/** * PSA API key derivation demonstration * * This program calculates a key ladder: a chain of secret material, each * derived from the previous one in a deterministic way based on a label. * Two keys are identical if and only if they are derived from the same key * using the same label. * * The initial key is called the master key. The master key is normally * randomly generated, but it could itself be derived from another key. * * This program derives a series of keys called intermediate keys. * The first intermediate key is derived from the master key using the * first label passed on the command line. Each subsequent intermediate * key is derived from the previous one using the next label passed * on the command line. * * This program has four modes of operation: * * - "generate": generate a random master key. * - "wrap": derive a wrapping key from the last intermediate key, * and use that key to encrypt-and-authenticate some data. * - "unwrap": derive a wrapping key from the last intermediate key, * and use that key to decrypt-and-authenticate some * ciphertext created by wrap mode. * - "save": save the last intermediate key so that it can be reused as * the master key in another run of the program. * * See the usage() output for the command line usage. See the file * `key_ladder_demo.sh` for an example run. */ /* Copyright (C) 2018, ARM Limited, All Rights Reserved * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the "License"); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * This file is part of mbed TLS (https://tls.mbed.org) */ /* First include Mbed TLS headers to get the Mbed TLS configuration and * platform definitions that we'll use in this program. Also include * standard C headers for functions we'll use here. */ #if !defined(MBEDTLS_CONFIG_FILE) #include "mbedtls/config.h" #else #include MBEDTLS_CONFIG_FILE #endif #if defined(MBEDTLS_PLATFORM_C) #include "mbedtls/platform.h" #else #include #define MBEDTLS_EXIT_SUCCESS EXIT_SUCCESS #define MBEDTLS_EXIT_FAILURE EXIT_FAILURE #define mbedtls_calloc calloc #define mbedtls_free free #define mbedtls_printf printf #endif #include #include #include "mbedtls/platform_util.h" // for mbedtls_platform_zeroize /* If the build options we need are not enabled, compile a placeholder. */ #if !defined(MBEDTLS_SHA256_C) || !defined(MBEDTLS_MD_C) || \ !defined(MBEDTLS_AES_C) || !defined(MBEDTLS_CCM_C) || \ !defined(MBEDTLS_PSA_CRYPTO_C) || !defined(MBEDTLS_FS_IO) int main( void ) { mbedtls_printf("MBEDTLS_SHA256_C and/or MBEDTLS_MD_C and/or " "MBEDTLS_AES_C and/or MBEDTLS_CCM_C and/or " "MBEDTLS_PSA_CRYPTO_C and/or MBEDTLS_FS_IO not defined.\n"); return( 0 ); } #else /* The real program starts here. */ #include /* Run a system function and bail out if it fails. */ #define SYS_CHECK( expr ) \ do \ { \ if( ! ( expr ) ) \ { \ perror( #expr ); \ status = DEMO_ERROR; \ goto exit; \ } \ } \ while( 0 ) /* Run a PSA function and bail out if it fails. */ #define PSA_CHECK( expr ) \ do \ { \ status = ( expr ); \ if( status != PSA_SUCCESS ) \ { \ mbedtls_printf( "Error %d at line %u: %s\n", \ (int) status, \ __LINE__, \ #expr ); \ goto exit; \ } \ } \ while( 0 ) /* To report operational errors in this program, use an error code that is * different from every PSA error code. */ #define DEMO_ERROR 120 /* The maximum supported key ladder depth. */ #define MAX_LADDER_DEPTH 10 /* Salt to use when deriving an intermediate key. */ #define DERIVE_KEY_SALT ( (uint8_t *) "key_ladder_demo.derive" ) #define DERIVE_KEY_SALT_LENGTH ( strlen( (const char*) DERIVE_KEY_SALT ) ) /* Salt to use when deriving a wrapping key. */ #define WRAPPING_KEY_SALT ( (uint8_t *) "key_ladder_demo.wrap" ) #define WRAPPING_KEY_SALT_LENGTH ( strlen( (const char*) WRAPPING_KEY_SALT ) ) /* Size of the key derivation keys (applies both to the master key and * to intermediate keys). */ #define KEY_SIZE_BYTES 40 /* Algorithm for key derivation. */ #define KDF_ALG PSA_ALG_HKDF( PSA_ALG_SHA_256 ) /* Type and size of the key used to wrap data. */ #define WRAPPING_KEY_TYPE PSA_KEY_TYPE_AES #define WRAPPING_KEY_BITS 128 /* Cipher mode used to wrap data. */ #define WRAPPING_ALG PSA_ALG_CCM /* Nonce size used to wrap data. */ #define WRAPPING_IV_SIZE 13 /* Header used in files containing wrapped data. We'll save this header * directly without worrying about data representation issues such as * integer sizes and endianness, because the data is meant to be read * back by the same program on the same machine. */ #define WRAPPED_DATA_MAGIC "key_ladder_demo" // including trailing null byte #define WRAPPED_DATA_MAGIC_LENGTH ( sizeof( WRAPPED_DATA_MAGIC ) ) typedef struct { char magic[WRAPPED_DATA_MAGIC_LENGTH]; size_t ad_size; /* Size of the additional data, which is this header. */ size_t payload_size; /* Size of the encrypted data. */ /* Store the IV inside the additional data. It's convenient. */ uint8_t iv[WRAPPING_IV_SIZE]; } wrapped_data_header_t; /* The modes that this program can operate in (see usage). */ enum program_mode { MODE_GENERATE, MODE_SAVE, MODE_UNWRAP, MODE_WRAP }; /* Save a key to a file. In the real world, you may want to export a derived * key sometimes, to share it with another party. */ static psa_status_t save_key( psa_key_handle_t key_handle, const char *output_file_name ) { psa_status_t status = PSA_SUCCESS; uint8_t key_data[KEY_SIZE_BYTES]; size_t key_size; FILE *key_file = NULL; PSA_CHECK( psa_export_key( key_handle, key_data, sizeof( key_data ), &key_size ) ); SYS_CHECK( ( key_file = fopen( output_file_name, "wb" ) ) != NULL ); SYS_CHECK( fwrite( key_data, 1, key_size, key_file ) == key_size ); SYS_CHECK( fclose( key_file ) == 0 ); key_file = NULL; exit: if( key_file != NULL) fclose( key_file ); return( status ); } /* Generate a master key for use in this demo. * * Normally a master key would be non-exportable. For the purpose of this * demo, we want to save it to a file, to avoid relying on the keystore * capability of the PSA crypto library. */ static psa_status_t generate( const char *key_file_name ) { psa_status_t status = PSA_SUCCESS; psa_key_handle_t key_handle = 0; psa_key_policy_t policy = PSA_KEY_POLICY_INIT; PSA_CHECK( psa_allocate_key( &key_handle ) ); psa_key_policy_set_usage( &policy, PSA_KEY_USAGE_DERIVE | PSA_KEY_USAGE_EXPORT, KDF_ALG ); PSA_CHECK( psa_set_key_policy( key_handle, &policy ) ); PSA_CHECK( psa_generate_key( key_handle, PSA_KEY_TYPE_DERIVE, PSA_BYTES_TO_BITS( KEY_SIZE_BYTES ), NULL, 0 ) ); PSA_CHECK( save_key( key_handle, key_file_name ) ); exit: (void) psa_destroy_key( key_handle ); return( status ); } /* Load the master key from a file. * * In the real world, this master key would be stored in an internal memory * and the storage would be managed by the keystore capability of the PSA * crypto library. */ static psa_status_t import_key_from_file( psa_key_usage_t usage, psa_algorithm_t alg, const char *key_file_name, psa_key_handle_t *master_key_handle ) { psa_status_t status = PSA_SUCCESS; psa_key_policy_t policy = PSA_KEY_POLICY_INIT; uint8_t key_data[KEY_SIZE_BYTES]; size_t key_size; FILE *key_file = NULL; unsigned char extra_byte; *master_key_handle = 0; SYS_CHECK( ( key_file = fopen( key_file_name, "rb" ) ) != NULL ); SYS_CHECK( ( key_size = fread( key_data, 1, sizeof( key_data ), key_file ) ) != 0 ); if( fread( &extra_byte, 1, 1, key_file ) != 0 ) { mbedtls_printf( "Key file too large (max: %u).\n", (unsigned) sizeof( key_data ) ); status = DEMO_ERROR; goto exit; } SYS_CHECK( fclose( key_file ) == 0 ); key_file = NULL; PSA_CHECK( psa_allocate_key( master_key_handle ) ); psa_key_policy_set_usage( &policy, usage, alg ); PSA_CHECK( psa_set_key_policy( *master_key_handle, &policy ) ); PSA_CHECK( psa_import_key( *master_key_handle, PSA_KEY_TYPE_DERIVE, key_data, key_size ) ); exit: if( key_file != NULL ) fclose( key_file ); mbedtls_platform_zeroize( key_data, sizeof( key_data ) ); if( status != PSA_SUCCESS ) { /* If psa_allocate_key hasn't been called yet or has failed, * *master_key_handle is 0. psa_destroy_key(0) is guaranteed to do * nothing and return PSA_ERROR_INVALID_HANDLE. */ (void) psa_destroy_key( *master_key_handle ); *master_key_handle = 0; } return( status ); } /* Derive the intermediate keys, using the list of labels provided on * the command line. On input, *key_handle is a handle to the master key. * This function closes the master key. On successful output, *key_handle * is a handle to the final derived key. */ static psa_status_t derive_key_ladder( const char *ladder[], size_t ladder_depth, psa_key_handle_t *key_handle ) { psa_status_t status = PSA_SUCCESS; psa_key_policy_t policy = PSA_KEY_POLICY_INIT; psa_crypto_generator_t generator = PSA_CRYPTO_GENERATOR_INIT; size_t i; psa_key_policy_set_usage( &policy, PSA_KEY_USAGE_DERIVE | PSA_KEY_USAGE_EXPORT, KDF_ALG ); /* For each label in turn, ... */ for( i = 0; i < ladder_depth; i++ ) { /* Start deriving material from the master key (if i=0) or from * the current intermediate key (if i>0). */ PSA_CHECK( psa_key_derivation( &generator, *key_handle, KDF_ALG, DERIVE_KEY_SALT, DERIVE_KEY_SALT_LENGTH, (uint8_t*) ladder[i], strlen( ladder[i] ), KEY_SIZE_BYTES ) ); /* When the parent key is not the master key, destroy it, * since it is no longer needed. */ PSA_CHECK( psa_close_key( *key_handle ) ); *key_handle = 0; PSA_CHECK( psa_allocate_key( key_handle ) ); PSA_CHECK( psa_set_key_policy( *key_handle, &policy ) ); /* Use the generator obtained from the parent key to create * the next intermediate key. */ PSA_CHECK( psa_generator_import_key( *key_handle, PSA_KEY_TYPE_DERIVE, PSA_BYTES_TO_BITS( KEY_SIZE_BYTES ), &generator ) ); PSA_CHECK( psa_generator_abort( &generator ) ); } exit: psa_generator_abort( &generator ); if( status != PSA_SUCCESS ) { psa_close_key( *key_handle ); *key_handle = 0; } return( status ); } /* Derive a wrapping key from the last intermediate key. */ static psa_status_t derive_wrapping_key( psa_key_usage_t usage, psa_key_handle_t derived_key_handle, psa_key_handle_t *wrapping_key_handle ) { psa_status_t status = PSA_SUCCESS; psa_key_policy_t policy = PSA_KEY_POLICY_INIT; psa_crypto_generator_t generator = PSA_CRYPTO_GENERATOR_INIT; *wrapping_key_handle = 0; PSA_CHECK( psa_allocate_key( wrapping_key_handle ) ); psa_key_policy_set_usage( &policy, usage, WRAPPING_ALG ); PSA_CHECK( psa_set_key_policy( *wrapping_key_handle, &policy ) ); PSA_CHECK( psa_key_derivation( &generator, derived_key_handle, KDF_ALG, WRAPPING_KEY_SALT, WRAPPING_KEY_SALT_LENGTH, NULL, 0, PSA_BITS_TO_BYTES( WRAPPING_KEY_BITS ) ) ); PSA_CHECK( psa_generator_import_key( *wrapping_key_handle, PSA_KEY_TYPE_AES, WRAPPING_KEY_BITS, &generator ) ); exit: psa_generator_abort( &generator ); if( status != PSA_SUCCESS ) { psa_close_key( *wrapping_key_handle ); *wrapping_key_handle = 0; } return( status ); } static psa_status_t wrap_data( const char *input_file_name, const char *output_file_name, psa_key_handle_t wrapping_key_handle ) { psa_status_t status; FILE *input_file = NULL; FILE *output_file = NULL; long input_position; size_t input_size; size_t buffer_size = 0; unsigned char *buffer = NULL; size_t ciphertext_size; wrapped_data_header_t header; /* Find the size of the data to wrap. */ SYS_CHECK( ( input_file = fopen( input_file_name, "rb" ) ) != NULL ); SYS_CHECK( fseek( input_file, 0, SEEK_END ) == 0 ); SYS_CHECK( ( input_position = ftell( input_file ) ) != -1 ); #if LONG_MAX > SIZE_MAX if( input_position > SIZE_MAX ) { mbedtls_printf( "Input file too large.\n" ); status = DEMO_ERROR; goto exit; } #endif input_size = input_position; buffer_size = PSA_AEAD_ENCRYPT_OUTPUT_SIZE( WRAPPING_ALG, input_size ); /* Check for integer overflow. */ if( buffer_size < input_size ) { mbedtls_printf( "Input file too large.\n" ); status = DEMO_ERROR; goto exit; } /* Load the data to wrap. */ SYS_CHECK( fseek( input_file, 0, SEEK_SET ) == 0 ); SYS_CHECK( ( buffer = mbedtls_calloc( 1, buffer_size ) ) != NULL ); SYS_CHECK( fread( buffer, 1, input_size, input_file ) == input_size ); SYS_CHECK( fclose( input_file ) == 0 ); input_file = NULL; /* Construct a header. */ memcpy( &header.magic, WRAPPED_DATA_MAGIC, WRAPPED_DATA_MAGIC_LENGTH ); header.ad_size = sizeof( header ); header.payload_size = input_size; /* Wrap the data. */ PSA_CHECK( psa_generate_random( header.iv, WRAPPING_IV_SIZE ) ); PSA_CHECK( psa_aead_encrypt( wrapping_key_handle, WRAPPING_ALG, header.iv, WRAPPING_IV_SIZE, (uint8_t *) &header, sizeof( header ), buffer, input_size, buffer, buffer_size, &ciphertext_size ) ); /* Write the output. */ SYS_CHECK( ( output_file = fopen( output_file_name, "wb" ) ) != NULL ); SYS_CHECK( fwrite( &header, 1, sizeof( header ), output_file ) == sizeof( header ) ); SYS_CHECK( fwrite( buffer, 1, ciphertext_size, output_file ) == ciphertext_size ); SYS_CHECK( fclose( output_file ) == 0 ); output_file = NULL; exit: if( input_file != NULL ) fclose( input_file ); if( output_file != NULL ) fclose( output_file ); if( buffer != NULL ) mbedtls_platform_zeroize( buffer, buffer_size ); mbedtls_free( buffer ); return( status ); } static psa_status_t unwrap_data( const char *input_file_name, const char *output_file_name, psa_key_handle_t wrapping_key_handle ) { psa_status_t status; FILE *input_file = NULL; FILE *output_file = NULL; unsigned char *buffer = NULL; size_t ciphertext_size = 0; size_t plaintext_size; wrapped_data_header_t header; unsigned char extra_byte; /* Load and validate the header. */ SYS_CHECK( ( input_file = fopen( input_file_name, "rb" ) ) != NULL ); SYS_CHECK( fread( &header, 1, sizeof( header ), input_file ) == sizeof( header ) ); if( memcmp( &header.magic, WRAPPED_DATA_MAGIC, WRAPPED_DATA_MAGIC_LENGTH ) != 0 ) { mbedtls_printf( "The input does not start with a valid magic header.