#line 2 "suites/helpers.function" /*----------------------------------------------------------------------------*/ /* Headers */ #include #include #include #if defined(MBEDTLS_PLATFORM_C) #include "mbedtls/platform.h" #else #include #define mbedtls_fprintf fprintf #define mbedtls_snprintf snprintf #define mbedtls_calloc calloc #define mbedtls_free free #define mbedtls_exit exit #define mbedtls_time time #define mbedtls_time_t time_t #define MBEDTLS_EXIT_SUCCESS EXIT_SUCCESS #define MBEDTLS_EXIT_FAILURE EXIT_FAILURE #endif #if defined(MBEDTLS_MEMORY_BUFFER_ALLOC_C) #include "mbedtls/memory_buffer_alloc.h" #endif #if defined(MBEDTLS_CHECK_PARAMS) #include "mbedtls/platform_util.h" #include #endif #ifdef _MSC_VER #include typedef UINT8 uint8_t; typedef INT32 int32_t; typedef UINT32 uint32_t; #define strncasecmp _strnicmp #define strcasecmp _stricmp #else #include #endif #include #if defined(__unix__) || (defined(__APPLE__) && defined(__MACH__)) #include #include #endif /* Type for Hex parameters */ typedef struct data_tag { uint8_t * x; uint32_t len; } data_t; /*----------------------------------------------------------------------------*/ /* Status and error constants */ #define DEPENDENCY_SUPPORTED 0 /* Dependency supported by build */ #define KEY_VALUE_MAPPING_FOUND 0 /* Integer expression found */ #define DISPATCH_TEST_SUCCESS 0 /* Test dispatch successful */ #define KEY_VALUE_MAPPING_NOT_FOUND -1 /* Integer expression not found */ #define DEPENDENCY_NOT_SUPPORTED -2 /* Dependency not supported */ #define DISPATCH_TEST_FN_NOT_FOUND -3 /* Test function not found */ #define DISPATCH_INVALID_TEST_DATA -4 /* Invalid test parameter type. Only int, string, binary data and integer expressions are allowed */ #define DISPATCH_UNSUPPORTED_SUITE -5 /* Test suite not supported by the build */ typedef enum { PARAMFAIL_TESTSTATE_IDLE = 0, /* No parameter failure call test */ PARAMFAIL_TESTSTATE_PENDING, /* Test call to the parameter failure * is pending */ PARAMFAIL_TESTSTATE_CALLED /* The test call to the parameter * failure function has been made */ } paramfail_test_state_t; /*----------------------------------------------------------------------------*/ /* Macros */ /** * \brief This macro tests the expression passed to it as a test step or * individual test in a test case. * * It allows a library function to return a value and return an error * code that can be tested. * * When MBEDTLS_CHECK_PARAMS is enabled, calls to the parameter failure * callback, MBEDTLS_PARAM_FAILED(), will be assumed to be a test * failure. * * This macro is not suitable for negative parameter validation tests, * as it assumes the test step will not create an error. * * Failing the test means: * - Mark this test case as failed. * - Print a message identifying the failure. * - Jump to the \c exit label. * * This macro expands to an instruction, not an expression. * It may jump to the \c exit label. * * \param TEST The test expression to be tested. */ #define TEST_ASSERT( TEST ) \ do { \ if( ! (TEST) ) \ { \ test_fail( #TEST, __LINE__, __FILE__ ); \ goto exit; \ } \ } while( 0 ) /** Evaluate two expressions and fail the test case if they have different * values. * * \param expr1 An expression to evaluate. * \param expr2 The expected value of \p expr1. This can be any * expression, but it is typically a constant. */ #define TEST_EQUAL( expr1, expr2 ) \ TEST_ASSERT( ( expr1 ) == ( expr2 ) ) /** Allocate memory dynamically and fail the test case if this fails. * * You must set \p pointer to \c NULL before calling this macro and * put `mbedtls_free( pointer )` in the test's cleanup code. * * If \p length is zero, the resulting \p pointer will be \c NULL. * This is usually what we want in tests since API functions are * supposed to accept null pointers when a buffer size is zero. * * This