/* BEGIN_HEADER */ #include "mbedtls/rsa.h" #include "mbedtls/rsa_internal.h" #include "mbedtls/md2.h" #include "mbedtls/md4.h" #include "mbedtls/md5.h" #include "mbedtls/sha1.h" #include "mbedtls/sha256.h" #include "mbedtls/sha512.h" #include "mbedtls/entropy.h" #include "mbedtls/ctr_drbg.h" /* END_HEADER */ /* BEGIN_DEPENDENCIES * depends_on:MBEDTLS_RSA_C:MBEDTLS_BIGNUM_C:MBEDTLS_GENPRIME * END_DEPENDENCIES */ /* BEGIN_CASE */ void mbedtls_rsa_pkcs1_sign( uint8_t * message_str, uint32_t msg_len, int padding_mode, int digest, int mod, int radix_P, char * input_P, int radix_Q, char * input_Q, int radix_N, char * input_N, int radix_E, char * input_E, uint8_t * result_hex_str, uint32_t result_hex_str_len, int result ) { unsigned char hash_result[1000]; unsigned char output[1000]; mbedtls_rsa_context ctx; mbedtls_mpi N, P, Q, E; rnd_pseudo_info rnd_info; mbedtls_mpi_init( &N ); mbedtls_mpi_init( &P ); mbedtls_mpi_init( &Q ); mbedtls_mpi_init( &E ); mbedtls_rsa_init( &ctx, padding_mode, 0 ); memset( hash_result, 0x00, 1000 ); memset( output, 0x00, 1000 ); memset( &rnd_info, 0, sizeof( rnd_pseudo_info ) ); TEST_ASSERT( mbedtls_mpi_read_string( &P, radix_P, input_P ) == 0 ); TEST_ASSERT( mbedtls_mpi_read_string( &Q, radix_Q, input_Q ) == 0 ); TEST_ASSERT( mbedtls_mpi_read_string( &N, radix_N, input_N ) == 0 ); TEST_ASSERT( mbedtls_mpi_read_string( &E, radix_E, input_E ) == 0 ); TEST_ASSERT( mbedtls_rsa_import( &ctx, &N, &P, &Q, NULL, &E ) == 0 ); TEST_ASSERT( mbedtls_rsa_get_len( &ctx ) == (size_t) ( mod / 8 ) ); TEST_ASSERT( mbedtls_rsa_complete( &ctx ) == 0 ); TEST_ASSERT( mbedtls_rsa_check_privkey( &ctx ) == 0 ); if( mbedtls_md_info_from_type( digest ) != NULL ) TEST_ASSERT( mbedtls_md( mbedtls_md_info_from_type( digest ), message_str, msg_len, hash_result ) == 0 ); TEST_ASSERT( mbedtls_rsa_pkcs1_sign( &ctx, &rnd_pseudo_rand, &rnd_info, MBEDTLS_RSA_PRIVATE, digest, 0, hash_result, output ) == result ); if( result == 0 ) { TEST_ASSERT( hexcmp( output, result_hex_str, ctx.len, result_hex_str_len ) == 0 ); } exit: mbedtls_mpi_free( &N ); mbedtls_mpi_free( &P ); mbedtls_mpi_free( &Q ); mbedtls_mpi_free( &E ); mbedtls_rsa_free( &ctx ); } /* END_CASE */ /* BEGIN_CASE */ void mbedtls_rsa_pkcs1_verify( uint8_t * message_str, uint32_t msg_len, int padding_mode, int digest, int mod, int radix_N, char * input_N, int radix_E, char * input_E, uint8_t * result_str, uint32_t result_str_len, int result ) { unsigned char hash_result[1000]; mbedtls_rsa_context ctx; mbedtls_mpi N, E; mbedtls_mpi_init( &N ); mbedtls_mpi_init( &E ); mbedtls_rsa_init( &ctx, padding_mode, 0 ); memset( hash_result, 0x00, 1000 ); TEST_ASSERT( mbedtls_mpi_read_string( &N, radix_N, input_N ) == 0 ); TEST_ASSERT( mbedtls_mpi_read_string( &E, radix_E, input_E ) == 0 ); TEST_ASSERT( mbedtls_rsa_import( &ctx, &N, NULL, NULL, NULL, &E ) == 0 ); TEST_ASSERT( mbedtls_rsa_get_len( &ctx ) == (size_t) ( mod / 8 ) ); TEST_ASSERT( mbedtls_rsa_check_pubkey( &ctx ) == 0 ); if( mbedtls_md_info_from_type( digest ) != NULL ) TEST_ASSERT( mbedtls_md( mbedtls_md_info_from_type( digest ), message_str, msg_len, hash_result ) == 0 ); TEST_ASSERT( mbedtls_rsa_pkcs1_verify( &ctx, NULL, NULL, MBEDTLS_RSA_PUBLIC, digest, 0, hash_result, result_str ) == result ); exit: mbedtls_mpi_free( &N ); mbedtls_mpi_free( &E ); mbedtls_rsa_free( &ctx ); } /* END_CASE */ /* BEGIN_CASE */ void rsa_pkcs1_sign_raw( uint8_t * message_str, uint32_t message_str_len, uint8_t * hash_result, uint32_t hash_len, int padding_mode, int mod, int radix_P, char * input_P, int radix_Q, char * input_Q, int radix_N, char * input_N, int radix_E, char * input_E, uint8_t * result_hex_str, uint32_t result_hex_str_len ) { unsigned char output[1000]; mbedtls_rsa_context ctx; mbedtls_mpi N, P, Q, E; rnd_pseudo_info rnd_info; mbedtls_rsa_init( &ctx, padding_mode, 0 ); mbedtls_mpi_init( &N ); mbedtls_mpi_init( &P ); mbedtls_mpi_init( &Q ); mbedtls_mpi_init( &E ); memset( output, 0x00, 1000 ); memset( &rnd_info, 0, sizeof( rnd_pseudo_info ) ); TEST_ASSERT( mbedtls_mpi_read_string( &P, radix_P, input_P ) == 0 ); TEST_ASSERT( mbedtls_mpi_read_string( &Q, radix_Q, input_Q ) == 0 ); TEST_ASSERT( mbedtls_mpi_read_string( &N, radix_N, input_N ) == 0 ); TEST_ASSERT( mbedtls_mpi_read_string( &E, radix_E, input_E ) == 0 ); TEST_ASSERT( mbedtls_rsa_import( &ctx, &N, &P, &Q, NULL, &E ) == 0 ); TEST_ASSERT( mbedtls_rsa_get_len( &ctx ) == (size_t) ( mod / 8 ) ); TEST_ASSERT( mbedtls_rsa_complete( &ctx ) == 0 ); TEST_ASSERT( mbedtls_rsa_check_privkey( &ctx ) == 0 ); TEST_ASSERT( mbedtls_rsa_pkcs1_sign( &ctx, &rnd_pseudo_rand, &rnd_info, MBEDTLS_RSA_PRIVATE, MBEDTLS_MD_NONE, hash_len, hash_result, output ) == 0 ); TEST_ASSERT( hexcmp( output, result_hex_str, ctx.len, result_hex_str_len ) == 0 ); #if defined(MBEDTLS_PKCS1_V15) /* For PKCS#1 v1.5, there is an