mirror of
https://github.com/yuzu-emu/mbedtls.git
synced 2025-01-01 02:15:50 +00:00
d4d60579e4
1) `mbedtls_rsa_import_raw` used an uninitialized return value when it was called without any input parameters. While not sensible, this is allowed and should be a succeeding no-op. 2) The MPI test for prime generation missed a return value check for a call to `mbedtls_mpi_shift_r`. This is neither critical nor new but should be fixed. 3) Both the RSA keygeneration example program and the RSA test suites contained code initializing an RSA context after a potentially failing call to CTR DRBG initialization, leaving the corresponding RSA context free call in the cleanup section of the respective function orphaned. While this defect existed before, Coverity picked up on it again because of newly introduced MPI's that were also wrongly initialized only after the call to CTR DRBG init. The commit fixes both the old and the new issue by moving the initializtion of both the RSA context and all MPI's prior to the first potentially failing call.
2240 lines
65 KiB
C
2240 lines
65 KiB
C
/*
|
|
* The RSA public-key cryptosystem
|
|
*
|
|
* Copyright (C) 2006-2015, ARM Limited, All Rights Reserved
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License"); you may
|
|
* not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
* This file is part of mbed TLS (https://tls.mbed.org)
|
|
*/
|
|
|
|
/*
|
|
* The following sources were referenced in the design of this implementation
|
|
* of the RSA algorithm:
|
|
*
|
|
* [1] A method for obtaining digital signatures and public-key cryptosystems
|
|
* R Rivest, A Shamir, and L Adleman
|
|
* http://people.csail.mit.edu/rivest/pubs.html#RSA78
|
|
*
|
|
* [2] Handbook of Applied Cryptography - 1997, Chapter 8
|
|
* Menezes, van Oorschot and Vanstone
|
|
*
|
|
* [3] Malware Guard Extension: Using SGX to Conceal Cache Attacks
|
|
* Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Maurice and
|
|
* Stefan Mangard
|
|
* https://arxiv.org/abs/1702.08719v2
|
|
*
|
|
*/
|
|
|
|
#if !defined(MBEDTLS_CONFIG_FILE)
|
|
#include "mbedtls/config.h"
|
|
#else
|
|
#include MBEDTLS_CONFIG_FILE
|
|
#endif
|
|
|
|
#if defined(MBEDTLS_RSA_C)
|
|
|
|
#include "mbedtls/rsa.h"
|
|
#include "mbedtls/rsa_internal.h"
|
|
#include "mbedtls/oid.h"
|
|
|
|
#include <string.h>
|
|
|
|
#if defined(MBEDTLS_PKCS1_V21)
|
|
#include "mbedtls/md.h"
|
|
#endif
|
|
|
|
#if defined(MBEDTLS_PKCS1_V15) && !defined(__OpenBSD__)
|
|
#include <stdlib.h>
|
|
#endif
|
|
|
|
#if defined(MBEDTLS_PLATFORM_C)
|
|
#include "mbedtls/platform.h"
|
|
#else
|
|
#include <stdio.h>
|
|
#define mbedtls_printf printf
|
|
#define mbedtls_calloc calloc
|
|
#define mbedtls_free free
|
|
#endif
|
|
|
|
#if !defined(MBEDTLS_RSA_ALT)
|
|
|
|
/* Implementation that should never be optimized out by the compiler */
|
|
static void mbedtls_zeroize( void *v, size_t n ) {
|
|
volatile unsigned char *p = (unsigned char*)v; while( n-- ) *p++ = 0;
|
|
}
|
|
|
|
int mbedtls_rsa_import( mbedtls_rsa_context *ctx,
|
|
const mbedtls_mpi *N,
|
|
const mbedtls_mpi *P, const mbedtls_mpi *Q,
|
|
const mbedtls_mpi *D, const mbedtls_mpi *E )
|
|
{
|
|
int ret;
|
|
|
|
if( ( N != NULL && ( ret = mbedtls_mpi_copy( &ctx->N, N ) ) != 0 ) ||
|
|
( P != NULL && ( ret = mbedtls_mpi_copy( &ctx->P, P ) ) != 0 ) ||
|
|
( Q != NULL && ( ret = mbedtls_mpi_copy( &ctx->Q, Q ) ) != 0 ) ||
|
|
( D != NULL && ( ret = mbedtls_mpi_copy( &ctx->D, D ) ) != 0 ) ||
|
|
( E != NULL && ( ret = mbedtls_mpi_copy( &ctx->E, E ) ) != 0 ) )
|
|
{
|
|
return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA + ret );
|
|
}
|
|
|
|
if( N != NULL )
|
|
ctx->len = mbedtls_mpi_size( &ctx->N );
|
|
|
|
return( 0 );
|
|
}
|
|
|
|
int mbedtls_rsa_import_raw( mbedtls_rsa_context *ctx,
|
|
unsigned char const *N, size_t N_len,
|
|
unsigned char const *P, size_t P_len,
|
|
unsigned char const *Q, size_t Q_len,
|
|
unsigned char const *D, size_t D_len,
|
|
unsigned char const *E, size_t E_len )
|
|
{
|
|
int ret = 0;
|
|
|
|
if( N != NULL )
|
|
{
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &ctx->N, N, N_len ) );
|
|
ctx->len = mbedtls_mpi_size( &ctx->N );
|
|
}
|
|
|
|
if( P != NULL )
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &ctx->P, P, P_len ) );
|
|
|
|
if( Q != NULL )
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &ctx->Q, Q, Q_len ) );
|
|
|
|
if( D != NULL )
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &ctx->D, D, D_len ) );
|
|
|
|
if( E != NULL )
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &ctx->E, E, E_len ) );
|
|
|
|
cleanup:
|
|
|
|
if( ret != 0 )
|
|
return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA + ret );
|
|
|
|
return( 0 );
|
|
}
|
|
|
|
/*
|
|
* Checks whether the context fields are set in such a way
|
|
* that the RSA primitives will be able to execute without error.
|
|
* It does *not* make guarantees for consistency of the parameters.
|
|
*/
|
|
static int rsa_check_context( mbedtls_rsa_context const *ctx, int is_priv,
|
|
int blinding_needed )
|
|
{
|
|
#if !defined(MBEDTLS_RSA_NO_CRT)
|
|
/* blinding_needed is only used for NO_CRT to decide whether
|
|
* P,Q need to be present or not. */
|
|
((void) blinding_needed);
|
|
#endif
|
|
|
|
if( ctx->len != mbedtls_mpi_size( &ctx->N ) ||
|
|
ctx->len > MBEDTLS_MPI_MAX_SIZE )
|
|
{
|
|
return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
|
|
}
|
|
|
|
/*
|
|
* 1. Modular exponentiation needs positive, odd moduli.