macro expands to an instruction, not an expression. * It may jump to the \c exit label. * * \param pointer An lvalue where the address of the allocated buffer * will be stored. * This expression may be evaluated multiple times. * \param length Number of elements to allocate. * This expression may be evaluated multiple times. * */ #define ASSERT_ALLOC( pointer, length ) \ do \ { \ TEST_ASSERT( ( pointer ) == NULL ); \ if( ( length ) != 0 ) \ { \ ( pointer ) = mbedtls_calloc( sizeof( *( pointer ) ), \ ( length ) ); \ TEST_ASSERT( ( pointer ) != NULL ); \ } \ } \ while( 0 ) /** Allocate memory dynamically. If the allocation fails, skip the test case. * * This macro behaves like #ASSERT_ALLOC, except that if the allocation * fails, it marks the test as skipped rather than failed. */ #define ASSERT_ALLOC_WEAK( pointer, length ) \ do \ { \ TEST_ASSERT( ( pointer ) == NULL ); \ if( ( length ) != 0 ) \ { \ ( pointer ) = mbedtls_calloc( sizeof( *( pointer ) ), \ ( length ) ); \ TEST_ASSUME( ( pointer ) != NULL ); \ } \ } \ while( 0 ) /** Compare two buffers and fail the test case if they differ. * * This macro expands to an instruction, not an expression. * It may jump to the \c exit label. * * \param p1 Pointer to the start of the first buffer. * \param size1 Size of the first buffer in bytes. * This expression may be evaluated multiple times. * \param p2 Pointer to the start of the second buffer. * \param size2 Size of the second buffer in bytes. * This expression may be evaluated multiple times. */ #define ASSERT_COMPARE( p1, size1, p2, size2 ) \ do \ { \ TEST_ASSERT( ( size1 ) == ( size2 ) ); \ if( ( size1 ) != 0 ) \ TEST_ASSERT( memcmp( ( p1 ), ( p2 ), ( size1 ) ) == 0 ); \ } \ while( 0 ) /** * \brief This macro tests the expression passed to it and skips the * running test if it doesn't evaluate to 'true'. * * \param TEST The test expression to be tested. */ #define TEST_ASSUME( TEST ) \ do { \ if( ! (TEST) ) \ { \ test_skip( #TEST, __LINE__, __FILE__ ); \ goto exit; \ } \ } while( 0 ) #if defined(MBEDTLS_CHECK_PARAMS) && !defined(MBEDTLS_PARAM_FAILED_ALT) /** * \brief This macro tests the statement passed to it as a test step or * individual test in a test case. The macro assumes the test will fail * and will generate an error. * * It allows a library function to return a value and tests the return * code on return to confirm the given error code was returned. * * When MBEDTLS_CHECK_PARAMS is enabled, calls to the parameter failure * callback, MBEDTLS_PARAM_FAILED(), are assumed to indicate the * expected failure, and the test will pass. * * This macro is intended for negative parameter validation tests, * where the failing function may return an error value or call * MBEDTLS_PARAM_FAILED() to indicate the error. * * \param PARAM_ERROR_VALUE The expected error code. * * \param TEST The test expression to be tested. */ #define TEST_INVALID_PARAM_RET( PARAM_ERR_VALUE, TEST ) \ do { \ test_info.paramfail_test_state = PARAMFAIL_TESTSTATE_PENDING; \ if( (TEST) != (PARAM_ERR_VALUE) || \ test_info.paramfail_test_state != PARAMFAIL_TESTSTATE_CALLED ) \ { \ test_fail( #TEST, __LINE__, __FILE__ ); \ goto exit; \ } \ } while( 0 ) /** * \brief This macro tests the statement passed to it as a test step or * individual test in a test case. The macro assumes the test will fail * and will generate an error. * * It assumes the library function under test cannot return a value and * assumes errors can only be indicated byt calls to * MBEDTLS_PARAM_FAILED(). * * When MBEDTLS_CHECK_PARAMS is enabled, calls to the parameter failure * callback, MBEDTLS_PARAM_FAILED(), are assumed to indicate the * expected failure. If MBEDTLS_CHECK_PARAMS is not enabled, no test * can be made. * * This macro is intended for negative parameter validation tests, * where the failing