alternative way to generate signatures */ if( padding_mode == MBEDTLS_RSA_PKCS_V15 ) { int res; memset( output, 0x00, 1000 ); res = mbedtls_rsa_rsaes_pkcs1_v15_encrypt( &ctx, &rnd_pseudo_rand, &rnd_info, MBEDTLS_RSA_PRIVATE, hash_len, hash_result, output ); #if !defined(MBEDTLS_RSA_ALT) TEST_ASSERT( res == 0 ); #else TEST_ASSERT( ( res == 0 ) || ( res == MBEDTLS_ERR_RSA_UNSUPPORTED_OPERATION ) ); #endif if( res == 0 ) { TEST_ASSERT( hexcmp( output, result_hex_str, ctx.len, result_hex_str_len ) == 0 ); } } #endif /* MBEDTLS_PKCS1_V15 */ exit: mbedtls_mpi_free( &N ); mbedtls_mpi_free( &P ); mbedtls_mpi_free( &Q ); mbedtls_mpi_free( &E ); mbedtls_rsa_free( &ctx ); } /* END_CASE */ /* BEGIN_CASE */ void rsa_pkcs1_verify_raw( uint8_t * message_str, uint32_t message_str_len, uint8_t * hash_result, uint32_t hash_len, int padding_mode, int mod, int radix_N, char * input_N, int radix_E, char * input_E, uint8_t * result_str, uint32_t result_str_len, int correct ) { unsigned char output[1000]; mbedtls_rsa_context ctx; mbedtls_mpi N, E; mbedtls_mpi_init( &N ); mbedtls_mpi_init( &E ); mbedtls_rsa_init( &ctx, padding_mode, 0 ); memset( output, 0x00, sizeof( output ) ); TEST_ASSERT( mbedtls_mpi_read_string( &N, radix_N, input_N ) == 0 ); TEST_ASSERT( mbedtls_mpi_read_string( &E, radix_E, input_E ) == 0 ); TEST_ASSERT( mbedtls_rsa_import( &ctx, &N, NULL, NULL, NULL, &E ) == 0 ); TEST_ASSERT( mbedtls_rsa_get_len( &ctx ) == (size_t) ( mod / 8 ) ); TEST_ASSERT( mbedtls_rsa_check_pubkey( &ctx ) == 0 ); TEST_ASSERT( mbedtls_rsa_pkcs1_verify( &ctx, NULL, NULL, MBEDTLS_RSA_PUBLIC, MBEDTLS_MD_NONE, hash_len, hash_result, result_str ) == correct ); #if defined(MBEDTLS_PKCS1_V15) /* For PKCS#1 v1.5, there is an alternative way to verify signatures */ if( padding_mode == MBEDTLS_RSA_PKCS_V15 ) { int res; int ok; size_t olen; res = mbedtls_rsa_rsaes_pkcs1_v15_decrypt( &ctx, NULL, NULL, MBEDTLS_RSA_PUBLIC, &olen, result_str, output, sizeof( output ) ); #if !defined(MBEDTLS_RSA_ALT) TEST_ASSERT( res == 0 ); #else TEST_ASSERT( ( res == 0 ) || ( res == MBEDTLS_ERR_RSA_UNSUPPORTED_OPERATION ) ); #endif if( res == 0 ) { ok = olen == hash_len && memcmp( output, hash_result, olen ) == 0; if( correct == 0 ) TEST_ASSERT( ok == 1 ); else TEST_ASSERT( ok == 0 ); } } #endif /* MBEDTLS_PKCS1_V15 */ exit: mbedtls_mpi_free( &N ); mbedtls_mpi_free( &E ); mbedtls_rsa_free( &ctx ); } /* END_CASE */ /* BEGIN_CASE */ void mbedtls_rsa_pkcs1_encrypt( uint8_t * message_str, uint32_t msg_len, int padding_mode, int mod, int radix_N, char * input_N, int radix_E, char * input_E, uint8_t * result_hex_str, uint32_t result_hex_str_len, int result ) { unsigned char output[1000]; mbedtls_rsa_context ctx; rnd_pseudo_info rnd_info; mbedtls_mpi N, E; mbedtls_mpi_init( &N ); mbedtls_mpi_init( &E ); memset( &rnd_info, 0, sizeof( rnd_pseudo_info ) ); mbedtls_rsa_init( &ctx, padding_mode, 0 ); memset( output, 0x00, 1000 ); TEST_ASSERT( mbedtls_mpi_read_string( &N, radix_N, input_N ) == 0 ); TEST_ASSERT( mbedtls_mpi_read_string( &E, radix_E, input_E ) == 0 ); TEST_ASSERT( mbedtls_rsa_import( &ctx, &N, NULL, NULL, NULL, &E ) == 0 ); TEST_ASSERT( mbedtls_rsa_get_len( &ctx ) == (size_t) ( mod / 8 ) ); TEST_ASSERT( mbedtls_rsa_check_pubkey( &ctx ) == 0 ); TEST_ASSERT( mbedtls_rsa_pkcs1_encrypt( &ctx, &rnd_pseudo_rand, &rnd_info, MBEDTLS_RSA_PUBLIC, msg_len, message_str, output ) == result ); if( result == 0 ) { TEST_ASSERT( hexcmp( output, result_hex_str, ctx.len, result_hex_str_len ) == 0 ); } exit: mbedtls_mpi_free( &N ); mbedtls_mpi_free( &E ); mbedtls_rsa_free( &ctx ); } /* END_CASE */ /* BEGIN_CASE */ void rsa_pkcs1_encrypt_bad_rng( uint8_t * message_str, uint32_t msg_len, int padding_mode, int mod, int radix_N, char * input_N, int radix_E, char * input_E, uint8_t * result_hex_str, uint32_t result_hex_str_len, int result ) { unsigned char output[1000]; mbedtls_rsa_context ctx; mbedtls_mpi N, E; mbedtls_mpi_init( &N ); mbedtls_mpi_init( &E ); mbedtls_rsa_init( &ctx, padding_mode, 0 ); memset( output, 0x00, 1000 ); TEST_ASSERT( mbedtls_mpi_read_string( &N, radix_N, input_N ) == 0 ); TEST_ASSERT( mbedtls_mpi_read_string( &E, radix_E, input_E ) == 0 ); TEST_ASSERT( mbedtls_rsa_import( &ctx, &N, NULL, NULL, NULL, &E ) == 0 ); TEST_ASSERT( mbedtls_rsa_get_len( &ctx ) == (size_t) ( mod / 8 ) ); TEST_ASSERT( mbedtls_rsa_check_pubkey( &ctx ) == 0 ); TEST_ASSERT( mbedtls_rsa_pkcs1_encrypt( &ctx, &rnd_zero_rand, NULL, MBEDTLS_RSA_PUBLIC, msg_len, message_str, output ) == result ); if( result == 0 ) { TEST_ASSERT( hexcmp( output, result_hex_str, ctx.len, result_hex_str_len ) == 0 ); } exit: mbedtls_mpi_free( &N ); mbedtls_mpi_free( &E ); mbedtls_rsa_free( &ctx ); } /* END_CASE */ /* BEGIN_CASE */ void mbedtls_rsa_pkcs1_decrypt( uint8_t * message_str, uint32_t message_str_len, int padding_mode, int mod, int