|
|
*/
|
|
|
|
/* Modular exponentiation wrt. N is always used for
|
|
* RSA public key operations. */
|
|
if( mbedtls_mpi_cmp_int( &ctx->N, 0 ) <= 0 ||
|
|
mbedtls_mpi_get_bit( &ctx->N, 0 ) == 0 )
|
|
{
|
|
return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
|
|
}
|
|
|
|
#if !defined(MBEDTLS_RSA_NO_CRT)
|
|
/* Modular exponentiation for P and Q is only
|
|
* used for private key operations and if CRT
|
|
* is used. */
|
|
if( is_priv &&
|
|
( mbedtls_mpi_cmp_int( &ctx->P, 0 ) <= 0 ||
|
|
mbedtls_mpi_get_bit( &ctx->P, 0 ) == 0 ||
|
|
mbedtls_mpi_cmp_int( &ctx->Q, 0 ) <= 0 ||
|
|
mbedtls_mpi_get_bit( &ctx->Q, 0 ) == 0 ) )
|
|
{
|
|
return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
|
|
}
|
|
#endif /* !MBEDTLS_RSA_NO_CRT */
|
|
|
|
/*
|
|
* 2. Exponents must be positive
|
|
*/
|
|
|
|
/* Always need E for public key operations */
|
|
if( mbedtls_mpi_cmp_int( &ctx->E, 0 ) <= 0 )
|
|
return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
|
|
|
|
#if defined(MBEDTLS_RSA_NO_CRT)
|
|
/* For private key operations, use D or DP & DQ
|
|
* as (unblinded) exponents. */
|
|
if( is_priv && mbedtls_mpi_cmp_int( &ctx->D, 0 ) <= 0 )
|
|
return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
|
|
#else
|
|
if( is_priv &&
|
|
( mbedtls_mpi_cmp_int( &ctx->DP, 0 ) <= 0 ||
|
|
mbedtls_mpi_cmp_int( &ctx->DQ, 0 ) <= 0 ) )
|
|
{
|
|
return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
|
|
}
|
|
#endif /* MBEDTLS_RSA_NO_CRT */
|
|
|
|
/* Blinding shouldn't make exponents negative either,
|
|
* so check that P, Q >= 1 if that hasn't yet been
|
|
* done as part of 1. */
|
|
#if defined(MBEDTLS_RSA_NO_CRT)
|
|
if( is_priv && blinding_needed &&
|
|
( mbedtls_mpi_cmp_int( &ctx->P, 0 ) <= 0 ||
|
|
mbedtls_mpi_cmp_int( &ctx->Q, 0 ) <= 0 ) )
|
|
{
|
|
return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
|
|
}
|
|
#endif
|
|
|
|
/* It wouldn't lead to an error if it wasn't satisfied,
|
|
* but check for QP >= 1 nonetheless. */
|
|
#if !defined(MBEDTLS_RSA_NO_CRT)
|
|
if( is_priv &&
|
|
mbedtls_mpi_cmp_int( &ctx->QP, 0 ) <= 0 )
|
|
{
|
|
return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
|
|
}
|
|
#endif
|
|
|
|
return( 0 );
|
|
}
|
|
|
|
int mbedtls_rsa_complete( mbedtls_rsa_context *ctx )
|
|
{
|
|
int ret = 0;
|
|
|
|
const int have_N = ( mbedtls_mpi_cmp_int( &ctx->N, 0 ) != 0 );
|
|
const int have_P = ( mbedtls_mpi_cmp_int( &ctx->P, 0 ) != 0 );
|
|
const int have_Q = ( mbedtls_mpi_cmp_int( &ctx->Q, 0 ) != 0 );
|
|
const int have_D = ( mbedtls_mpi_cmp_int( &ctx->D, 0 ) != 0 );
|
|
const int have_E = ( mbedtls_mpi_cmp_int( &ctx->E, 0 ) != 0 );
|
|
|
|
/*
|
|
* Check whether provided parameters are enough
|
|
* to deduce all others. The following incomplete
|
|
* parameter sets for private keys are supported:
|
|
*
|
|
* (1) P, Q missing.
|
|
* (2) D and potentially N missing.
|
|
*
|
|
*/
|
|
|
|
const int n_missing = have_P && have_Q && have_D && have_E;
|
|
const int pq_missing = have_N && !have_P && !have_Q && have_D && have_E;
|
|
const int d_missing = have_P && have_Q && !have_D && have_E;
|
|
const int is_pub = have_N && !have_P && !have_Q && !have_D && have_E;
|
|
|
|
/* These three alternatives are mutually exclusive */
|
|
const int is_priv = n_missing || pq_missing || d_missing;
|
|
|
|
if( !is_priv && !is_pub )
|
|
return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
|
|
|
|
/*
|
|
* Step 1: Deduce N if P, Q are provided.
|
|
*/
|
|
|
|
if( !have_N && have_P && have_Q )
|
|
{
|
|
if( ( ret = mbedtls_mpi_mul_mpi( &ctx->N, &ctx->P,
|
|
&ctx->Q ) ) != 0 )
|
|
{
|
|
return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA + ret );
|
|
}
|
|
|
|
ctx->len = mbedtls_mpi_size( &ctx->N );
|
|
}
|
|
|
|
/*
|
|
* Step 2: Deduce and verify all remaining core parameters.
|
|
*/
|
|
|
|
if( pq_missing )
|
|
{
|
|
ret = mbedtls_rsa_deduce_primes( &ctx->N, &ctx->E, &ctx->D,
|
|
&ctx->P, &ctx->Q );
|
|
if( ret != 0 )
|
|
return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA + ret );
|
|
|
|
}
|
|
else if( d_missing )
|
|
{
|
|
if( ( ret = mbedtls_rsa_deduce_private_exponent( &ctx->P,
|
|
&ctx->Q,
|
|
&ctx->E,
|
|
&ctx->D ) ) != 0 )
|
|
{
|
|
return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA + ret );
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Step 3: Deduce all additional parameters specific
|
|
* to our current RSA implementation.