\n" ); status = DEMO_ERROR; goto exit; } if( header.ad_size != sizeof( header ) ) { mbedtls_printf( "The header size is not correct.\n" ); status = DEMO_ERROR; goto exit; } ciphertext_size = PSA_AEAD_ENCRYPT_OUTPUT_SIZE( WRAPPING_ALG, header.payload_size ); /* Check for integer overflow. */ if( ciphertext_size < header.payload_size ) { mbedtls_printf( "Input file too large.\n" ); status = DEMO_ERROR; goto exit; } /* Load the payload data. */ SYS_CHECK( ( buffer = mbedtls_calloc( 1, ciphertext_size ) ) != NULL ); SYS_CHECK( fread( buffer, 1, ciphertext_size, input_file ) == ciphertext_size ); if( fread( &extra_byte, 1, 1, input_file ) != 0 ) { mbedtls_printf( "Extra garbage after ciphertext\n" ); status = DEMO_ERROR; goto exit; } SYS_CHECK( fclose( input_file ) == 0 ); input_file = NULL; /* Unwrap the data. */ PSA_CHECK( psa_aead_decrypt( wrapping_key_handle, WRAPPING_ALG, header.iv, WRAPPING_IV_SIZE, (uint8_t *) &header, sizeof( header ), buffer, ciphertext_size, buffer, ciphertext_size, &plaintext_size ) ); if( plaintext_size != header.payload_size ) { mbedtls_printf( "Incorrect payload size in the header.\n" ); status = DEMO_ERROR; goto exit; } /* Write the output. */ SYS_CHECK( ( output_file = fopen( output_file_name, "wb" ) ) != NULL ); SYS_CHECK( fwrite( buffer, 1, plaintext_size, output_file ) == plaintext_size ); SYS_CHECK( fclose( output_file ) == 0 ); output_file = NULL; exit: if( input_file != NULL ) fclose( input_file ); if( output_file != NULL ) fclose( output_file ); if( buffer != NULL ) mbedtls_platform_zeroize( buffer, ciphertext_size ); mbedtls_free( buffer ); return( status ); } static psa_status_t run( enum program_mode mode, const char *key_file_name, const char *ladder[], size_t ladder_depth, const char *input_file_name, const char *output_file_name ) { psa_status_t status = PSA_SUCCESS; psa_key_handle_t derivation_key_handle = 0; psa_key_handle_t wrapping_key_handle = 0; /* Initialize the PSA crypto library. */ PSA_CHECK( psa_crypto_init( ) ); /* Generate mode is unlike the others. Generate the master key and exit. */ if( mode == MODE_GENERATE ) return( generate( key_file_name ) ); /* Read the master key. */ PSA_CHECK( import_key_from_file( PSA_KEY_USAGE_DERIVE | PSA_KEY_USAGE_EXPORT, KDF_ALG, key_file_name, &derivation_key_handle ) ); /* Calculate the derived key for this session. */ PSA_CHECK( derive_key_ladder( ladder, ladder_depth, &derivation_key_handle ) ); switch( mode ) { case MODE_SAVE: PSA_CHECK( save_key( derivation_key_handle, output_file_name ) ); break; case MODE_UNWRAP: PSA_CHECK( derive_wrapping_key( PSA_KEY_USAGE_DECRYPT, derivation_key_handle, &wrapping_key_handle ) ); PSA_CHECK( unwrap_data( input_file_name, output_file_name, wrapping_key_handle ) ); break; case MODE_WRAP: PSA_CHECK( derive_wrapping_key( PSA_KEY_USAGE_ENCRYPT, derivation_key_handle, &wrapping_key_handle ) ); PSA_CHECK( wrap_data( input_file_name, output_file_name, wrapping_key_handle ) ); break; default: /* Unreachable but some compilers don't realize it. */ break; } exit: /* Close any remaining key. Deinitializing the crypto library would do * this anyway, but explicitly closing handles makes the code easier * to reuse. */ (void) psa_close_key( derivation_key_handle ); (void) psa_close_key( wrapping_key_handle ); /* Deinitialize the PSA crypto library. */ mbedtls_psa_crypto_free( ); return( status ); } static void usage( void ) { mbedtls_printf( "Usage: key_ladder_demo MODE [OPTION=VALUE]...