/* BEGIN_HEADER */ #include "tinycrypt/ecc.h" #include "tinycrypt/ecc_dh.h" #include "tinycrypt/ecc_dsa.h" static int uecc_rng_wrapper( uint8_t *dest, unsigned int size ) { int ret; ret = rnd_std_rand( NULL, dest, size ); if( ret == 0 ) return( (int) size ); return( 0 ); } /* END_HEADER */ /* BEGIN_DEPENDENCIES * depends_on:MBEDTLS_USE_TINYCRYPT * END_DEPENDENCIES */ /* BEGIN_CASE depends_on:MBEDTLS_USE_TINYCRYPT */ void test_ecdh() { uint8_t private1[NUM_ECC_BYTES] = {0}; uint8_t private2[NUM_ECC_BYTES] = {0}; uint8_t public1[2*NUM_ECC_BYTES] = {0}; uint8_t public2[2*NUM_ECC_BYTES] = {0}; uint8_t secret1[NUM_ECC_BYTES] = {0}; uint8_t secret2[NUM_ECC_BYTES] = {0}; const struct uECC_Curve_t * curve = uECC_secp256r1(); uECC_set_rng( &uecc_rng_wrapper ); TEST_ASSERT( uECC_make_key( public1, private1, curve ) != 0 ); TEST_ASSERT( uECC_make_key( public2, private2, curve ) != 0 ); TEST_ASSERT( uECC_shared_secret( public2, private1, secret1, curve ) != 0 ); TEST_ASSERT( uECC_shared_secret( public1, private2, secret2, curve ) != 0 ); TEST_ASSERT( memcmp( secret1, secret2, sizeof( secret1 ) ) == 0 ); } /* END_CASE */ /* BEGIN_CASE depends_on:MBEDTLS_USE_TINYCRYPT */ void test_ecdsa() { uint8_t private[NUM_ECC_BYTES] = {0}; uint8_t public[2*NUM_ECC_BYTES] = {0}; uint8_t hash[NUM_ECC_BYTES] = {0}; uint8_t sig[2*NUM_ECC_BYTES] = {0}; unsigned int hash_words[NUM_ECC_WORDS] = {0}; const struct uECC_Curve_t * curve = uECC_secp256r1(); uECC_set_rng( &uecc_rng_wrapper ); uECC_generate_random_int( hash_words, curve->n, BITS_TO_WORDS( curve->num_n_bits ) ); uECC_vli_nativeToBytes( hash, NUM_ECC_BYTES, hash_words ); TEST_ASSERT( uECC_make_key( public, private, curve ) != 0 ); TEST_ASSERT( uECC_sign( private, hash, sizeof( hash ), sig, curve ) != 0 ); TEST_ASSERT( uECC_verify( public, hash, sizeof( hash ), sig, curve ) != 0 ); } /* END_CASE */ /* BEGIN_CASE depends_on:MBEDTLS_USE_TINYCRYPT */ void ecdh_primitive_testvec( data_t * private1, data_t * xA_str, data_t * yA_str, data_t * private2, data_t * xB_str, data_t * yB_str, data_t * z_str ) { const struct uECC_Curve_t * curve = uECC_secp256r1(); uint8_t public1[2*NUM_ECC_BYTES] = {0}; uint8_t public2[2*NUM_ECC_BYTES] = {0}; uint8_t secret1[NUM_ECC_BYTES] = {0}; uint8_t secret2[NUM_ECC_BYTES] = {0}; memcpy( public1, xA_str->x, xA_str->len ); memcpy( public1 + NUM_ECC_BYTES, yA_str->x, yA_str->len ); memcpy( public2, xB_str->x, xB_str->len ); memcpy( public2 + NUM_ECC_BYTES, yB_str->x, yB_str->len ); // Compute shared secrets and compare to test vector secret TEST_ASSERT( uECC_shared_secret( public2, private1->x, secret1, curve ) != 0 ); TEST_ASSERT( uECC_shared_secret( public1, private2->x, secret2, curve ) != 0 ); TEST_ASSERT( memcmp( secret1, secret2, sizeof( secret1 ) ) == 0 ); TEST_ASSERT( memcmp( secret1, z_str->x, sizeof( secret1 ) ) == 0 ); TEST_ASSERT( memcmp( secret2, z_str->x, sizeof( secret2 ) ) == 0 ); } /* END_CASE */ /* BEGIN_CASE depends_on:MBEDTLS_USE_TINYCRYPT */ void ecdsa_primitive_testvec( data_t * xQ_str, data_t * yQ_str, data_t * hash, data_t * r_str, data_t * s_str, int result ) { const struct uECC_Curve_t * curve = uECC_secp256r1(); uint8_t pub_bytes[2*NUM_ECC_BYTES] = {0}; uint8_t sig_bytes[2*NUM_ECC_BYTES] = {0}; memcpy( pub_bytes, xQ_str->x, xQ_str->len ); memcpy( pub_bytes + NUM_ECC_BYTES, yQ_str->x, yQ_str->len ); memcpy( sig_bytes, r_str->x, r_str->len ); memcpy( sig_bytes + NUM_ECC_BYTES, s_str->x, r_str->len ); TEST_ASSERT( uECC_verify( pub_bytes, hash->x, hash->len, sig_bytes, curve ) == result ); // Alter the signature and check the verification fails for( int i = 0; i < 2*NUM_ECC_BYTES; i++ ) { uint8_t temp = sig_bytes[i]; sig_bytes[i] = ( sig_bytes[i] + 1 ) % 256; TEST_ASSERT( uECC_verify( pub_bytes, hash->x, hash->len, sig_bytes, curve ) == 0 ); sig_bytes[i] = temp; } } /* END_CASE */