|
|
*/
|
|
|
|
#if !defined(MBEDTLS_RSA_NO_CRT)
|
|
if( is_priv )
|
|
{
|
|
ret = mbedtls_rsa_deduce_crt( &ctx->P, &ctx->Q, &ctx->D,
|
|
&ctx->DP, &ctx->DQ, &ctx->QP );
|
|
if( ret != 0 )
|
|
return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA + ret );
|
|
}
|
|
#endif /* MBEDTLS_RSA_NO_CRT */
|
|
|
|
/*
|
|
* Step 3: Basic sanity checks
|
|
*/
|
|
|
|
return( rsa_check_context( ctx, is_priv, 1 ) );
|
|
}
|
|
|
|
int mbedtls_rsa_export_raw( const mbedtls_rsa_context *ctx,
|
|
unsigned char *N, size_t N_len,
|
|
unsigned char *P, size_t P_len,
|
|
unsigned char *Q, size_t Q_len,
|
|
unsigned char *D, size_t D_len,
|
|
unsigned char *E, size_t E_len )
|
|
{
|
|
int ret = 0;
|
|
|
|
/* Check if key is private or public */
|
|
const int is_priv =
|
|
mbedtls_mpi_cmp_int( &ctx->N, 0 ) != 0 &&
|
|
mbedtls_mpi_cmp_int( &ctx->P, 0 ) != 0 &&
|
|
mbedtls_mpi_cmp_int( &ctx->Q, 0 ) != 0 &&
|
|
mbedtls_mpi_cmp_int( &ctx->D, 0 ) != 0 &&
|
|
mbedtls_mpi_cmp_int( &ctx->E, 0 ) != 0;
|
|
|
|
if( !is_priv )
|
|
{
|
|
/* If we're trying to export private parameters for a public key,
|
|
* something must be wrong. */
|
|
if( P != NULL || Q != NULL || D != NULL )
|
|
return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
|
|
|
|
}
|
|
|
|
if( N != NULL )
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &ctx->N, N, N_len ) );
|
|
|
|
if( P != NULL )
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &ctx->P, P, P_len ) );
|
|
|
|
if( Q != NULL )
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &ctx->Q, Q, Q_len ) );
|
|
|
|
if( D != NULL )
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &ctx->D, D, D_len ) );
|
|
|
|
if( E != NULL )
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &ctx->E, E, E_len ) );
|
|
|
|
cleanup:
|
|
|
|
return( ret );
|
|
}
|
|
|
|
int mbedtls_rsa_export( const mbedtls_rsa_context *ctx,
|
|
mbedtls_mpi *N, mbedtls_mpi *P, mbedtls_mpi *Q,
|
|
mbedtls_mpi *D, mbedtls_mpi *E )
|
|
{
|
|
int ret;
|
|
|
|
/* Check if key is private or public */
|
|
int is_priv =
|
|
mbedtls_mpi_cmp_int( &ctx->N, 0 ) != 0 &&
|
|
mbedtls_mpi_cmp_int( &ctx->P, 0 ) != 0 &&
|
|
mbedtls_mpi_cmp_int( &ctx->Q, 0 ) != 0 &&
|
|
mbedtls_mpi_cmp_int( &ctx->D, 0 ) != 0 &&
|
|
mbedtls_mpi_cmp_int( &ctx->E, 0 ) != 0;
|
|
|
|
if( !is_priv )
|
|
{
|
|
/* If we're trying to export private parameters for a public key,
|
|
* something must be wrong. */
|
|
if( P != NULL || Q != NULL || D != NULL )
|
|
return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
|
|
|
|
}
|
|
|
|
/* Export all requested core parameters. */
|
|
|
|
if( ( N != NULL && ( ret = mbedtls_mpi_copy( N, &ctx->N ) ) != 0 ) ||
|
|
( P != NULL && ( ret = mbedtls_mpi_copy( P, &ctx->P ) ) != 0 ) ||
|
|
( Q != NULL && ( ret = mbedtls_mpi_copy( Q, &ctx->Q ) ) != 0 ) ||
|
|
( D != NULL && ( ret = mbedtls_mpi_copy( D, &ctx->D ) ) != 0 ) ||
|
|
( E != NULL && ( ret = mbedtls_mpi_copy( E, &ctx->E ) ) != 0 ) )
|
|
{
|
|
return( ret );
|
|
}
|
|
|
|
return( 0 );
|
|
}
|
|
|
|
/*
|
|
* Export CRT parameters
|
|
* This must also be implemented if CRT is not used, for being able to
|
|
* write DER encoded RSA keys. The helper function mbedtls_rsa_deduce_crt
|
|
* can be used in this case.
|
|
*/
|
|
int mbedtls_rsa_export_crt( const mbedtls_rsa_context *ctx,
|
|
mbedtls_mpi *DP, mbedtls_mpi *DQ, mbedtls_mpi *QP )
|
|
{
|
|
int ret;
|
|
|
|
/* Check if key is private or public */
|
|
int is_priv =
|
|
mbedtls_mpi_cmp_int( &ctx->N, 0 ) != 0 &&
|
|
mbedtls_mpi_cmp_int( &ctx->P, 0 ) != 0 &&
|
|
mbedtls_mpi_cmp_int( &ctx->Q, 0 ) != 0 &&
|
|
mbedtls_mpi_cmp_int( &ctx->D, 0 ) != 0 &&
|
|
mbedtls_mpi_cmp_int( &ctx->E, 0 ) != 0;
|
|
|
|
if( !is_priv )
|
|
return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
|
|
|
|
#if !defined(MBEDTLS_RSA_NO_CRT)
|
|
/* Export all requested blinding parameters. */
|
|
if( ( DP != NULL && ( ret = mbedtls_mpi_copy( DP, &ctx->DP ) ) != 0 ) ||
|
|
( DQ != NULL && ( ret = mbedtls_mpi_copy( DQ, &ctx->DQ ) ) != 0 ) ||
|
|
( QP != NULL && ( ret = mbedtls_mpi_copy( QP, &ctx->QP ) ) != 0 ) )
|
|
{
|
|
return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA + ret );
|
|
}
|
|
#else
|
|
if( ( ret = mbedtls_rsa_deduce_crt( &ctx->P, &ctx->Q, &ctx->D,
|
|
DP, DQ, QP ) ) != 0 )
|
|
{
|
|
return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA + ret );
|
|
}
|
|
#endif
|
|
|
|
return( 0 );
|
|
}
|
|
|
|
/*
|
|
* Initialize an RSA context
|
|
*/
|
|
void mbedtls_rsa_init( mbedtls_rsa_context *ctx,
|
|
int padding,
|
|
int hash_id )
|
|
{
|
|
memset( ctx, 0, sizeof( mbedtls_rsa_context ) );
|
|
|
|
mbedtls_rsa_set_padding( ctx, padding, hash_id );
|
|
|
|
#if defined(MBEDTLS_THREADING_C)
|
|
mbedtls_mutex_init( &ctx->mutex );
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Set padding for an existing RSA context
|
|
*/
|
|
void mbedtls_rsa_set_padding( mbedtls_rsa_context *ctx, int padding, int hash_id )
|
|
{
|
|
ctx->padding = padding;
|
|
ctx->hash_id = hash_id;
|
|
}
|
|
|
|
/*
|
|
* Get length in bytes of RSA modulus
|
|
*/
|
|
|
|
size_t mbedtls_rsa_get_len( const mbedtls_rsa_context *ctx )
|
|
{
|
|
return( ctx->len );
|
|
}
|
|
|
|
|
|
#if defined(MBEDTLS_GENPRIME)
|
|
|
|
/*
|
|
* Generate an RSA keypair
|
|
*/
|
|
int mbedtls_rsa_gen_key( mbedtls_rsa_context *ctx,
|
|
int (*f_rng)(void *, unsigned char *, size_t),
|
|
void *p_rng,
|
|
unsigned int nbits, int exponent )
|
|
{
|
|
int ret;
|
|
mbedtls_mpi H, G;
|
|
|
|
if( f_rng == NULL || nbits < 128 || exponent < 3 )
|
|
return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
|
|
|
|
if( nbits % 2 )
|
|
return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
|
|
|
|
mbedtls_mpi_init( &H );
|
|
mbedtls_mpi_init( &G );
|
|
|
|
/*
|
|
