e, 0x9c, 0xac, 0x52, 0x4b, 0xd9, 0xac, 0xc9, 0x2a }, { 0xDC, 0x7E, 0x84, 0xBF, 0xDA, 0x79, 0x16, 0x4B, 0x7E, 0xCD, 0x84, 0x86, 0x98, 0x5D, 0x38, 0x60, 0x4f, 0xeb, 0xdc, 0x67, 0x40, 0xd2, 0x0b, 0x3a, 0xc8, 0x8f, 0x6a, 0xd8, 0x2a, 0x4f, 0xb0, 0x8d, 0x71, 0xab, 0x47, 0xa0, 0x86, 0xe8, 0x6e, 0xed, 0xf3, 0x9d, 0x1c, 0x5b, 0xba, 0x97, 0xc4, 0x08, 0x01, 0x26, 0x14, 0x1d, 0x67, 0xf3, 0x7b, 0xe8, 0x53, 0x8f, 0x5a, 0x8b, 0xe7, 0x40, 0xe4, 0x84 } }; #endif /* MBEDTLS_CIPHER_MODE_OFB */ #if defined(MBEDTLS_CIPHER_MODE_CTR) /* * AES-CTR test vectors from: * * http://www.faqs.org/rfcs/rfc3686.html */ static const unsigned char aes_test_ctr_key[3][16] = { { 0xAE, 0x68, 0x52, 0xF8, 0x12, 0x10, 0x67, 0xCC, 0x4B, 0xF7, 0xA5, 0x76, 0x55, 0x77, 0xF3, 0x9E }, { 0x7E, 0x24, 0x06, 0x78, 0x17, 0xFA, 0xE0, 0xD7, 0x43, 0xD6, 0xCE, 0x1F, 0x32, 0x53, 0x91, 0x63 }, { 0x76, 0x91, 0xBE, 0x03, 0x5E, 0x50, 0x20, 0xA8, 0xAC, 0x6E, 0x61, 0x85, 0x29, 0xF9, 0xA0, 0xDC } }; static const unsigned char aes_test_ctr_nonce_counter[3][16] = { { 0x00, 0x00, 0x00, 0x30, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01 }, { 0x00, 0x6C, 0xB6, 0xDB, 0xC0, 0x54, 0x3B, 0x59, 0xDA, 0x48, 0xD9, 0x0B, 0x00, 0x00, 0x00, 0x01 }, { 0x00, 0xE0, 0x01, 0x7B, 0x27, 0x77, 0x7F, 0x3F, 0x4A, 0x17, 0x86, 0xF0, 0x00, 0x00, 0x00, 0x01 } }; static const unsigned char aes_test_ctr_pt[3][48] = { { 0x53, 0x69, 0x6E, 0x67, 0x6C, 0x65, 0x20, 0x62, 0x6C, 0x6F, 0x63, 0x6B, 0x20, 0x6D, 0x73, 0x67 }, { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, 0x1B, 0x1C, 0x1D, 0x1E, 0x1F }, { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, 0x23 } }; static const unsigned char aes_test_ctr_ct[3][48] = { { 0xE4, 0x09, 0x5D, 0x4F, 0xB7, 0xA7, 0xB3, 0x79, 0x2D, 0x61, 0x75, 0xA3, 0x26, 0x13, 0x11, 0xB8 }, { 0x51, 0x04, 0xA1, 0x06, 0x16, 0x8A, 0x72, 0xD9, 0x79, 0x0D, 0x41, 0xEE, 0x8E, 0xDA, 0xD3, 0x88, 0xEB, 0x2E, 0x1E, 0xFC, 0x46, 0xDA, 0x57, 0xC8, 0xFC, 0xE6, 0x30, 0xDF, 0x91, 0x41, 0xBE, 0x28 }, { 0xC1, 0xCF, 0x48, 0xA8, 0x9F, 0x2F, 0xFD, 0xD9, 0xCF, 0x46, 0x52, 0xE9, 0xEF, 0xDB, 0x72, 0xD7, 0x45, 0x40, 0xA4, 0x2B, 0xDE, 0x6D, 0x78, 0x36, 0xD5, 0x9A, 0x5C, 0xEA, 0xAE, 0xF3, 0x10, 0x53, 0x25, 0xB2, 0x07, 0x2F } }; static const int aes_test_ctr_len[3] = { 16, 32, 36 }; #endif /* MBEDTLS_CIPHER_MODE_CTR */ #if defined(MBEDTLS_CIPHER_MODE_XTS) /* * AES-XTS test vectors from: * * IEEE P1619/D16 Annex B * https://web.archive.org/web/20150629024421/http://grouper.ieee.org/groups/1619/email/pdf00086.pdf * (Archived from original at http://grouper.ieee.org/groups/1619/email/pdf00086.pdf) */ static const unsigned char aes_test_xts_key[][32] = { { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, { 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22 }, { 0xff, 0xfe, 0xfd, 0xfc, 0xfb, 0xfa, 0xf9, 0xf8, 0xf7, 0xf6, 0xf5, 0xf4, 0xf3, 0xf2, 0xf1, 0xf0, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22 }, }; static const unsigned char aes_test_xts_pt32[][32] = { { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, { 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44 }, { 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44 }, }; static const unsigned char aes_test_xts_ct32[][32] = { { 0x91, 0x7c, 0xf6, 0x9e, 0xbd, 0x68, 0xb2, 0xec, 0x9b, 0x9f, 0xe9, 0xa3, 0xea, 0xdd, 0xa6, 0x92, 0xcd, 0x43, 0xd2, 0xf5, 0x95, 0x98, 0xed, 0x85, 0x8c, 0x02, 0xc2, 0x65, 0x2f, 0xbf, 0x92, 0x2e }, { 0xc4, 0x54, 0x18, 0x5e, 0x6a, 0x16, 0x93, 0x6e, 0x39, 0x33, 0x40, 0x38, 0xac, 0xef, 0x83, 0x8b, 0xfb, 0x18, 0x6f, 0xff, 0x74, 0x80, 0xad, 0xc4, 0x28, 0x93, 0x82, 0xec, 0xd6, 0xd3, 0x94, 0xf0 }, { 0xaf, 0x85, 0x33, 0x6b, 0x59, 0x7a, 0xfc, 0x1a, 0x90, 0x0b, 0x2e, 0xb2, 0x1e, 0xc9, 0x49, 0xd2, 0x92, 0xdf, 0x4c, 0x04, 0x7e, 0x0b, 0x21, 0x53, 0x21, 0x86, 0xa5, 0x97, 0x1a, 0x22, 0x7a, 0x89 }, }; static const unsigned char aes_test_xts_data_unit[][16] = { { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, { 0x33, 0x33, 0x33, 0x33, 0x33, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, { 0x33, 0x33, 0x33, 0x33, 0x33, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, }; #endif /* MBEDTLS_CIPHER_MODE_XTS */ /* * Checkup routine */ int mbedtls_aes_self_test( int verbose ) { int ret = 0, i, j, u, mode; unsigned int keybits; unsigned char key[32]; unsigned char buf[64]; const unsigned char *aes_tests; #if defined(MBEDTLS_CIPHER_MODE_CBC) || defined(MBEDTLS_CIPHER_MODE_CFB) unsigned char iv[16]; #endif #if defined(MBEDTLS_CIPHER_MODE_CBC) unsigned char prv[16]; #endif #if defined(MBEDTLS_CIPHER_MODE_CTR) || defined(MBEDTLS_CIPHER_MODE_CFB) || \ defined(MBEDTLS_CIPHER_MODE_OFB) size_t offset; #endif #if defined(MBEDTLS_CIPHER_MODE_CTR) || defined(MBEDTLS_CIPHER_MODE_XTS) int len; #endif #if defined(MBEDTLS_CIPHER_MODE_CTR) unsigned char nonce_counter[16]; unsigned char stream_block[16]; #endif mbedtls_aes_context ctx; memset( key, 0, 32 ); mbedtls_aes_init( &ctx ); /* * ECB mode */ for( i = 0; i < 6; i++ ) { u = i >> 1; keybits = 128 + u * 64; mode = i & 1; if( verbose != 0 ) mbedtls_printf( " AES-ECB-%3d (%s): ", keybits, ( mode == MBEDTLS_AES_DECRYPT ) ? "dec" : "enc" ); #if defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH) if( keybits > 128 ) { mbedtls_printf( "skipped\n" ); continue; } #endif /* MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH */ #if defined(MBEDTLS_AES_ONLY_ENCRYPT) if( mode == MBEDTLS_AES_DECRYPT ) { mbedtls_printf( "skipped\n" ); continue; } #endif /* MBEDTLS_AES_ONLY_ENCRYPT */ memset( buf, 