function can only return an error by calling * MBEDTLS_PARAM_FAILED() to indicate the error. * * \param TEST The test expression to be tested. */ #define TEST_INVALID_PARAM( TEST ) \ do { \ memcpy(jmp_tmp, param_fail_jmp, sizeof(jmp_buf)); \ if( setjmp( param_fail_jmp ) == 0 ) \ { \ TEST; \ test_fail( #TEST, __LINE__, __FILE__ ); \ goto exit; \ } \ memcpy(param_fail_jmp, jmp_tmp, sizeof(jmp_buf)); \ } while( 0 ) #endif /* MBEDTLS_CHECK_PARAMS && !MBEDTLS_PARAM_FAILED_ALT */ /** * \brief This macro tests the statement passed to it as a test step or * individual test in a test case. The macro assumes the test will not fail. * * It assumes the library function under test cannot return a value and * assumes errors can only be indicated by calls to * MBEDTLS_PARAM_FAILED(). * * When MBEDTLS_CHECK_PARAMS is enabled, calls to the parameter failure * callback, MBEDTLS_PARAM_FAILED(), are assumed to indicate the * expected failure. If MBEDTLS_CHECK_PARAMS is not enabled, no test * can be made. * * This macro is intended to test that functions returning void * accept all of the parameter values they're supposed to accept - eg * that they don't call MBEDTLS_PARAM_FAILED() when a parameter * that's allowed to be NULL happens to be NULL. * * Note: for functions that return something other that void, * checking that they accept all the parameters they're supposed to * accept is best done by using TEST_ASSERT() and checking the return * value as well. * * Note: this macro is available even when #MBEDTLS_CHECK_PARAMS is * disabled, as it makes sense to check that the functions accept all * legal values even if this option is disabled - only in that case, * the test is more about whether the function segfaults than about * whether it invokes MBEDTLS_PARAM_FAILED(). * * \param TEST The test expression to be tested. */ #define TEST_VALID_PARAM( TEST ) \ TEST_ASSERT( ( TEST, 1 ) ); /** Allocate memory dynamically and fail the test case if this fails. * * You must set \p pointer to \c NULL before calling this macro and * put `mbedtls_free( pointer )` in the test's cleanup code. * * If \p length is zero, the resulting \p pointer will be \c NULL. * This is usually what we want in tests since API functions are * supposed to accept null pointers when a buffer size is zero. * * This macro expands to an instruction, not an expression. * It may jump to the \c exit label. * * \param pointer An lvalue where the address of the allocated buffer * will be stored. * This expression may be evaluated multiple times. * \param length Number of elements to allocate. * This expression may be evaluated multiple times. * */ #define ASSERT_ALLOC( pointer, length ) \ do \ { \ TEST_ASSERT( ( pointer ) == NULL ); \ if( ( length ) != 0 ) \ { \ ( pointer ) = mbedtls_calloc( sizeof( *( pointer ) ), \ ( length ) ); \ TEST_ASSERT( ( pointer ) != NULL ); \ } \ } \ while( 0 ) /*----------------------------------------------------------------------------*/ /* Global variables */ typedef enum { TEST_RESULT_SUCCESS = 0, TEST_RESULT_FAILED, TEST_RESULT_SKIPPED } test_result_t; typedef struct { paramfail_test_state_t paramfail_test_state; test_result_t result; const char *test; const char *filename; int line_no; unsigned long step; } test_info_t; static test_info_t test_info; #if defined(MBEDTLS_PLATFORM_C) static mbedtls_platform_context platform_ctx; #endif #if defined(MBEDTLS_CHECK_PARAMS) jmp_buf param_fail_jmp; jmp_buf jmp_tmp; #endif /*----------------------------------------------------------------------------*/ /* Helper flags for complex dependencies */ /* Indicates whether we expect mbedtls_entropy_init * to initialize some strong entropy source. */ #if defined(MBEDTLS_TEST_NULL_ENTROPY) || \ ( !defined(MBEDTLS_NO_DEFAULT_ENTROPY_SOURCES) && \ ( !defined(MBEDTLS_NO_PLATFORM_ENTROPY) || \ defined(MBEDTLS_HAVEGE_C) || \ defined(MBEDTLS_ENTROPY_HARDWARE_ALT) || \ defined(ENTROPY_NV_SEED) ) ) #define ENTROPY_HAVE_STRONG #endif /*----------------------------------------------------------------------------*/ /* Helper Functions */ /** Set the test step number for failure reports. * * Call this function to display "step NNN" in addition to the line number * and file name if a test fails. Typically the "step number" is the index * of a for loop but it can be whatever you want. * * \param step The step number to report. */ void test_set_step( unsigned long step ) { test_info.step = step; } void test_fail( const char *test, int line_no, const char* filename ) { test_info.result = TEST_RESULT_FAILED; test_info.test = test; test_info.line_no = line_no; test_info.filename = filename; } void test_skip( const char *test, int line_no, const char* filename ) { test_info.result = TEST_RESULT_SKIPPED; test_info.test = test; test_info.line_no = line_no; test_info.filename = filename; } int platform_setup() { int ret = 0; #if defined(MBEDTLS_PLATFORM_C) ret = mbedtls_platform_setup( &platform_ctx ); #endif /* MBEDTLS_PLATFORM_C */ return( ret ); } void platform_teardown() { #if defined(MBEDTLS_PLATFORM_C) mbedtls_platform_teardown( &platform_ctx ); #endif /* MBEDTLS_PLATFORM_C */ } #if defined(MBEDTLS_CHECK_PARAMS) void mbedtls_param_failed( const char *failure_condition, const char *file, int line ) { /* If we are testing the callback function... */ if( test_info.paramfail_test_state == PARAMFAIL_TESTSTATE_PENDING ) { test_info.paramfail_test_state = PARAMFAIL_TESTSTATE_CALLED; } else { /* ...else we treat this as an error */ /* Record the location of the failure, but not as a failure yet, in case * it was part of the test */ test_fail( failure_condition, line, file ); test_info.result = TEST_RESULT_SUCCESS; longjmp( param_fail_jmp, 1 ); } } #endif #if defined(__unix__) || (defined(__APPLE__) && defined(__MACH__)) static int redirect_output( FILE** out_stream, const char* path ) { int stdout_fd = dup( fileno( *out_stream ) ); if( stdout_fd == -1 ) { return -1; } fflush( *out_stream ); fclose( *out_stream ); *out_stream = fopen( path, "w" ); if( *out_stream == NULL ) { close( stdout_fd ); return -1; } return stdout_fd; } static int restore_output( FILE** out_stream, int old_fd ) { fflush( *out_stream ); fclose( *out_stream ); *out_stream = fdopen( old_fd, "w" ); if( *out_stream == NULL ) { return -1; } return 0; } static void close_output( FILE* out_stream ) { fclose( out_stream ); } #endif /* __unix__ || __APPLE__ __MACH__ */ int unhexify( unsigned char *obuf, const char *ibuf ) { unsigned char c, c2; int len = strlen( ibuf ) / 2; TEST_HELPER_ASSERT( strlen( ibuf ) % 2 == 0 ); /* must be even number of bytes */ while( *ibuf != 0 ) { c = *ibuf++; if( c >= '0' && c <= '9' ) c -= '0'; else if( c >= 'a' && c <= 'f' ) c -= 'a' - 10; else if( c >= 'A' && c <= 'F' ) c -= 'A' - 10; else TEST_HELPER_ASSERT( 0 ); c2 = *ibuf++; if( c2 >= '0' && c2 <= '9' ) c2 -= '0'; else if( c2 >= 'a' && c2 <= 'f' ) c2 -= 'a' - 10; else if( c2 >= 'A' && c2 <= 'F' ) c2 -= 'A' - 10; else TEST_HELPER_ASSERT( 0 ); *obuf++ = ( c << 4 ) | c2; } return len; } void hexify( unsigned char *obuf, const unsigned char *ibuf, int len ) { unsigned char l, h; while( len != 0 ) { h = *ibuf / 16; l = *ibuf % 16; if( h < 10 ) *obuf++ = '0' + h; else *obuf++ = 'a' + h - 10; if( l < 10 ) *obuf++ = '0' + l; else *obuf++ = 'a' + l - 10; ++ibuf; len--; } } /** * Allocate and zeroize a buffer. * * If the size if zero, a pointer to a zeroized 1-byte buffer is returned. * * For convenience, dies if allocation fails. */ unsigned char *zero_alloc( size_t len ) { void *p; size_t actual_len = ( len != 0 ) ? len : 1; p = mbedtls_calloc( 1, actual_len ); TEST_HELPER_ASSERT( p != NULL ); memset( p, 0x00, actual_len ); return( p ); } /** * Allocate and fill a buffer from hex data. * * The buffer is sized exactly as needed. This allows to detect buffer * overruns (including overreads) when running the test suite under valgrind. * * If the size if zero, a pointer to a zeroized 1-byte buffer is returned. * * For convenience, dies if allocation fails. */ unsigned char *unhexify_alloc( const char *ibuf, size_t *olen ) { unsigned char *obuf; *olen = strlen( ibuf ) / 2; if( *olen == 0 ) return( zero_alloc( *olen ) ); obuf = mbedtls_calloc( 1, *olen ); TEST_HELPER_ASSERT( obuf != NULL ); (void) unhexify( obuf, ibuf ); return( obuf ); } /** * This function just returns data from rand(). * Although predictable and often similar on multiple * runs, this does not result in identical random on * each run. So do not use this if the results of a * test depend on the random data that is generated. * * rng_state shall be NULL. */ int rnd_std_rand( void *rng_state, unsigned char *output, size_t len ) { #if !defined(__OpenBSD__) size_t i; if( rng_state != NULL ) rng_state = NULL; for( i = 0; i < len; ++i ) output[i] = rand(); #else if( rng_state != NULL ) rng_state = NULL; arc4random_buf( output, len ); #endif /* !OpenBSD */ return( 0 ); } /** * This function only returns zeros * * rng_state shall be NULL. */ int rnd_zero_rand( void *rng_state, unsigned char *output, size_t len ) { if( rng_state != NULL ) rng_state = NULL; memset( output, 0, len ); return( 0 ); } typedef struct { unsigned char *buf; size_t length; } rnd_buf_info; /** * This function returns random based on a buffer it receives. * * rng_state shall be a pointer to a rnd_buf_info structure. * * The number of bytes released from the buffer on each call to * the random function is specified by per_call. (Can be between * 1 and 4) * * After the buffer is empty it will return rand(); */ int rnd_buffer_rand( void *rng_state, unsigned char *output, size_t len ) { rnd_buf_info *info = (rnd_buf_info *) rng_state; size_t use_len; if( rng_state == NULL ) return( rnd_std_rand( NULL, output, len ) ); use_len = len; if( len > info->length ) use_len = info->length; if( use_len ) { memcpy( output, info->buf, use_len ); info->buf += use_len; info->length -= use_len; } if( len - use_len > 0 ) return( rnd_std_rand( NULL, output + use_len, len - use_len ) ); return( 0 ); } /** * Info structure for the pseudo random function * * Key should be set at the start to a test-unique value. * Do not forget endianness! * State( v0, v1 ) should be set to zero. */ typedef struct { uint32_t key[16]; uint32_t v0, v1; } rnd_pseudo_info; /** * This function returns random based on a pseudo random function. * This means the results should be identical on all systems. * Pseudo random is based on the XTEA encryption algorithm to * generate pseudorandom. * * rng_state shall be a pointer to a rnd_pseudo_info structure. */ int rnd_pseudo_rand( void *rng_state, unsigned char *output, size_t len ) { rnd_pseudo_info *info = (rnd_pseudo_info *) rng_state; uint32_t i, *k, sum, delta=0x9E3779B9; unsigned char result[4], *out = output; if( rng_state == NULL ) return( rnd_std_rand( NULL, output, len ) ); k = info->key; while( len > 0 ) { size_t use_len = ( len > 4 ) ? 4 : len; sum = 0; for( i = 0; i < 32; i++ ) { info->v0 += ( ( ( info->v1 << 4 ) ^ ( info->v1 >> 5 ) ) + info->v1 ) ^ ( sum + k[sum & 3] ); sum += delta; info->v1 += ( ( ( info->v0 << 4 ) ^ ( info->v0 >> 5 ) ) + info->v0 ) ^ ( sum + k[( sum>>11 ) & 3] ); } PUT_UINT32_BE( info->v0, result, 0 ); memcpy( out, result, use_len ); len -= use_len; out += 4; } return( 0 ); } int hexcmp( uint8_t * a, uint8_t * b, uint32_t a_len, uint32_t b_len ) { int ret = 0; uint32_t i = 0; if( a_len != b_len ) return( -1 ); for( i = 0; i < a_len; i++ ) { if( a[i] != b[i] ) { ret = -1; break; } } return ret; }