* find primes P and Q with Q < P so that:
|
|
* GCD( E, (P-1)*(Q-1) ) == 1
|
|
*/
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &ctx->E, exponent ) );
|
|
|
|
do
|
|
{
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_gen_prime( &ctx->P, nbits >> 1, 0,
|
|
f_rng, p_rng ) );
|
|
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_gen_prime( &ctx->Q, nbits >> 1, 0,
|
|
f_rng, p_rng ) );
|
|
|
|
if( mbedtls_mpi_cmp_mpi( &ctx->P, &ctx->Q ) == 0 )
|
|
continue;
|
|
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &ctx->N, &ctx->P, &ctx->Q ) );
|
|
if( mbedtls_mpi_bitlen( &ctx->N ) != nbits )
|
|
continue;
|
|
|
|
if( mbedtls_mpi_cmp_mpi( &ctx->P, &ctx->Q ) < 0 )
|
|
mbedtls_mpi_swap( &ctx->P, &ctx->Q );
|
|
|
|
/* Temporarily replace P,Q by P-1, Q-1 */
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &ctx->P, &ctx->P, 1 ) );
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &ctx->Q, &ctx->Q, 1 ) );
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &H, &ctx->P, &ctx->Q ) );
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( &G, &ctx->E, &H ) );
|
|
}
|
|
while( mbedtls_mpi_cmp_int( &G, 1 ) != 0 );
|
|
|
|
/* Restore P,Q */
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( &ctx->P, &ctx->P, 1 ) );
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( &ctx->Q, &ctx->Q, 1 ) );
|
|
|
|
ctx->len = mbedtls_mpi_size( &ctx->N );
|
|
|
|
/*
|
|
* D = E^-1 mod ((P-1)*(Q-1))
|
|
* DP = D mod (P - 1)
|
|
* DQ = D mod (Q - 1)
|
|
* QP = Q^-1 mod P
|
|
*/
|
|
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( &ctx->D, &ctx->E, &H ) );
|
|
|
|
#if !defined(MBEDTLS_RSA_NO_CRT)
|
|
MBEDTLS_MPI_CHK( mbedtls_rsa_deduce_crt( &ctx->P, &ctx->Q, &ctx->D,
|
|
&ctx->DP, &ctx->DQ, &ctx->QP ) );
|
|
#endif /* MBEDTLS_RSA_NO_CRT */
|
|
|
|
/* Double-check */
|
|
MBEDTLS_MPI_CHK( mbedtls_rsa_check_privkey( ctx ) );
|
|
|
|
cleanup:
|
|
|
|
mbedtls_mpi_free( &H );
|
|
mbedtls_mpi_free( &G );
|
|
|
|
if( ret != 0 )
|
|
{
|
|
mbedtls_rsa_free( ctx );
|
|
return( MBEDTLS_ERR_RSA_KEY_GEN_FAILED + ret );
|
|
}
|
|
|
|
return( 0 );
|
|
}
|
|
|
|
#endif /* MBEDTLS_GENPRIME */
|
|
|
|
/*
|
|
* Check a public RSA key
|
|
*/
|
|
int mbedtls_rsa_check_pubkey( const mbedtls_rsa_context *ctx )
|
|
{
|
|
if( rsa_check_context( ctx, 0 /* public */, 0 /* no blinding */ ) != 0 )
|
|
return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED );
|
|
|
|
if( mbedtls_mpi_bitlen( &ctx->N ) < 128 )
|
|
{
|
|
return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED );
|
|
}
|
|
|
|
if( mbedtls_mpi_get_bit( &ctx->E, 0 ) == 0 ||
|
|
mbedtls_mpi_bitlen( &ctx->E ) < 2 ||
|
|
mbedtls_mpi_cmp_mpi( &ctx->E, &ctx->N ) >= 0 )
|
|
{
|
|
return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED );
|
|
}
|
|
|
|
return( 0 );
|
|
}
|
|
|
|
/*
|
|
* Check for the consistency of all fields in an RSA private key context
|
|
*/
|
|
int mbedtls_rsa_check_privkey( const mbedtls_rsa_context *ctx )
|
|
{
|
|
if( mbedtls_rsa_check_pubkey( ctx ) != 0 ||
|
|
rsa_check_context( ctx, 1 /* private */, 1 /* blinding */ ) != 0 )
|
|
{
|
|
return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED );
|
|
}
|
|
|
|
if( mbedtls_rsa_validate_params( &ctx->N, &ctx->P, &ctx->Q,
|
|
&ctx->D, &ctx->E, NULL, NULL ) != 0 )
|
|
{
|
|
return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED );
|
|
}
|
|
|
|
#if !defined(MBEDTLS_RSA_NO_CRT)
|
|
else if( mbedtls_rsa_validate_crt( &ctx->P, &ctx->Q, &ctx->D,
|
|
&ctx->DP, &ctx->DQ, &ctx->QP ) != 0 )
|
|
{
|
|
return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED );
|
|
}
|
|
#endif
|
|
|
|
return( 0 );
|
|
}
|
|
|
|
/*
|
|
* Check if contexts holding a public and private key match
|
|
*/
|
|
int mbedtls_rsa_check_pub_priv( const mbedtls_rsa_context *pub,
|
|
const mbedtls_rsa_context *prv )
|
|
{
|
|
if( mbedtls_rsa_check_pubkey( pub ) != 0 ||
|
|
mbedtls_rsa_check_privkey( prv ) != 0 )
|
|
{
|
|
return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED );
|
|
}
|
|
|
|
if( mbedtls_mpi_cmp_mpi( &pub->N, &prv->N ) != 0 ||
|
|
mbedtls_mpi_cmp_mpi( &pub->E, &prv->E ) != 0 )
|
|
{
|
|
return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED );
|
|
}
|
|
|
|
return( 0 );
|
|
}
|
|
|
|
/*
|
|
* Do an RSA public key operation
|
|
*/
|
|
int mbedtls_rsa_public( mbedtls_rsa_context *ctx,
|
|
const unsigned char *input,
|
|
unsigned char *output )
|
|
{
|
|
int ret;
|
|
size_t olen;
|
|
mbedtls_mpi T;
|
|
|
|
if( rsa_check_context( ctx, 0 /* public */, 0 /* no blinding */ ) )
|
|
return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
|
|
|
|
mbedtls_mpi_init( &T );
|
|
|
|
#if defined(MBEDTLS_THREADING_C)
|
|
if( ( ret = mbedtls_mutex_lock( &ctx->mutex ) ) != 0 )
|
|
return( ret );
|
|
#endif
|
|
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &T, input, ctx->len ) );
|
|
|
|
if( mbedtls_mpi_cmp_mpi( &T, &ctx->N ) >= 0 )
|
|
{
|
|
ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
|
|
goto cleanup;
|
|
}
|
|
|
|
olen = ctx->len;
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &T, &T, &ctx->E, &ctx->N, &ctx->RN ) );
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &T, output, olen ) );
|
|
|
|
cleanup:
|
|
#if defined(MBEDTLS_THREADING_C)
|
|
if( mbedtls_mutex_unlock( &ctx->mutex ) != 0 )
|
|
return( MBEDTLS_ERR_THREADING_MUTEX_ERROR );
|
|
#endif
|
|
|
|
mbedtls_mpi_free( &T );
|
|
|
|
if( ret != 0 )
|
|
return( MBEDTLS_ERR_RSA_PUBLIC_FAILED + ret );
|
|
|
|
return( 0 );
|
|
}
|
|
|
|
/*
|
|
* Generate or update blinding values, see section 10 of:
|
|
* KOCHER, Paul C. Timing attacks on implementations of Diffie-Hellman, RSA,
|
|
* DSS, and other systems. In : Advances in Cryptology-CRYPTO'96. Springer
|
|
* Berlin Heidelberg, 1996. p. 104-113.