radix_P, char * input_P, int radix_Q, char * input_Q, int radix_N, char * input_N, int radix_E, char * input_E, int max_output, uint8_t * result_hex_str, uint32_t result_hex_str_len, int result ) { unsigned char output[1000]; mbedtls_rsa_context ctx; size_t output_len; rnd_pseudo_info rnd_info; mbedtls_mpi N, P, Q, E; mbedtls_mpi_init( &N ); mbedtls_mpi_init( &P ); mbedtls_mpi_init( &Q ); mbedtls_mpi_init( &E ); mbedtls_rsa_init( &ctx, padding_mode, 0 ); memset( output, 0x00, 1000 ); memset( &rnd_info, 0, sizeof( rnd_pseudo_info ) ); TEST_ASSERT( mbedtls_mpi_read_string( &P, radix_P, input_P ) == 0 ); TEST_ASSERT( mbedtls_mpi_read_string( &Q, radix_Q, input_Q ) == 0 ); TEST_ASSERT( mbedtls_mpi_read_string( &N, radix_N, input_N ) == 0 ); TEST_ASSERT( mbedtls_mpi_read_string( &E, radix_E, input_E ) == 0 ); TEST_ASSERT( mbedtls_rsa_import( &ctx, &N, &P, &Q, NULL, &E ) == 0 ); TEST_ASSERT( mbedtls_rsa_get_len( &ctx ) == (size_t) ( mod / 8 ) ); TEST_ASSERT( mbedtls_rsa_complete( &ctx ) == 0 ); TEST_ASSERT( mbedtls_rsa_check_privkey( &ctx ) == 0 ); output_len = 0; TEST_ASSERT( mbedtls_rsa_pkcs1_decrypt( &ctx, rnd_pseudo_rand, &rnd_info, MBEDTLS_RSA_PRIVATE, &output_len, message_str, output, max_output ) == result ); if( result == 0 ) { TEST_ASSERT( hexcmp( output, result_hex_str, ctx.len, result_hex_str_len ) == 0 ); } exit: mbedtls_mpi_free( &N ); mbedtls_mpi_free( &P ); mbedtls_mpi_free( &Q ); mbedtls_mpi_free( &E ); mbedtls_rsa_free( &ctx ); } /* END_CASE */ /* BEGIN_CASE */ void mbedtls_rsa_public( uint8_t * message_str, uint32_t message_str_len, int mod, int radix_N, char * input_N, int radix_E, char * input_E, uint8_t * result_hex_str, uint32_t result_hex_str_len, int result ) { unsigned char output[1000]; mbedtls_rsa_context ctx, ctx2; /* Also test mbedtls_rsa_copy() while at it */ mbedtls_mpi N, E; mbedtls_mpi_init( &N ); mbedtls_mpi_init( &E ); mbedtls_rsa_init( &ctx, MBEDTLS_RSA_PKCS_V15, 0 ); mbedtls_rsa_init( &ctx2, MBEDTLS_RSA_PKCS_V15, 0 ); memset( output, 0x00, 1000 ); TEST_ASSERT( mbedtls_mpi_read_string( &N, radix_N, input_N ) == 0 ); TEST_ASSERT( mbedtls_mpi_read_string( &E, radix_E, input_E ) == 0 ); TEST_ASSERT( mbedtls_rsa_import( &ctx, &N, NULL, NULL, NULL, &E ) == 0 ); TEST_ASSERT( mbedtls_rsa_get_len( &ctx ) == (size_t) ( mod / 8 ) ); TEST_ASSERT( mbedtls_rsa_check_pubkey( &ctx ) == 0 ); TEST_ASSERT( mbedtls_rsa_public( &ctx, message_str, output ) == result ); if( result == 0 ) { TEST_ASSERT( hexcmp( output, result_hex_str, ctx2.len, result_hex_str_len ) == 0 ); } /* And now with the copy */ TEST_ASSERT( mbedtls_rsa_copy( &ctx2, &ctx ) == 0 ); /* clear the original to be sure */ mbedtls_rsa_free( &ctx ); TEST_ASSERT( mbedtls_rsa_check_pubkey( &ctx2 ) == 0 ); memset( output, 0x00, 1000 ); TEST_ASSERT( mbedtls_rsa_public( &ctx2, message_str, output ) == result ); if( result == 0 ) { TEST_ASSERT( hexcmp( output, result_hex_str, ctx2.len, result_hex_str_len ) == 0 ); } exit: mbedtls_mpi_free( &N ); mbedtls_mpi_free( &E ); mbedtls_rsa_free( &ctx ); mbedtls_rsa_free( &ctx2 ); } /* END_CASE */ /* BEGIN_CASE */ void mbedtls_rsa_private( uint8_t * message_str, uint32_t message_str_len, int mod, int radix_P, char * input_P, int radix_Q, char * input_Q, int radix_N, char * input_N, int radix_E, char * input_E, uint8_t * result_hex_str, uint32_t result_hex_str_len, int result ) { unsigned char output[1000]; mbedtls_rsa_context ctx, ctx2; /* Also test mbedtls_rsa_copy() while at it */ mbedtls_mpi N, P, Q, E; rnd_pseudo_info rnd_info; int i; mbedtls_mpi_init( &N ); mbedtls_mpi_init( &P ); mbedtls_mpi_init( &Q ); mbedtls_mpi_init( &E ); mbedtls_rsa_init( &ctx, MBEDTLS_RSA_PKCS_V15, 0 ); mbedtls_rsa_init( &ctx2, MBEDTLS_RSA_PKCS_V15, 0 ); memset( &rnd_info, 0, sizeof( rnd_pseudo_info ) ); TEST_ASSERT( mbedtls_mpi_read_string( &P, radix_P, input_P ) == 0 ); TEST_ASSERT( mbedtls_mpi_read_string( &Q, radix_Q, input_Q ) == 0 ); TEST_ASSERT( mbedtls_mpi_read_string( &N, radix_N, input_N ) == 0 ); TEST_ASSERT( mbedtls_mpi_read_string( &E, radix_E, input_E ) == 0 ); TEST_ASSERT( mbedtls_rsa_import( &ctx, &N, &P, &Q, NULL, &E ) == 0 ); TEST_ASSERT( mbedtls_rsa_get_len( &ctx ) == (size_t) ( mod / 8 ) ); TEST_ASSERT( mbedtls_rsa_complete( &ctx ) == 0 ); TEST_ASSERT( mbedtls_rsa_check_privkey( &ctx ) == 0 ); /* repeat three times to test updating of blinding values */ for( i = 0; i < 3; i++ ) { memset( output, 0x00, 1000 ); TEST_ASSERT( mbedtls_rsa_private( &ctx, rnd_pseudo_rand, &rnd_info, message_str, output ) == result ); if( result == 0 ) { TEST_ASSERT( hexcmp( output, result_hex_str, ctx2.len, result_hex_str_len ) == 0 ); } } /* And now one more time with the copy */ TEST_ASSERT( mbedtls_rsa_copy( &ctx2, &ctx ) == 0 ); /* clear the original to be sure */ mbedtls_rsa_free( &ctx ); TEST_ASSERT( mbedtls_rsa_check_privkey( &ctx2 ) == 0 ); memset( output, 0x00, 1000 ); TEST_ASSERT( mbedtls_rsa_private( &ctx2, rnd_pseudo_rand, &rnd_info, message_str, output ) == result ); if( result == 0 ) { TEST_ASSERT( hexcmp( output, result_hex_str, ctx2.len, result_hex_str_len ) == 0 ); } exit: mbedtls_mpi_free( &N ); mbedtls_mpi_free( &P ); mbedtls_mpi_free( &Q ); mbedtls_mpi_free( &E ); mbedtls_rsa_free( &ctx ); mbedtls_rsa_free( &ctx2 ); } /* END_CASE */ /* BEGIN_CASE */ void rsa_check_privkey_null( ) { mbedtls_rsa_context ctx; memset( &ctx, 0x00, sizeof( mbedtls_rsa_context ) ); TEST_ASSERT( mbedtls_rsa_check_privkey( &ctx ) == MBEDTLS_ERR_RSA_KEY_CHECK_FAILED ); } /* END_CASE */ /* BEGIN_CASE */ void mbedtls_rsa_check_pubkey( int radix_N, char * input_N, int radix_E, char * input_E, int result ) { mbedtls_rsa_context ctx; mbedtls_mpi N, E; mbedtls_mpi_init( &N ); mbedtls_mpi_init( &E ); mbedtls_rsa_init( &ctx, MBEDTLS_RSA_PKCS_V15, 0 ); if( strlen( input_N ) ) { TEST_ASSERT( mbedtls_mpi_read_string( &N, radix_N, input_N ) == 0 ); } if( strlen( input_E ) ) { TEST_ASSERT( mbedtls_mpi_read_string( &E, radix_E, input_E ) == 0 ); } TEST_ASSERT( mbedtls_rsa_import( &ctx, &N, NULL, NULL, NULL, &E ) == 0 ); TEST_ASSERT( mbedtls_rsa_check_pubkey( &ctx ) == result ); exit: mbedtls_mpi_free( &N ); mbedtls_mpi_free( &E ); mbedtls_rsa_free( &ctx ); } /* END_CASE */ /* BEGIN_CASE */ void mbedtls_rsa_check_privkey( int mod, int radix_P, char * input_P, int radix_Q, char * input_Q, int radix_N, char * input_N, int radix_E, char * input_E, int radix_D, char * input_D, int radix_DP, char * input_DP, int radix_DQ, char * input_DQ, int radix_QP, char * input_QP, int result ) { mbedtls_rsa_context ctx; mbedtls_rsa_init( &ctx, MBEDTLS_RSA_PKCS_V15, 0 ); ctx.len = mod / 8; if( strlen( input_P ) ) { TEST_ASSERT( mbedtls_mpi_read_string( &ctx.P, radix_P, input_P ) == 0 ); } if( strlen( input_Q ) ) { TEST_ASSERT( mbedtls_mpi_read_string( &ctx.Q, radix_Q, input_Q ) == 0 ); } if( strlen( input_N ) ) { TEST_ASSERT( mbedtls_mpi_read_string( &ctx.N, radix_N, input_N ) == 0 ); } if( strlen( input_E ) ) { TEST_ASSERT( mbedtls_mpi_read_string( &ctx.E, radix_E, input_E ) == 0 ); } if( strlen( input_D ) ) { TEST_ASSERT( mbedtls_mpi_read_string( &ctx.D, radix_D, input_D ) == 0 ); } #if !defined(MBEDTLS_RSA_NO_CRT) if( strlen( input_DP ) ) { TEST_ASSERT( mbedtls_mpi_read_string( &ctx.DP, radix_DP, input_DP ) == 0 ); } if( strlen( input_DQ ) ) { TEST_ASSERT( mbedtls_mpi_read_string( &ctx.DQ, radix_DQ, input_DQ ) == 0 ); } if( strlen( input_QP ) ) { TEST_ASSERT( mbedtls_mpi_read_string( &ctx.QP, radix_QP, input_QP ) == 0 ); } #else ((void) radix_DP); ((void) input_DP); ((void) radix_DQ); ((void) input_DQ); ((void) radix_QP); ((void) input_QP); #endif TEST_ASSERT( mbedtls_rsa_check_privkey( &ctx ) == result ); exit: mbedtls_rsa_free( &ctx ); } /* END_CASE */ /* BEGIN_CASE */ void rsa_check_pubpriv( int mod, int radix_Npub, char * input_Npub, int radix_Epub, char * input_Epub, int radix_P, char * input_P, int radix_Q, char * input_Q, int radix_N, char * input_N, int radix_E, char * input_E, int radix_D, char * input_D, int radix_DP, char * input_DP, int radix_DQ, char * input_DQ, int radix_QP, char * input_QP, int result ) { mbedtls_rsa_context pub, prv; mbedtls_rsa_init( &pub, MBEDTLS_RSA_PKCS_V15, 0 ); mbedtls_rsa_init( &prv, MBEDTLS_RSA_PKCS_V15, 0 ); pub.len = mod / 8; prv.len = mod / 8; if( strlen( input_Npub ) ) { TEST_ASSERT( mbedtls_mpi_read_string( &pub.N, radix_Npub, input_Npub ) == 0 ); } if( strlen( input_Epub ) ) { TEST_ASSERT( mbedtls_mpi_read_string( &pub.E, radix_Epub, input_Epub ) == 0 ); } if( strlen( input_P ) ) { TEST_ASSERT( mbedtls_mpi_read_string( &prv.P, radix_P, input_P ) == 0 ); } if( strlen( input_Q ) ) { TEST_ASSERT( mbedtls_mpi_read_string( &prv.Q, radix_Q, input_Q ) == 0 ); } if( strlen( input_N ) ) { TEST_ASSERT( mbedtls_mpi_read_string( &prv.N, radix_N, input_N ) == 0 ); } if( strlen( input_E ) ) { TEST_ASSERT( mbedtls_mpi_read_string( &prv.E, radix_E, input_E ) == 0 ); } if( strlen( input_D ) ) { TEST_ASSERT( mbedtls_mpi_read_string( &prv.D, radix_D, input_D ) == 0 ); } #if !defined(MBEDTLS_RSA_NO_CRT) if( strlen( input_DP ) ) { TEST_ASSERT( mbedtls_mpi_read_string( &prv.DP, radix_DP, input_DP ) == 0 ); } if( strlen( input_DQ ) ) { TEST_ASSERT( mbedtls_mpi_read_string( &prv.DQ, radix_DQ, input_DQ ) == 0 ); } if( strlen( input_QP ) ) { TEST_ASSERT( mbedtls_mpi_read_string( &prv.QP, radix_QP, input_QP ) == 0 ); } #else ((void) radix_DP); ((void) input_DP); ((void) radix_DQ); ((void) input_DQ); ((void) radix_QP); ((void) input_QP); #endif TEST_ASSERT( mbedtls_rsa_check_pub_priv( &pub, &prv ) == result ); exit: mbedtls_rsa_free( &pub ); mbedtls_rsa_free( &prv ); } /* END_CASE */ /* BEGIN_CASE depends_on:MBEDTLS_CTR_DRBG_C:MBEDTLS_ENTROPY_C:ENTROPY_HAVE_STRONG */ void mbedtls_rsa_gen_key( int