0, 16 ); if( mode == MBEDTLS_AES_DECRYPT ) { ret = mbedtls_aes_setkey_dec( &ctx, key, keybits ); aes_tests = aes_test_ecb_dec[u]; } else { ret = mbedtls_aes_setkey_enc( &ctx, key, keybits ); aes_tests = aes_test_ecb_enc[u]; } /* * AES-192 is an optional feature that may be unavailable when * there is an alternative underlying implementation i.e. when * MBEDTLS_AES_ALT is defined. */ if( ret == MBEDTLS_ERR_PLATFORM_FEATURE_UNSUPPORTED && keybits == 192 ) { mbedtls_printf( "skipped\n" ); continue; } else if( ret != 0 ) { goto exit; } for( j = 0; j < 10000; j++ ) { ret = mbedtls_aes_crypt_ecb( &ctx, mode, buf, buf ); if( ret != 0 ) goto exit; } if( memcmp( buf, aes_tests, 16 ) != 0 ) { ret = 1; goto exit; } if( verbose != 0 ) mbedtls_printf( "passed\n" ); } if( verbose != 0 ) mbedtls_printf( "\n" ); #if defined(MBEDTLS_CIPHER_MODE_CBC) /* * CBC mode */ for( i = 0; i < 6; i++ ) { u = i >> 1; keybits = 128 + u * 64; mode = i & 1; if( verbose != 0 ) mbedtls_printf( " AES-CBC-%3d (%s): ", keybits, ( mode == MBEDTLS_AES_DECRYPT ) ? "dec" : "enc" ); #if defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH) if( keybits > 128 ) { mbedtls_printf( "skipped\n" ); continue; } #endif #if defined(MBEDTLS_AES_ONLY_ENCRYPT) if( mode == MBEDTLS_AES_DECRYPT ) { mbedtls_printf( "skipped\n" ); continue; } #endif /* MBEDTLS_AES_ONLY_ENCRYPT */ memset( iv , 0, 16 ); memset( prv, 0, 16 ); memset( buf, 0, 16 ); if( mode == MBEDTLS_AES_DECRYPT ) { ret = mbedtls_aes_setkey_dec( &ctx, key, keybits ); aes_tests = aes_test_cbc_dec[u]; } else { ret = mbedtls_aes_setkey_enc( &ctx, key, keybits ); aes_tests = aes_test_cbc_enc[u]; } /* * AES-192 is an optional feature that may be unavailable when * there is an alternative underlying implementation i.e. when * MBEDTLS_AES_ALT is defined. */ if( ret == MBEDTLS_ERR_PLATFORM_FEATURE_UNSUPPORTED && keybits == 192 ) { mbedtls_printf( "skipped\n" ); continue; } else if( ret != 0 ) { goto exit; } for( j = 0; j < 10000; j++ ) { if( mode == MBEDTLS_AES_ENCRYPT ) { unsigned char tmp[16]; memcpy( tmp, prv, 16 ); memcpy( prv, buf, 16 ); memcpy( buf, tmp, 16 ); } ret = mbedtls_aes_crypt_cbc( &ctx, mode, 16, iv, buf, buf ); if( ret != 0 ) goto exit; } if( memcmp( buf, aes_tests, 16 ) != 0 ) { ret = 1; goto exit; } if( verbose != 0 ) mbedtls_printf( "passed\n" ); } if( verbose != 0 ) mbedtls_printf( "\n" ); #endif /* MBEDTLS_CIPHER_MODE_CBC */ #if defined(MBEDTLS_CIPHER_MODE_CFB) /* * CFB128 mode */ for( i = 0; i < 6; i++ ) { u = i >> 1; keybits = 128 + u * 64; mode = i & 1; if( verbose != 0 ) mbedtls_printf( " AES-CFB128-%3d (%s): ", keybits, ( mode == MBEDTLS_AES_DECRYPT ) ? "dec" : "enc" ); #if defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH) if( keybits > 128 ) { mbedtls_printf( "skipped\n" ); continue; } #endif #if defined(MBEDTLS_AES_ONLY_ENCRYPT) if( mode == MBEDTLS_AES_DECRYPT ) { mbedtls_printf( "skipped\n" ); continue; } #endif /* MBEDTLS_AES_ONLY_ENCRYPT */ memcpy( iv, aes_test_cfb128_iv, 16 ); memcpy( key, aes_test_cfb128_key[u], keybits / 8 ); offset = 0; ret = mbedtls_aes_setkey_enc( &ctx, key, keybits ); /* * AES-192 is an optional feature that may be unavailable when * there is an alternative underlying implementation i.e. when * MBEDTLS_AES_ALT is defined. */ if( ret == MBEDTLS_ERR_PLATFORM_FEATURE_UNSUPPORTED && keybits == 192 ) { mbedtls_printf( "skipped\n" ); continue; } else if( ret != 0 ) { goto exit; } if( mode == MBEDTLS_AES_DECRYPT ) { memcpy( buf, aes_test_cfb128_ct[u], 64 ); aes_tests = aes_test_cfb128_pt; } else { memcpy( buf, aes_test_cfb128_pt, 64 ); aes_tests = aes_test_cfb128_ct[u]; } ret = mbedtls_aes_crypt_cfb128( &ctx, mode, 64, &offset, iv, buf, buf ); if( ret != 0 ) goto exit; if( memcmp( buf, aes_tests, 64 ) != 0 ) { ret = 1; goto exit; } if( verbose != 0 ) mbedtls_printf( "passed\n" ); } if( verbose != 0 ) mbedtls_printf( "\n" ); #endif /* MBEDTLS_CIPHER_MODE_CFB */ #if defined(MBEDTLS_CIPHER_MODE_OFB) /* * OFB mode */ for( i = 0; i < 6; i++ ) { u = i >> 1; keybits = 128 + u * 64; mode = i & 1; if( verbose != 0 ) mbedtls_printf( " AES-OFB-%3d (%s): ", keybits, ( mode == MBEDTLS_AES_DECRYPT ) ? "dec" : "enc" ); #if defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH) if( keybits > 128 ) { mbedtls_printf( "skipped\n" ); continue; } #endif #if defined(MBEDTLS_AES_ONLY_ENCRYPT) if( mode == MBEDTLS_AES_DECRYPT ) { mbedtls_printf( "skipped\n" ); continue; } #endif /* MBEDTLS_AES_ONLY_ENCRYPT */ memcpy( iv, aes_test_ofb_iv, 16 ); memcpy( key, aes_test_ofb_key[u], keybits / 8 ); offset = 0; ret = mbedtls_aes_setkey_enc( &ctx, key, keybits ); /* * AES-192 is an optional feature that may be unavailable when * there is an alternative underlying implementation i.e. when * MBEDTLS_AES_ALT is defined. */ if( ret == MBEDTLS_ERR_PLATFORM_FEATURE_UNSUPPORTED && keybits == 192 ) { mbedtls_printf( "skipped\n" ); continue; } else if( ret != 0 ) { goto exit; } if( mode == MBEDTLS_AES_DECRYPT ) { memcpy( buf, aes_test_ofb_ct[u], 64 ); aes_tests = aes_test_ofb_pt; } else { memcpy( buf, aes_test_ofb_pt, 64 ); aes_tests = aes_test_ofb_ct[u]; } ret = mbedtls_aes_crypt_ofb( &ctx, 64, &offset, iv, buf, buf ); if( ret != 0 ) goto exit; if( memcmp( buf, aes_tests, 64 ) != 0 ) { ret = 1; goto exit; } if( verbose != 0 ) mbedtls_printf( "passed\n" ); } if( verbose != 0 ) mbedtls_printf( "\n" ); #endif /* MBEDTLS_CIPHER_MODE_OFB */ #if defined(MBEDTLS_CIPHER_MODE_CTR) /* * CTR mode */ for( i = 0; i < 6; i++ ) { u = i >> 1; mode = i & 1; if( verbose != 0 ) mbedtls_printf( " AES-CTR-128 (%s): ", ( mode == MBEDTLS_AES_DECRYPT ) ? "dec" : "enc" ); #if defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH) if( keybits > 128 ) { mbedtls_printf( "skipped\n" ); continue; } #endif #if defined(MBEDTLS_AES_ONLY_ENCRYPT) if( mode == MBEDTLS_AES_DECRYPT ) { mbedtls_printf( "skipped\n" ); continue; } #endif /* MBEDTLS_AES_ONLY_ENCRYPT */ memcpy( nonce_counter, aes_test_ctr_nonce_counter[u], 16 ); memcpy( key, aes_test_ctr_key[u], 16 ); offset = 0; if( ( ret = mbedtls_aes_setkey_enc( &ctx, key, 128 ) ) != 0 ) goto exit; len = aes_test_ctr_len[u]; if( mode == MBEDTLS_AES_DECRYPT ) { memcpy( buf, aes_test_ctr_ct[u], len ); aes_tests = aes_test_ctr_pt[u]; } else { memcpy( buf, aes_test_ctr_pt[u], len ); aes_tests = aes_test_ctr_ct[u]; } ret = mbedtls_aes_crypt_ctr( &ctx, len, &offset, nonce_counter, stream_block, buf, buf ); if( ret != 0 ) goto exit; if( memcmp( buf, aes_tests, len ) != 0 ) { ret = 1; goto exit; } if( verbose != 0 ) mbedtls_printf( "passed\n" ); } if( verbose != 0 ) mbedtls_printf( "\n" ); #endif /* MBEDTLS_CIPHER_MODE_CTR */ #if defined(MBEDTLS_CIPHER_MODE_XTS) { static const int num_tests = sizeof(aes_test_xts_key) / sizeof(*aes_test_xts_key); mbedtls_aes_xts_context ctx_xts; /* * XTS mode */ mbedtls_aes_xts_init( &ctx_xts ); for( i = 0; i < num_tests << 1; i++ ) { const unsigned char *data_unit; u = i >> 1; mode = i & 1; if( verbose != 0 ) mbedtls_printf( " AES-XTS-128 (%s): ", ( mode == MBEDTLS_AES_DECRYPT ) ? "dec" : "enc" ); #if defined(MBEDTLS_AES_ONLY_ENCRYPT) if( mode == MBEDTLS_AES_DECRYPT ) { mbedtls_printf( "skipped\n" ); continue; } #endif /* MBEDTLS_AES_ONLY_ENCRYPT */ memset( key, 0, sizeof( key ) ); memcpy( key, aes_test_xts_key[u], 32 ); data_unit = aes_test_xts_data_unit[u]; len = sizeof( *aes_test_xts_ct32 ); if( mode == MBEDTLS_AES_DECRYPT ) { ret = mbedtls_aes_xts_setkey_dec( &ctx_xts, key, 256 ); if( ret != 0) goto exit; memcpy( buf, aes_test_xts_ct32[u], len ); aes_tests = aes_test_xts_pt32[u]; } else { ret = mbedtls_aes_xts_setkey_enc( &ctx_xts, key, 256 ); if( ret != 0) goto exit; memcpy( buf, aes_test_xts_pt32[u], len ); aes_tests = aes_test_xts_ct32[u]; } ret = mbedtls_aes_crypt_xts( &ctx_xts, mode, len, data_unit, buf, buf ); if( ret != 0 ) goto exit; if( memcmp( buf, aes_tests, len ) != 0 ) { ret = 1; goto exit; } if( verbose != 0 ) mbedtls_printf( "passed\n" ); } if( verbose != 0 ) mbedtls_printf( "\n" ); mbedtls_aes_xts_free( &ctx_xts ); } #endif /* MBEDTLS_CIPHER_MODE_XTS */ ret = 0; exit: if( ret != 0 && verbose != 0 ) mbedtls_printf( "failed\n" ); mbedtls_aes_free( &ctx ); return( ret ); } #endif /* MBEDTLS_SELF_TEST */ #endif /* MBEDTLS_AES_C */