|
|
*/
|
|
static int rsa_prepare_blinding( mbedtls_rsa_context *ctx,
|
|
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
|
|
{
|
|
int ret, count = 0;
|
|
|
|
if( ctx->Vf.p != NULL )
|
|
{
|
|
/* We already have blinding values, just update them by squaring */
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &ctx->Vi, &ctx->Vi, &ctx->Vi ) );
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &ctx->Vi, &ctx->Vi, &ctx->N ) );
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &ctx->Vf, &ctx->Vf, &ctx->Vf ) );
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &ctx->Vf, &ctx->Vf, &ctx->N ) );
|
|
|
|
goto cleanup;
|
|
}
|
|
|
|
/* Unblinding value: Vf = random number, invertible mod N */
|
|
do {
|
|
if( count++ > 10 )
|
|
return( MBEDTLS_ERR_RSA_RNG_FAILED );
|
|
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &ctx->Vf, ctx->len - 1, f_rng, p_rng ) );
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( &ctx->Vi, &ctx->Vf, &ctx->N ) );
|
|
} while( mbedtls_mpi_cmp_int( &ctx->Vi, 1 ) != 0 );
|
|
|
|
/* Blinding value: Vi = Vf^(-e) mod N */
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( &ctx->Vi, &ctx->Vf, &ctx->N ) );
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &ctx->Vi, &ctx->Vi, &ctx->E, &ctx->N, &ctx->RN ) );
|
|
|
|
|
|
cleanup:
|
|
return( ret );
|
|
}
|
|
|
|
/*
|
|
* Exponent blinding supposed to prevent side-channel attacks using multiple
|
|
* traces of measurements to recover the RSA key. The more collisions are there,
|
|
* the more bits of the key can be recovered. See [3].
|
|
*
|
|
* Collecting n collisions with m bit long blinding value requires 2^(m-m/n)
|
|
* observations on avarage.
|
|
*
|
|
* For example with 28 byte blinding to achieve 2 collisions the adversary has
|
|
* to make 2^112 observations on avarage.
|
|
*
|
|
* (With the currently (as of 2017 April) known best algorithms breaking 2048
|
|
* bit RSA requires approximately as much time as trying out 2^112 random keys.
|
|
* Thus in this sense with 28 byte blinding the security is not reduced by
|
|
* side-channel attacks like the one in [3])
|
|
*
|
|
* This countermeasure does not help if the key recovery is possible with a
|
|
* single trace.
|
|
*/
|
|
#define RSA_EXPONENT_BLINDING 28
|
|
|
|
/*
|
|
* Do an RSA private key operation
|
|
*/
|
|
int mbedtls_rsa_private( mbedtls_rsa_context *ctx,
|
|
int (*f_rng)(void *, unsigned char *, size_t),
|
|
void *p_rng,
|
|
const unsigned char *input,
|
|
unsigned char *output )
|
|
{
|
|
int ret;
|
|
size_t olen;
|
|
mbedtls_mpi T, T1, T2;
|
|
mbedtls_mpi P1, Q1, R;
|
|
#if defined(MBEDTLS_RSA_NO_CRT)
|
|
mbedtls_mpi D_blind;
|
|
mbedtls_mpi *D = &ctx->D;
|
|
#else
|
|
mbedtls_mpi DP_blind, DQ_blind;
|
|
mbedtls_mpi *DP = &ctx->DP;
|
|
mbedtls_mpi *DQ = &ctx->DQ;
|
|
#endif
|
|
|
|
if( rsa_check_context( ctx, 1 /* private key checks */,
|
|
f_rng != NULL /* blinding y/n */ ) != 0 )
|
|
{
|
|
return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
|
|
}
|
|
|
|
mbedtls_mpi_init( &T ); mbedtls_mpi_init( &T1 ); mbedtls_mpi_init( &T2 );
|
|
mbedtls_mpi_init( &P1 ); mbedtls_mpi_init( &Q1 ); mbedtls_mpi_init( &R );
|
|
|
|
if( f_rng != NULL )
|
|
{
|
|
#if defined(MBEDTLS_RSA_NO_CRT)
|
|
mbedtls_mpi_init( &D_blind );
|
|
#else
|
|
mbedtls_mpi_init( &DP_blind );
|
|
mbedtls_mpi_init( &DQ_blind );
|
|
#endif
|
|
}
|
|
|
|
|
|
#if defined(MBEDTLS_THREADING_C)
|
|
if( ( ret = mbedtls_mutex_lock( &ctx->mutex ) ) != 0 )
|
|
return( ret );
|
|
#endif
|
|
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &T, input, ctx->len ) );
|
|
if( mbedtls_mpi_cmp_mpi( &T, &ctx->N ) >= 0 )
|
|
{
|
|
ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
|
|
goto cleanup;
|
|
}
|
|
|
|
if( f_rng != NULL )
|
|
{
|
|
/*
|
|
* Blinding
|
|
* T = T * Vi mod N
|
|
*/
|
|
MBEDTLS_MPI_CHK( rsa_prepare_blinding( ctx, f_rng, p_rng ) );
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T, &T, &ctx->Vi ) );
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &T, &T, &ctx->N ) );
|
|
|
|
/*
|
|
* Exponent blinding
|
|
*/
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &P1, &ctx->P, 1 ) );
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &Q1, &ctx->Q, 1 ) );
|
|
|
|
#if defined(MBEDTLS_RSA_NO_CRT)
|
|
/*
|
|
* D_blind = ( P - 1 ) * ( Q - 1 ) * R + D
|
|
*/
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &R, RSA_EXPONENT_BLINDING,
|
|
f_rng, p_rng ) );
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &D_blind, &P1, &Q1 ) );
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &D_blind, &D_blind, &R ) );
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &D_blind, &D_blind, &ctx->D ) );
|
|
|
|
D = &D_blind;
|
|
#else
|
|
/*
|
|
* DP_blind = ( P - 1 ) * R + DP
|
|
*/
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &R, RSA_EXPONENT_BLINDING,
|
|
f_rng, p_rng ) );
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &DP_blind, &P1, &R ) );
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &DP_blind, &DP_blind,
|
|
&ctx->DP ) );
|
|
|
|
DP = &DP_blind;
|
|
|
|
/*
|
|
* DQ_blind = ( Q - 1 ) * R + DQ
|
|
*/
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &R, RSA_EXPONENT_BLINDING,
|
|
f_rng, p_rng ) );
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &DQ_blind, &Q1, &R ) );
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &DQ_blind, &DQ_blind,
|
|
&ctx->DQ ) );
|
|
|
|
DQ = &DQ_blind;
|
|
#endif /* MBEDTLS_RSA_NO_CRT */
|
|
}
|
|
|
|
#if defined(MBEDTLS_RSA_NO_CRT)