nrbits, int exponent, int result) { mbedtls_rsa_context ctx; mbedtls_entropy_context entropy; mbedtls_ctr_drbg_context ctr_drbg; const char *pers = "test_suite_rsa"; mbedtls_ctr_drbg_init( &ctr_drbg ); mbedtls_entropy_init( &entropy ); mbedtls_rsa_init ( &ctx, 0, 0 ); TEST_ASSERT( mbedtls_ctr_drbg_seed( &ctr_drbg, mbedtls_entropy_func, &entropy, (const unsigned char *) pers, strlen( pers ) ) == 0 ); TEST_ASSERT( mbedtls_rsa_gen_key( &ctx, mbedtls_ctr_drbg_random, &ctr_drbg, nrbits, exponent ) == result ); if( result == 0 ) { TEST_ASSERT( mbedtls_rsa_check_privkey( &ctx ) == 0 ); TEST_ASSERT( mbedtls_mpi_cmp_mpi( &ctx.P, &ctx.Q ) > 0 ); } exit: mbedtls_rsa_free( &ctx ); mbedtls_ctr_drbg_free( &ctr_drbg ); mbedtls_entropy_free( &entropy ); } /* END_CASE */ /* BEGIN_CASE depends_on:MBEDTLS_CTR_DRBG_C:MBEDTLS_ENTROPY_C */ void mbedtls_rsa_deduce_primes( int radix_N, char *input_N, int radix_D, char *input_D, int radix_E, char *input_E, int radix_P, char *output_P, int radix_Q, char *output_Q, int corrupt, int result ) { mbedtls_mpi N, P, Pp, Q, Qp, D, E; mbedtls_mpi_init( &N ); mbedtls_mpi_init( &P ); mbedtls_mpi_init( &Q ); mbedtls_mpi_init( &Pp ); mbedtls_mpi_init( &Qp ); mbedtls_mpi_init( &D ); mbedtls_mpi_init( &E ); TEST_ASSERT( mbedtls_mpi_read_string( &N, radix_N, input_N ) == 0 ); TEST_ASSERT( mbedtls_mpi_read_string( &D, radix_D, input_D ) == 0 ); TEST_ASSERT( mbedtls_mpi_read_string( &E, radix_E, input_E ) == 0 ); TEST_ASSERT( mbedtls_mpi_read_string( &Qp, radix_P, output_P ) == 0 ); TEST_ASSERT( mbedtls_mpi_read_string( &Pp, radix_Q, output_Q ) == 0 ); if( corrupt ) TEST_ASSERT( mbedtls_mpi_add_int( &D, &D, 2 ) == 0 ); /* Try to deduce P, Q from N, D, E only. */ TEST_ASSERT( mbedtls_rsa_deduce_primes( &N, &D, &E, &P, &Q ) == result ); if( !corrupt ) { /* Check if (P,Q) = (Pp, Qp) or (P,Q) = (Qp, Pp) */ TEST_ASSERT( ( mbedtls_mpi_cmp_mpi( &P, &Pp ) == 0 && mbedtls_mpi_cmp_mpi( &Q, &Qp ) == 0 ) || ( mbedtls_mpi_cmp_mpi( &P, &Qp ) == 0 && mbedtls_mpi_cmp_mpi( &Q, &Pp ) == 0 ) ); } exit: mbedtls_mpi_free( &N ); mbedtls_mpi_free( &P ); mbedtls_mpi_free( &Q ); mbedtls_mpi_free( &Pp ); mbedtls_mpi_free( &Qp ); mbedtls_mpi_free( &D ); mbedtls_mpi_free( &E ); } /* END_CASE */ /* BEGIN_CASE */ void mbedtls_rsa_deduce_private_exponent( int radix_P, char *input_P, int radix_Q, char *input_Q, int radix_E, char *input_E, int radix_D, char *output_D, int corrupt, int result ) { mbedtls_mpi P, Q, D, Dp, E, R, Rp; mbedtls_mpi_init( &P ); mbedtls_mpi_init( &Q ); mbedtls_mpi_init( &D ); mbedtls_mpi_init( &Dp ); mbedtls_mpi_init( &E ); mbedtls_mpi_init( &R ); mbedtls_mpi_init( &Rp ); TEST_ASSERT( mbedtls_mpi_read_string( &P, radix_P, input_P ) == 0 ); TEST_ASSERT( mbedtls_mpi_read_string( &Q, radix_Q, input_Q ) == 0 ); TEST_ASSERT( mbedtls_mpi_read_string( &E, radix_E, input_E ) == 0 ); TEST_ASSERT( mbedtls_mpi_read_string( &Dp, radix_D, output_D ) == 0 ); if( corrupt ) { /* Make E even */ TEST_ASSERT( mbedtls_mpi_set_bit( &E, 0, 0 ) == 0 ); } /* Try to deduce D from N, P, Q, E. */ TEST_ASSERT( mbedtls_rsa_deduce_private_exponent( &P, &Q, &E, &D ) == result ); if( !corrupt ) { /* * Check that D and Dp agree modulo LCM(P-1, Q-1). */ /* Replace P,Q by P-1, Q-1 */ TEST_ASSERT( mbedtls_mpi_sub_int( &P, &P, 1 ) == 0 ); TEST_ASSERT( mbedtls_mpi_sub_int( &Q, &Q, 1 ) == 0 ); /* Check D == Dp modulo P-1 */ TEST_ASSERT( mbedtls_mpi_mod_mpi( &R, &D, &P ) == 0 ); TEST_ASSERT( mbedtls_mpi_mod_mpi( &Rp, &Dp, &P ) == 0 ); TEST_ASSERT( mbedtls_mpi_cmp_mpi( &R, &Rp ) == 0 ); /* Check D == Dp modulo Q-1 */ TEST_ASSERT( mbedtls_mpi_mod_mpi( &R, &D, &Q ) == 0 ); TEST_ASSERT( mbedtls_mpi_mod_mpi( &Rp, &Dp, &Q ) == 0 ); TEST_ASSERT( mbedtls_mpi_cmp_mpi( &R, &Rp ) == 0 ); } exit: mbedtls_mpi_free( &P ); mbedtls_mpi_free( &Q ); mbedtls_mpi_free( &D ); mbedtls_mpi_free( &Dp ); mbedtls_mpi_free( &E ); mbedtls_mpi_free( &R ); mbedtls_mpi_free( &Rp ); } /* END_CASE */ /* BEGIN_CASE depends_on:MBEDTLS_CTR_DRBG_C:MBEDTLS_ENTROPY_C:ENTROPY_HAVE_STRONG */ void mbedtls_rsa_import( int radix_N, char *input_N, int radix_P, char *input_P, int radix_Q, char *input_Q, int radix_D, char *input_D, int radix_E, char *input_E, int successive, int is_priv, int res_check, int res_complete ) { mbedtls_mpi N, P, Q, D, E; mbedtls_rsa_context ctx; /* Buffers used for encryption-decryption test */ unsigned char *buf_orig = NULL; unsigned char *buf_enc = NULL; unsigned char *buf_dec = NULL; mbedtls_entropy_context entropy; mbedtls_ctr_drbg_context ctr_drbg; const char *pers = "test_suite_rsa"; const int have_N = ( strlen( input_N ) > 0 ); const int have_P = ( strlen( input_P ) > 0 ); const int have_Q = ( strlen( input_Q ) > 0 ); const int have_D = ( strlen( input_D ) > 0 ); const int have_E = ( strlen( input_E ) > 0 ); mbedtls_ctr_drbg_init( &ctr_drbg ); mbedtls_entropy_init( &entropy ); mbedtls_rsa_init( &ctx, 0, 0 ); mbedtls_mpi_init( &N ); mbedtls_mpi_init( &P ); mbedtls_mpi_init( &Q ); mbedtls_mpi_init( &D ); mbedtls_mpi_init( &E ); TEST_ASSERT( mbedtls_ctr_drbg_seed( &ctr_drbg, mbedtls_entropy_func, &entropy, (const unsigned char *) pers, strlen( pers ) ) == 0 ); if( have_N ) TEST_ASSERT( mbedtls_mpi_read_string( &N, radix_N, input_N ) == 0 ); if( have_P ) TEST_ASSERT( mbedtls_mpi_read_string( &P, radix_P, input_P ) == 0 ); if( have_Q ) TEST_ASSERT( mbedtls_mpi_read_string( &Q, radix_Q, input_Q ) == 0 ); if( have_D ) TEST_ASSERT( mbedtls_mpi_read_string( &D, radix_D, input_D ) == 0 ); if( have_E ) TEST_ASSERT( mbedtls_mpi_read_string( &E, radix_E, input_E ) == 0 ); if( !successive ) { TEST_ASSERT( mbedtls_rsa_import( &ctx, have_N ? &N : NULL, have_P ? &P : NULL, have_Q ? &Q : NULL, have_D ? &D : NULL, have_E ? &E : NULL ) == 0 ); } else { /* Import N, P, Q, D, E separately. * This should make no functional difference. */ TEST_ASSERT( mbedtls_rsa_import( &ctx, have_N ? &N : NULL, NULL, NULL, NULL, NULL ) == 0 ); TEST_ASSERT( mbedtls_rsa_import( &ctx, NULL, have_P ? &P : NULL, NULL, NULL, NULL ) == 0 ); TEST_ASSERT( mbedtls_rsa_import( &ctx, NULL, NULL, have_Q ? &Q : NULL, NULL, NULL ) == 0 ); TEST_ASSERT( mbedtls_rsa_import( &ctx, NULL, NULL, NULL, have_D ? &D : NULL, NULL ) == 0 ); TEST_ASSERT( mbedtls_rsa_import( &ctx, NULL, NULL, NULL, NULL, have_E ? &E : NULL ) == 0 ); } TEST_ASSERT( mbedtls_rsa_complete( &ctx ) == res_complete ); /* On expected success, perform some public and private * key operations to check if the key is working properly. */ if( res_complete == 0 ) { if( is_priv ) TEST_ASSERT( mbedtls_rsa_check_privkey( &ctx ) == res_check ); else TEST_ASSERT( mbedtls_rsa_check_pubkey( &ctx ) == res_check ); if( res_check != 0 ) goto exit; buf_orig = mbedtls_calloc( 1, mbedtls_rsa_get_len( &ctx ) ); buf_enc = mbedtls_calloc( 1, mbedtls_rsa_get_len( &ctx ) ); buf_dec = mbedtls_calloc( 1, mbedtls_rsa_get_len( &ctx ) ); if( buf_orig == NULL || buf_enc == NULL || buf_dec == NULL ) goto exit; TEST_ASSERT( mbedtls_ctr_drbg_random( &ctr_drbg, buf_orig, mbedtls_rsa_get_len( &ctx ) ) == 0 ); /* Make sure the number we're generating is smaller than the modulus */ buf_orig[0] = 0x00; TEST_ASSERT( mbedtls_rsa_public( &ctx, buf_orig, buf_enc ) == 0 ); if( is_priv ) { TEST_ASSERT( mbedtls_rsa_private( &ctx, mbedtls_ctr_drbg_random, &ctr_drbg, buf_enc, buf_dec ) == 0 ); TEST_ASSERT( memcmp( buf_orig, buf_dec, mbedtls_rsa_get_len( &ctx ) ) == 0 ); } } exit: mbedtls_free( buf_orig ); mbedtls_free( buf_enc ); mbedtls_free( buf_dec ); mbedtls_rsa_free( &ctx ); mbedtls_ctr_drbg_free( &ctr_drbg ); mbedtls_entropy_free( &entropy ); mbedtls_mpi_free( &N ); mbedtls_mpi_free( &P ); mbedtls_mpi_free( &Q ); mbedtls_mpi_free( &D ); mbedtls_mpi_free( &E ); } /* END_CASE */ /* BEGIN_CASE */ void mbedtls_rsa_export( int radix_N, char *input_N, int radix_P, char *input_P, int radix_Q, char *input_Q, int radix_D, char *input_D, int radix_E, char *input_E, int is_priv, int successive ) { /* Original MPI's with which we set up the RSA context */ mbedtls_mpi N, P, Q, D, E; /* Exported MPI's */ mbedtls_mpi Ne, Pe, Qe, De, Ee; const int have_N = ( strlen( input_N ) > 0 ); const int have_P = ( strlen( input_P ) > 0 ); const int have_Q = ( strlen( input_Q ) > 0 ); const int have_D = ( strlen( input_D ) > 0 ); const int have_E = ( strlen( input_E ) > 0 ); mbedtls_rsa_context ctx; mbedtls_rsa_init( &ctx, 0, 0 ); mbedtls_mpi_init( &N ); mbedtls_mpi_init( &P ); mbedtls_mpi_init( &Q ); mbedtls_mpi_init( &D ); mbedtls_mpi_init( &E ); mbedtls_mpi_init( &Ne ); mbedtls_mpi_init( &Pe ); mbedtls_mpi_init( &Qe ); mbedtls_mpi_init( &De ); mbedtls_mpi_init( &Ee ); /* Setup RSA context */ if( have_N ) TEST_ASSERT( mbedtls_mpi_read_string( &N, radix_N, input_N ) == 0 ); if( have_P ) TEST_ASSERT( mbedtls_mpi_read_string( &P, radix_P, input_P ) == 0 ); if( have_Q ) TEST_ASSERT( mbedtls_mpi_read_string( &Q, radix_Q, input_Q ) == 0 ); if( have_D ) TEST_ASSERT( mbedtls_mpi_read_string( &D, radix_D, input_D ) == 0 ); if( have_E ) TEST_ASSERT( mbedtls_mpi_read_string( &E, radix_E, input_E ) == 0 ); TEST_ASSERT( mbedtls_rsa_import( &ctx, strlen( input_N ) ? &N : NULL, strlen( input_P ) ? &P : NULL, strlen( input_Q ) ? &Q : NULL, strlen( input_D ) ? &D : NULL, strlen( input_E ) ? &E : NULL ) == 0 ); TEST_ASSERT( mbedtls_rsa_complete( &ctx ) == 0 ); /* * Export parameters and compare to original ones. */ /* N and E must always be present. */ if( !successive ) { TEST_ASSERT( mbedtls_rsa_export( &ctx, &Ne, NULL, NULL, NULL, &Ee ) == 0 ); } else { TEST_ASSERT( mbedtls_rsa_export( &ctx, &Ne, NULL, NULL, NULL, NULL ) == 0 ); TEST_ASSERT( mbedtls_rsa_export( &ctx, NULL, NULL, NULL, NULL, &Ee ) == 0 ); } TEST_ASSERT( mbedtls_mpi_cmp_mpi( &N, &Ne ) == 0 ); TEST_ASSERT( mbedtls_mpi_cmp_mpi( &E, &Ee ) == 0 ); /* If we were providing enough information to setup a complete private context, * we expect to be able to export all core parameters. */ if( is_priv ) { if( !successive ) { TEST_ASSERT( mbedtls_rsa_export( &ctx, NULL, &Pe, &Qe, &De, NULL ) == 0 ); } else { TEST_ASSERT( mbedtls_rsa_export( &ctx, NULL, &Pe, NULL, NULL, NULL ) == 0 ); TEST_ASSERT( mbedtls_rsa_export( &ctx, NULL, NULL, &Qe, NULL, NULL ) == 0 ); TEST_ASSERT( mbedtls_rsa_export( &ctx, NULL, NULL, NULL, &De, NULL ) == 0 ); } if( have_P ) TEST_ASSERT( mbedtls_mpi_cmp_mpi( &P, &Pe ) == 0 ); if( have_Q ) TEST_ASSERT( mbedtls_mpi_cmp_mpi( &Q, &Qe ) == 0 ); if( have_D ) TEST_ASSERT( mbedtls_mpi_cmp_mpi( &D, &De ) == 0 ); /* While at it, perform a sanity check */ TEST_ASSERT( mbedtls_rsa_validate_params( &Ne, &Pe, &Qe, &De, &Ee, NULL, NULL ) == 0 ); } exit: mbedtls_rsa_free( &ctx ); mbedtls_mpi_free( &N ); mbedtls_mpi_free( &P ); mbedtls_mpi_free( &Q ); mbedtls_mpi_free( &D ); mbedtls_mpi_free( &E ); mbedtls_mpi_free( &Ne ); mbedtls_mpi_free( &Pe ); mbedtls_mpi_free( &Qe ); mbedtls_mpi_free( &De ); mbedtls_mpi_free( &Ee ); } /* END_CASE */ /* BEGIN_CASE depends_on:MBEDTLS_ENTROPY_C:ENTROPY_HAVE_STRONG */ void mbedtls_rsa_validate_params( int radix_N, char *input_N, int radix_P, char *input_P, int radix_Q, char *input_Q, int radix_D, char *input_D, int radix_E, char *input_E, int prng, int result ) { /* Original MPI's with which we set up the RSA context */ mbedtls_mpi N, P, Q, D, E; const int have_N = ( strlen( input_N ) > 0 ); const int have_P = ( strlen( input_P ) > 0 ); const int have_Q = ( strlen( input_Q ) > 0 ); const int have_D = ( strlen( input_D ) > 0 ); const int have_E = ( strlen( input_E ) > 0 ); mbedtls_entropy_context entropy; mbedtls_ctr_drbg_context ctr_drbg; const char *pers = "test_suite_rsa"; mbedtls_mpi_init( &N ); mbedtls_mpi_init( &P ); mbedtls_mpi_init( &Q ); mbedtls_mpi_init( &D ); mbedtls_mpi_init( &E ); mbedtls_ctr_drbg_init( &ctr_drbg ); mbedtls_entropy_init( &entropy ); TEST_ASSERT( mbedtls_ctr_drbg_seed( &ctr_drbg, mbedtls_entropy_func, &entropy, (const unsigned char *) pers, strlen( pers ) ) == 0 ); if( have_N ) TEST_ASSERT( mbedtls_mpi_read_string( &N, radix_N, input_N ) == 0 ); if( have_P ) TEST_ASSERT( mbedtls_mpi_read_string( &P, radix_P, input_P ) == 0 ); if( have_Q ) TEST_ASSERT( mbedtls_mpi_read_string( &Q, radix_Q, input_Q ) == 0 ); if( have_D ) TEST_ASSERT( mbedtls_mpi_read_string( &D, radix_D, input_D ) == 0 ); if( have_E ) TEST_ASSERT( mbedtls_mpi_read_string( &E, radix_E, input_E ) == 0 ); TEST_ASSERT( mbedtls_rsa_validate_params( have_N ? &N : NULL, have_P ? &P : NULL, have_Q ? &Q : NULL, have_D ? &D : NULL, have_E ? &E : NULL, prng ? mbedtls_ctr_drbg_random : NULL, prng ? &ctr_drbg : NULL ) == result ); exit: mbedtls_ctr_drbg_free( &ctr_drbg ); mbedtls_entropy_free( &entropy ); mbedtls_mpi_free( &N ); mbedtls_mpi_free( &P ); mbedtls_mpi_free( &Q ); mbedtls_mpi_free( &D ); mbedtls_mpi_free( &E ); } /* END_CASE */ /* BEGIN_CASE depends_on:MBEDTLS_CTR_DRBG_C:MBEDTLS_ENTROPY_C */ void mbedtls_rsa_export_raw( char *input_N, char *input_P, char *input_Q, char *input_D, char *input_E, int is_priv, int successive ) { /* Original raw buffers with which we set up the RSA context */ unsigned char bufN[1000]; unsigned char bufP[1000]; unsigned char bufQ[1000]; unsigned char bufD[1000]; unsigned char bufE[1000]; size_t lenN = 0; size_t lenP = 0; size_t lenQ = 0; size_t lenD = 0; size_t lenE = 0; /* Exported buffers */ unsigned char bufNe[ sizeof( bufN ) ]; unsigned char bufPe[ sizeof( bufP ) ]; unsigned char bufQe[ sizeof( bufQ ) ]; unsigned char bufDe[ sizeof( bufD ) ]; unsigned char bufEe[ sizeof( bufE ) ]; const int have_N = ( strlen( input_N ) > 0 ); const int have_P = ( strlen( input_P ) > 0 ); const int have_Q = ( strlen( input_Q ) > 0 ); const int have_D = ( strlen( input_D ) > 0 ); const int have_E = ( strlen( input_E ) > 0 ); mbedtls_rsa_context ctx; mbedtls_rsa_init( &ctx, 0, 0 ); /* Setup RSA context */ if( have_N ) lenN = unhexify( bufN, input_N ); if( have_P ) lenP = unhexify( bufP, input_P ); if( have_Q ) lenQ = unhexify( bufQ, input_Q ); if( have_D ) lenD = unhexify( bufD, input_D ); if( have_E ) lenE = unhexify( bufE, input_E ); TEST_ASSERT( mbedtls_rsa_import_raw( &ctx, have_N ? bufN : NULL, lenN, have_P ? bufP : NULL, lenP, have_Q ? bufQ : NULL, lenQ, have_D ? bufD : NULL, lenD, have_E ? bufE : NULL, lenE ) == 0 ); TEST_ASSERT( mbedtls_rsa_complete( &ctx ) == 0 ); /* * Export parameters and compare to original ones. */ /* N and E must always be present. */ if( !successive ) { TEST_ASSERT( mbedtls_rsa_export_raw( &ctx, bufNe, lenN, NULL, 0, NULL, 0, NULL, 0, bufEe, lenE ) == 0 ); } else { TEST_ASSERT( mbedtls_rsa_export_raw( &ctx, bufNe, lenN, NULL, 0, NULL, 0, NULL, 0, NULL, 0 ) == 0 ); TEST_ASSERT( mbedtls_rsa_export_raw( &ctx, NULL, 0, NULL, 0, NULL, 0, NULL, 0, bufEe, lenE ) == 0 ); } TEST_ASSERT( memcmp( bufN, bufNe, lenN ) == 0 ); TEST_ASSERT( memcmp( bufE, bufEe, lenE ) == 0 ); /* If we were providing enough information to setup a complete private context, * we expect to be able to export all core parameters. */ if( is_priv ) { if( !successive ) { TEST_ASSERT( mbedtls_rsa_export_raw( &ctx, NULL, 0, bufPe, lenP ? lenP : sizeof( bufPe ), bufQe, lenQ ? lenQ : sizeof( bufQe ), bufDe, lenD ? lenD : sizeof( bufDe ), NULL, 0 ) == 0 ); } else { TEST_ASSERT( mbedtls_rsa_export_raw( &ctx, NULL, 0, bufPe, lenP ? lenP : sizeof( bufPe ), NULL, 0, NULL, 0, NULL, 0 ) == 0 ); TEST_ASSERT( mbedtls_rsa_export_raw( &ctx, NULL, 0, NULL, 0, bufQe, lenQ ? lenQ : sizeof( bufQe ), NULL, 0, NULL, 0 ) == 0 ); TEST_ASSERT( mbedtls_rsa_export_raw( &ctx, NULL, 0, NULL, 0, NULL, 0, bufDe, lenD ? lenD : sizeof( bufDe ), NULL, 0 ) == 0 ); } if( have_P ) TEST_ASSERT( memcmp( bufP, bufPe, lenP ) == 0 ); if( have_Q ) TEST_ASSERT( memcmp( bufQ, bufQe, lenQ ) == 0 ); if( have_D ) TEST_ASSERT( memcmp( bufD, bufDe, lenD ) == 0 ); } exit: mbedtls_rsa_free( &ctx ); } /* END_CASE */ /* BEGIN_CASE depends_on:MBEDTLS_CTR_DRBG_C:MBEDTLS_ENTROPY_C:ENTROPY_HAVE_STRONG */ void mbedtls_rsa_import_raw( char *input_N, char *input_P, char *input_Q, char *input_D, char *input_E, int successive, int is_priv, int res_check, int res_complete ) { unsigned char bufN[1000]; unsigned char bufP[1000]; unsigned char bufQ[1000]; unsigned char bufD[1000]; unsigned char bufE[1000]; /* Buffers used for encryption-decryption test */ unsigned char *buf_orig = NULL; unsigned char *buf_enc = NULL; unsigned char *buf_dec = NULL; size_t lenN = 0; size_t lenP = 0; size_t lenQ = 0; size_t lenD = 0; size_t lenE = 0; mbedtls_rsa_context ctx; mbedtls_entropy_context entropy; mbedtls_ctr_drbg_context ctr_drbg; const char *pers = "test_suite_rsa"; mbedtls_ctr_drbg_init( &ctr_drbg ); mbedtls_entropy_init( &entropy ); mbedtls_rsa_init( &ctx, 0, 0 ); TEST_ASSERT( mbedtls_ctr_drbg_seed( &ctr_drbg, mbedtls_entropy_func, &entropy, (const unsigned char *) pers, strlen( pers ) ) == 0 ); if( strlen( input_N ) ) lenN = unhexify( bufN, input_N ); if( strlen( input_P ) ) lenP = unhexify( bufP, input_P ); if( strlen( input_Q ) ) lenQ = unhexify( bufQ, input_Q ); if( strlen( input_D ) ) lenD = unhexify( bufD, input_D ); if( strlen( input_E ) ) lenE = unhexify( bufE, input_E ); if( !successive ) { TEST_ASSERT( mbedtls_rsa_import_raw( &ctx, ( lenN > 0 ) ? bufN : NULL, lenN, ( lenP > 0 ) ? bufP : NULL, lenP, ( lenQ > 0 ) ? bufQ : NULL, lenQ, ( lenD > 0 ) ? bufD : NULL, lenD, ( lenE > 0 ) ? bufE : NULL, lenE ) == 0 ); } else { /* Import N, P, Q, D, E separately. * This should make no functional difference. */ TEST_ASSERT( mbedtls_rsa_import_raw( &ctx, ( lenN > 0 ) ? bufN : NULL, lenN, NULL, 0, NULL, 0, NULL, 0, NULL, 0 ) == 0 ); TEST_ASSERT( mbedtls_rsa_import_raw( &ctx, NULL, 0, ( lenP > 0 ) ? bufP : NULL, lenP, NULL, 0, NULL, 0, NULL, 0 ) == 0 ); TEST_ASSERT( mbedtls_rsa_import_raw( &ctx, NULL, 0, NULL, 0, ( lenQ > 0 ) ? bufQ : NULL, lenQ, NULL, 0, NULL, 0 ) == 0 ); TEST_ASSERT( mbedtls_rsa_import_raw( &ctx, NULL, 0, NULL, 0, NULL, 0, ( lenD > 0 ) ? bufD : NULL, lenD, NULL, 0 ) == 0 ); TEST_ASSERT( mbedtls_rsa_import_raw( &ctx, NULL, 0, NULL, 0, NULL, 0, NULL, 0, ( lenE > 0 ) ? bufE : NULL, lenE ) == 0 ); } TEST_ASSERT( mbedtls_rsa_complete( &ctx ) == res_complete ); /* On expected success, perform some public and private * key operations to check if the key is working properly. */ if( res_complete == 0 ) { if( is_priv ) TEST_ASSERT( mbedtls_rsa_check_privkey( &ctx ) == res_check ); else TEST_ASSERT( mbedtls_rsa_check_pubkey( &ctx ) == res_check ); if( res_check != 0 ) goto exit; buf_orig = mbedtls_calloc( 1, mbedtls_rsa_get_len( &ctx ) ); buf_enc = mbedtls_calloc( 1, mbedtls_rsa_get_len( &ctx ) ); buf_dec = mbedtls_calloc( 1, mbedtls_rsa_get_len( &ctx ) ); if( buf_orig == NULL || buf_enc == NULL || buf_dec == NULL ) goto exit; TEST_ASSERT( mbedtls_ctr_drbg_random( &ctr_drbg, buf_orig, mbedtls_rsa_get_len( &ctx ) ) == 0 ); /* Make sure the number we're generating is smaller than the modulus */ buf_orig[0] = 0x00; TEST_ASSERT( mbedtls_rsa_public( &ctx, buf_orig, buf_enc ) == 0 ); if( is_priv ) { TEST_ASSERT( mbedtls_rsa_private( &ctx, mbedtls_ctr_drbg_random, &ctr_drbg, buf_enc, buf_dec ) == 0 ); TEST_ASSERT( memcmp( buf_orig, buf_dec, mbedtls_rsa_get_len( &ctx ) ) == 0 ); } } exit: mbedtls_free( buf_orig ); mbedtls_free( buf_enc ); mbedtls_free( buf_dec ); mbedtls_rsa_free( &ctx ); mbedtls_ctr_drbg_free( &ctr_drbg ); mbedtls_entropy_free( &entropy ); } /* END_CASE */ /* BEGIN_CASE depends_on:MBEDTLS_SELF_TEST */ void rsa_selftest( ) { TEST_ASSERT( mbedtls_rsa_self_test( 1 ) == 0 ); } /* END_CASE */