\n" ); mbedtls_printf( "Demonstrate the usage of a key derivation ladder.\n" ); mbedtls_printf( "\n" ); mbedtls_printf( "Modes:\n" ); mbedtls_printf( " generate Generate the master key\n" ); mbedtls_printf( " save Save the derived key\n" ); mbedtls_printf( " unwrap Unwrap (decrypt) input with the derived key\n" ); mbedtls_printf( " wrap Wrap (encrypt) input with the derived key\n" ); mbedtls_printf( "\n" ); mbedtls_printf( "Options:\n" ); mbedtls_printf( " input=FILENAME Input file (required for wrap/unwrap)\n" ); mbedtls_printf( " master=FILENAME File containing the master key (default: master.key)\n" ); mbedtls_printf( " output=FILENAME Output file (required for save/wrap/unwrap)\n" ); mbedtls_printf( " label=TEXT Label for the key derivation.\n" ); mbedtls_printf( " This may be repeated multiple times.\n" ); mbedtls_printf( " To get the same key, you must use the same master key\n" ); mbedtls_printf( " and the same sequence of labels.\n" ); } int main( int argc, char *argv[] ) { const char *key_file_name = "master.key"; const char *input_file_name = NULL; const char *output_file_name = NULL; const char *ladder[MAX_LADDER_DEPTH]; size_t ladder_depth = 0; int i; enum program_mode mode; psa_status_t status; if( argc <= 1 || strcmp( argv[1], "help" ) == 0 || strcmp( argv[1], "-help" ) == 0 || strcmp( argv[1], "--help" ) == 0 ) { usage( ); return( MBEDTLS_EXIT_SUCCESS ); } for( i = 2; i < argc; i++ ) { char *q = strchr( argv[i], '=' ); if( q == NULL ) { mbedtls_printf( "Missing argument to option %s\n", argv[i] ); goto usage_failure; } *q = 0; ++q; if( strcmp( argv[i], "input" ) == 0 ) input_file_name = q; else if( strcmp( argv[i], "label" ) == 0 ) { if( ladder_depth == MAX_LADDER_DEPTH ) { mbedtls_printf( "Maximum ladder depth %u exceeded.\n", (unsigned) MAX_LADDER_DEPTH ); return( MBEDTLS_EXIT_FAILURE ); } ladder[ladder_depth] = q; ++ladder_depth; } else if( strcmp( argv[i], "master" ) == 0 ) key_file_name = q; else if( strcmp( argv[i], "output" ) == 0 ) output_file_name = q; else { mbedtls_printf( "Unknown option: %s\n", argv[i] ); goto usage_failure; } } if( strcmp( argv[1], "generate" ) == 0 ) mode = MODE_GENERATE; else if( strcmp( argv[1], "save" ) == 0 ) mode = MODE_SAVE; else if( strcmp( argv[1], "unwrap" ) == 0 ) mode = MODE_UNWRAP; else if( strcmp( argv[1], "wrap" ) == 0 ) mode = MODE_WRAP; else { mbedtls_printf( "Unknown action: %s\n", argv[1] ); goto usage_failure; } if( input_file_name == NULL && ( mode == MODE_WRAP || mode == MODE_UNWRAP ) ) { mbedtls_printf( "Required argument missing: input\n" ); return( DEMO_ERROR ); } if( output_file_name == NULL && ( mode == MODE_SAVE || mode == MODE_WRAP || mode == MODE_UNWRAP ) ) { mbedtls_printf( "Required argument missing: output\n" ); return( DEMO_ERROR ); } status = run( mode, key_file_name, ladder, ladder_depth, input_file_name, output_file_name ); return( status == PSA_SUCCESS ? MBEDTLS_EXIT_SUCCESS : MBEDTLS_EXIT_FAILURE ); usage_failure: usage( ); return( MBEDTLS_EXIT_FAILURE ); } #endif /* MBEDTLS_SHA256_C && MBEDTLS_MD_C && MBEDTLS_AES_C && MBEDTLS_CCM_C && MBEDTLS_PSA_CRYPTO_C && MBEDTLS_FS_IO */