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &T, &T, D, &ctx->N, &ctx->RN ) );
|
|
#else
|
|
/*
|
|
* Faster decryption using the CRT
|
|
*
|
|
* T1 = input ^ dP mod P
|
|
* T2 = input ^ dQ mod Q
|
|
*/
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &T1, &T, DP, &ctx->P, &ctx->RP ) );
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &T2, &T, DQ, &ctx->Q, &ctx->RQ ) );
|
|
|
|
/*
|
|
* T = (T1 - T2) * (Q^-1 mod P) mod P
|
|
*/
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &T, &T1, &T2 ) );
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T1, &T, &ctx->QP ) );
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &T, &T1, &ctx->P ) );
|
|
|
|
/*
|
|
* T = T2 + T * Q
|
|
*/
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T1, &T, &ctx->Q ) );
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &T, &T2, &T1 ) );
|
|
#endif /* MBEDTLS_RSA_NO_CRT */
|
|
|
|
if( f_rng != NULL )
|
|
{
|
|
/*
|
|
* Unblind
|
|
* T = T * Vf mod N
|
|
*/
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T, &T, &ctx->Vf ) );
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &T, &T, &ctx->N ) );
|
|
}
|
|
|
|
olen = ctx->len;
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &T, output, olen ) );
|
|
|
|
cleanup:
|
|
#if defined(MBEDTLS_THREADING_C)
|
|
if( mbedtls_mutex_unlock( &ctx->mutex ) != 0 )
|
|
return( MBEDTLS_ERR_THREADING_MUTEX_ERROR );
|
|
#endif
|
|
|
|
mbedtls_mpi_free( &T ); mbedtls_mpi_free( &T1 ); mbedtls_mpi_free( &T2 );
|
|
mbedtls_mpi_free( &P1 ); mbedtls_mpi_free( &Q1 ); mbedtls_mpi_free( &R );
|
|
|
|
if( f_rng != NULL )
|
|
{
|
|
#if defined(MBEDTLS_RSA_NO_CRT)
|
|
mbedtls_mpi_free( &D_blind );
|
|
#else
|
|
mbedtls_mpi_free( &DP_blind );
|
|
mbedtls_mpi_free( &DQ_blind );
|
|
#endif
|
|
}
|
|
|
|
if( ret != 0 )
|
|
return( MBEDTLS_ERR_RSA_PRIVATE_FAILED + ret );
|
|
|
|
return( 0 );
|
|
}
|
|
|
|
#if defined(MBEDTLS_PKCS1_V21)
|
|
/**
|
|
* Generate and apply the MGF1 operation (from PKCS#1 v2.1) to a buffer.
|
|
*
|
|
* \param dst buffer to mask
|
|
* \param dlen length of destination buffer
|
|
* \param src source of the mask generation
|
|
* \param slen length of the source buffer
|
|
* \param md_ctx message digest context to use
|
|
*/
|
|
static void mgf_mask( unsigned char *dst, size_t dlen, unsigned char *src,
|
|
size_t slen, mbedtls_md_context_t *md_ctx )
|
|
{
|
|
unsigned char mask[MBEDTLS_MD_MAX_SIZE];
|
|
unsigned char counter[4];
|
|
unsigned char *p;
|
|
unsigned int hlen;
|
|
size_t i, use_len;
|
|
|
|
memset( mask, 0, MBEDTLS_MD_MAX_SIZE );
|
|
memset( counter, 0, 4 );
|
|
|
|
hlen = mbedtls_md_get_size( md_ctx->md_info );
|
|
|
|
/* Generate and apply dbMask */
|
|
p = dst;
|
|
|
|
while( dlen > 0 )
|
|
{
|
|
use_len = hlen;
|
|
if( dlen < hlen )
|
|
use_len = dlen;
|
|
|
|
mbedtls_md_starts( md_ctx );
|
|
mbedtls_md_update( md_ctx, src, slen );
|
|
mbedtls_md_update( md_ctx, counter, 4 );
|
|
mbedtls_md_finish( md_ctx, mask );
|
|
|
|
for( i = 0; i < use_len; ++i )
|
|
*p++ ^= mask[i];
|
|
|
|
counter[3]++;
|
|
|
|
dlen -= use_len;
|
|
}
|
|
|
|
mbedtls_zeroize( mask, sizeof( mask ) );
|
|
}
|
|
#endif /* MBEDTLS_PKCS1_V21 */
|
|
|
|
#if defined(MBEDTLS_PKCS1_V21)
|
|
/*
|
|
* Implementation of the PKCS#1 v2.1 RSAES-OAEP-ENCRYPT function
|
|
*/
|
|
int mbedtls_rsa_rsaes_oaep_encrypt( mbedtls_rsa_context *ctx,
|
|
int (*f_rng)(void *, unsigned char *, size_t),
|
|
void *p_rng,
|
|
int mode,
|
|
const unsigned char *label, size_t label_len,
|
|
size_t ilen,
|
|
const unsigned char *input,
|
|
unsigned char *output )
|
|
{
|
|
size_t olen;
|
|
int ret;
|
|
unsigned char *p = output;
|
|
unsigned int hlen;
|
|
const mbedtls_md_info_t *md_info;
|
|
mbedtls_md_context_t md_ctx;
|
|
|
|
if( mode == MBEDTLS_RSA_PRIVATE && ctx->padding != MBEDTLS_RSA_PKCS_V21 )
|
|
return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
|
|
|
|
if( f_rng == NULL )
|
|
return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
|
|
|
|
md_info = mbedtls_md_info_from_type( (mbedtls_md_type_t) ctx->hash_id );
|
|
if( md_info == NULL )
|
|
return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
|
|
|
|
olen = ctx->len;
|
|
hlen = mbedtls_md_get_size( md_info );
|
|
|
|
/* first comparison checks for overflow */
|
|
if( ilen + 2 * hlen + 2 < ilen || olen < ilen + 2 * hlen + 2 )
|
|
return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
|
|
|
|
memset( output, 0, olen );
|
|
|
|
*p++ = 0;
|
|
|
|
/* Generate a random octet string seed */
|
|
if( ( ret = f_rng( p_rng, p, hlen ) ) != 0 )
|
|
return( MBEDTLS_ERR_RSA_RNG_FAILED + ret );
|
|
|
|
p += hlen;
|
|
|
|
/* Construct DB */
|
|
mbedtls_md( md_info, label, label_len, p );
|
|
p += hlen;
|
|
p += olen - 2 * hlen - 2 - ilen;
|
|
*p++ = 1;
|
|
memcpy( p, input, ilen );
|
|
|
|
mbedtls_md_init( &md_ctx );
|
|
if( ( ret = mbedtls_md_setup( &md_ctx, md_info, 0 ) ) != 0 )
|
|
{
|
|
mbedtls_md_free( &md_ctx );
|
|
return( ret );
|
|
}
|
|
|
|
/* maskedDB: Apply dbMask to DB */
|
|
mgf_mask( output + hlen + 1, olen - hlen - 1, output + 1, hlen,
|
|
&md_ctx );
|
|
|
|
/* maskedSeed: Apply seedMask to seed */
|
|
mgf_mask( output + 1, hlen, output + hlen + 1, olen - hlen - 1,
|
|
&md_ctx );
|
|
|
|
mbedtls_md_free( &md_ctx );
|
|
|
|
return( ( mode == MBEDTLS_RSA_PUBLIC )
|
|
? mbedtls_rsa_public( ctx, output, output )
|
|
: mbedtls_rsa_private( ctx, f_rng, p_rng, output, output ) );
|
|
}
|
|
#endif /* MBEDTLS_PKCS1_V21 */
|
|
|
|
#if defined(MBEDTLS_PKCS1_V15)
|
|
/*
|
|
* Implementation of the PKCS#1 v2.1 RSAES-PKCS1-V1_5-ENCRYPT function
|
|
*/
|
|
int mbedtls_rsa_rsaes_pkcs1_v15_encrypt( mbedtls_rsa_context *ctx,
|
|
int (*f_rng)(void *, unsigned char *, size_t),
|
|
void *p_rng,
|
|
int mode, size_t ilen,
|
|
const unsigned char *input,
|
|
unsigned char *output )
|
|
{
|
|
size_t nb_pad, olen;
|
|
int ret;
|
|
unsigned char *p = output;
|
|
|
|
if( mode == MBEDTLS_RSA_PRIVATE && ctx->padding != MBEDTLS_RSA_PKCS_V15 )
|
|
return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
|
|
|
|
// We don't check p_rng because it won't be dereferenced here
|
|
if( f_rng == NULL || input == NULL || output == NULL )
|
|
return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
|
|
|
|
olen = ctx->len;
|
|
|
|
/* first comparison checks for overflow */
|
|
if( ilen + 11 < ilen || olen < ilen + 11 )
|
|
return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
|
|
|
|
nb_pad = olen - 3 - ilen;
|
|
|
|
*p++ = 0;
|
|
if( mode == MBEDTLS_RSA_PUBLIC )
|
|
{
|
|
*p++ = MBEDTLS_RSA_CRYPT;
|
|
|
|
while( nb_pad-- > 0 )
|
|
{
|
|
int rng_dl = 100;
|
|
|
|
do {
|
|
ret = f_rng( p_rng, p, 1 );
|
|
} while( *p == 0 && --rng_dl && ret == 0 );
|
|
|
|
/* Check if RNG failed to generate data */
|
|
if( rng_dl == 0 || ret != 0 )
|
|
return( MBEDTLS_ERR_RSA_RNG_FAILED + ret );
|
|
|
|
p++;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
*p++ = MBEDTLS_RSA_SIGN;
|
|
|
|
while( nb_pad-- > 0 )
|
|
*p++ = 0xFF;
|
|
}
|
|
|
|
*p++ = 0;
|
|
memcpy( p, input, ilen );
|
|
|
|
return( ( mode == MBEDTLS_RSA_PUBLIC )
|
|
? mbedtls_rsa_public( ctx, output, output )
|
|
: mbedtls_rsa_private( ctx, f_rng, p_rng, output, output ) );
|
|
}
|
|
#endif /* MBEDTLS_PKCS1_V15 */
|
|
|
|
/*
|
|
* Add the message padding, then do an RSA operation
|
|
*/
|
|
int mbedtls_rsa_pkcs1_encrypt( mbedtls_rsa_context *ctx,
|
|
int (*f_rng)(void *, unsigned char *, size_t),
|
|
void *p_rng,
|
|
int mode, size_t ilen,
|
|
const unsigned char *input,
|
|
unsigned char *output )
|
|
{
|
|
switch( ctx->padding )
|
|
{
|
|
#if defined(MBEDTLS_PKCS1_V15)
|
|
case MBEDTLS_RSA_PKCS_V15:
|
|
return mbedtls_rsa_rsaes_pkcs1_v15_encrypt( ctx, f_rng, p_rng, mode, ilen,
|
|
input, output );
|
|
#endif
|
|
|
|
#if defined(MBEDTLS_PKCS1_V21)
|
|
case MBEDTLS_RSA_PKCS_V21:
|
|
return mbedtls_rsa_rsaes_oaep_encrypt( ctx, f_rng, p_rng, mode, NULL, 0,
|
|
ilen, input, output );
|
|
#endif
|
|
|
|
default:
|
|
return( MBEDTLS_ERR_RSA_INVALID_PADDING );
|
|
}
|
|
}
|
|
|
|
#if defined(MBEDTLS_PKCS1_V21)
|
|
/*
|
|
* Implementation of the PKCS#1 v2.1 RSAES-OAEP-DECRYPT function
|
|
*/
|
|
int mbedtls_rsa_rsaes_oaep_decrypt( mbedtls_rsa_context *ctx,
|
|
int (*f_rng)(void *, unsigned char *, size_t),
|
|
void *p_rng,
|
|
int mode,
|
|
const unsigned char *label, size_t label_len,
|
|
size_t *olen,
|
|
const unsigned char *input,
|
|
unsigned char *output,
|
|
size_t output_max_len )
|
|
{
|
|
int ret;
|
|
size_t ilen, i, pad_len;
|
|
unsigned char *p, bad, pad_done;
|
|
unsigned char buf[MBEDTLS_MPI_MAX_SIZE];
|
|
unsigned char lhash[MBEDTLS_MD_MAX_SIZE];
|
|
unsigned int hlen;
|
|
const mbedtls_md_info_t *md_info;
|
|
mbedtls_md_context_t md_ctx;
|
|
|
|
/*
|
|
* Parameters sanity checks
|
|
*/
|
|
if( mode == MBEDTLS_RSA_PRIVATE && ctx->padding != MBEDTLS_RSA_PKCS_V21 )
|
|
return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
|
|
|
|
ilen = ctx->len;
|
|
|
|
if( ilen < 16 || ilen > sizeof( buf ) )
|
|
return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
|
|
|
|
md_info = mbedtls_md_info_from_type( (mbedtls_md_type_t) ctx->hash_id );
|
|
if( md_info == NULL )
|
|
return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
|
|
|
|
hlen = mbedtls_md_get_size( md_info );
|
|
|
|
// checking for integer underflow
|
|
if( 2 * hlen + 2 > ilen )
|
|
return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
|
|
|
|
/*
|
|
* RSA operation
|
|
*/
|
|
ret = ( mode == MBEDTLS_RSA_PUBLIC )
|
|
? mbedtls_rsa_public( ctx, input, buf )
|
|
: mbedtls_rsa_private( ctx, f_rng, p_rng, input, buf );
|
|
|
|
if( ret != 0 )
|
|
goto cleanup;
|
|
|
|
/*
|
|
* Unmask data and generate lHash
|
|
*/
|
|
mbedtls_md_init( &md_ctx );
|
|
if( ( ret = mbedtls_md_setup( &md_ctx, md_info, 0 ) ) != 0 )
|
|
{
|
|
mbedtls_md_free( &md_ctx );
|
|
goto cleanup;
|
|
}
|
|
|
|
|
|
/* Generate lHash */
|
|
mbedtls_md( md_info, label, label_len, lhash );
|
|
|
|
/* seed: Apply seedMask to maskedSeed */
|
|
mgf_mask( buf + 1, hlen, buf + hlen + 1, ilen - hlen - 1,
|
|
&md_ctx );
|
|
|
|
/* DB: Apply dbMask to maskedDB */
|
|
mgf_mask( buf + hlen + 1, ilen - hlen - 1, buf + 1, hlen,
|
|
&md_ctx );
|
|
|
|
mbedtls_md_free( &md_ctx );
|
|
|
|
/*
|
|
* Check contents, in "constant-time"
|
|
*/
|
|
p = buf;
|
|
bad = 0;
|
|
|
|
bad |= *p++; /* First byte must be 0 */
|
|
|
|
p += hlen; /* Skip seed */
|
|
|
|
/* Check lHash */
|
|
for( i = 0; i < hlen; i++ )
|
|
bad |= lhash[i] ^ *p++;
|
|
|
|
/* Get zero-padding len, but always read till end of buffer
|
|
* (minus one, for the 01 byte) */
|
|
pad_len = 0;
|
|
pad_done = 0;
|
|
for( i = 0; i < ilen - 2 * hlen - 2; i++ )
|
|
{
|
|
pad_done |= p[i];
|
|
pad_len += ((pad_done | (unsigned char)-pad_done) >> 7) ^ 1;
|
|
}
|
|
|
|
p += pad_len;
|
|
bad |= *p++ ^ 0x01;
|
|
|
|
/*
|
|
* The only information "leaked" is whether the padding was correct or not
|
|
* (eg, no data is copied if it was not correct). This meets the
|
|
* recommendations in PKCS#1 v2.2: an opponent cannot distinguish between
|
|
* the different error conditions.
|
|
*/
|
|
if( bad != 0 )
|
|
{
|
|
ret = MBEDTLS_ERR_RSA_INVALID_PADDING;
|
|
goto cleanup;
|
|
}
|
|
|
|
if( ilen - ( p - buf ) > output_max_len )
|
|
{
|
|
ret = MBEDTLS_ERR_RSA_OUTPUT_TOO_LARGE;
|
|
goto cleanup;
|
|
}
|
|
|
|
*olen = ilen - (p - buf);
|
|
memcpy( output, p, *olen );
|
|
ret = 0;
|
|
|
|
cleanup:
|
|
mbedtls_zeroize( buf, sizeof( buf ) );
|
|
mbedtls_zeroize( lhash, sizeof( lhash ) );
|
|
|
|
return( ret );
|
|
}
|
|
#endif /* MBEDTLS_PKCS1_V21 */
|
|
|
|
#if defined(MBEDTLS_PKCS1_V15)
|
|
/*
|
|
* Implementation of the PKCS#1 v2.1 RSAES-PKCS1-V1_5-DECRYPT function
|
|
*/
|
|
int mbedtls_rsa_rsaes_pkcs1_v15_decrypt( mbedtls_rsa_context *ctx,
|
|
int (*f_rng)(void *, unsigned char *, size_t),
|
|
void *p_rng,
|
|
int mode, size_t *olen,
|
|
const unsigned char *input,
|
|
unsigned char *output,
|
|
size_t output_max_len)
|
|
{
|
|
int ret;
|
|
size_t ilen, pad_count = 0, i;
|
|
unsigned char *p, bad, pad_done = 0;
|
|
unsigned char buf[MBEDTLS_MPI_MAX_SIZE];
|
|
|
|
if( mode == MBEDTLS_RSA_PRIVATE && ctx->padding != MBEDTLS_RSA_PKCS_V15 )
|
|
return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
|
|
|
|
ilen = ctx->len;
|
|
|
|
if( ilen < 16 || ilen > sizeof( buf ) )
|
|
return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
|
|
|
|
ret = ( mode == MBEDTLS_RSA_PUBLIC )
|
|
? mbedtls_rsa_public( ctx, input, buf )
|
|
: mbedtls_rsa_private( ctx, f_rng, p_rng, input, buf );
|
|
|
|
if( ret != 0 )
|
|
goto cleanup;
|
|
|
|
p = buf;
|
|
bad = 0;
|
|
|
|
/*
|
|
* Check and get padding len in "constant-time"
|
|
*/
|
|
bad |= *p++; /* First byte must be 0 */
|
|
|
|
/* This test does not depend on secret data */
|
|
if( mode == MBEDTLS_RSA_PRIVATE )
|
|
{
|
|
bad |= *p++ ^ MBEDTLS_RSA_CRYPT;
|
|
|
|
/* Get padding len, but always read till end of buffer
|
|
* (minus one, for the 00 byte) */
|
|
for( i = 0; i < ilen - 3; i++ )
|
|
{
|
|
pad_done |= ((p[i] | (unsigned char)-p[i]) >> 7) ^ 1;
|
|
pad_count += ((pad_done | (unsigned char)-pad_done) >> 7) ^ 1;
|
|
}
|
|
|
|
p += pad_count;
|
|
bad |= *p++; /* Must be zero */
|
|
}
|
|
else
|
|
{
|
|
bad |= *p++ ^ MBEDTLS_RSA_SIGN;
|
|
|
|
/* Get padding len, but always read till end of buffer
|
|
* (minus one, for the 00 byte) */
|
|
for( i = 0; i < ilen - 3; i++ )
|
|
{
|
|
pad_done |= ( p[i] != 0xFF );
|
|
pad_count += ( pad_done == 0 );
|
|
}
|
|
|
|
p += pad_count;
|
|
bad |= *p++; /* Must be zero */
|
|
}
|
|
|
|
bad |= ( pad_count < 8 );
|
|
|
|
if( bad )
|
|
{
|
|
ret = MBEDTLS_ERR_RSA_INVALID_PADDING;
|
|
goto cleanup;
|
|
}
|
|
|
|
if( ilen - ( p - buf ) > output_max_len )
|
|
{
|
|
ret = MBEDTLS_ERR_RSA_OUTPUT_TOO_LARGE;
|
|
goto cleanup;
|
|
}
|
|
|
|
*olen = ilen - (p - buf);
|
|
memcpy( output, p, *olen );
|
|
ret = 0;
|
|
|
|
cleanup:
|
|
mbedtls_zeroize( buf, sizeof( buf ) );
|
|
|
|
return( ret );
|
|
}
|
|
#endif /* MBEDTLS_PKCS1_V15 */
|
|
|
|
/*
|
|
* Do an RSA operation, then remove the message padding
|
|
*/
|
|
int mbedtls_rsa_pkcs1_decrypt( mbedtls_rsa_context *ctx,
|
|
int (*f_rng)(void *, unsigned char *, size_t),
|
|
void *p_rng,
|
|
int mode, size_t *olen,
|
|
const unsigned char *input,
|
|
unsigned char *output,
|
|
size_t output_max_len)
|
|
{
|
|
switch( ctx->padding )
|
|
{
|
|
#if defined(MBEDTLS_PKCS1_V15)
|
|
case MBEDTLS_RSA_PKCS_V15:
|
|
return mbedtls_rsa_rsaes_pkcs1_v15_decrypt( ctx, f_rng, p_rng, mode, olen,
|
|
input, output, output_max_len );
|
|
#endif
|
|
|
|
#if defined(MBEDTLS_PKCS1_V21)
|
|
case MBEDTLS_RSA_PKCS_V21:
|
|
return mbedtls_rsa_rsaes_oaep_decrypt( ctx, f_rng, p_rng, mode, NULL, 0,
|
|
olen, input, output,
|
|
output_max_len );
|
|
#endif
|
|
|
|
default:
|
|
return( MBEDTLS_ERR_RSA_INVALID_PADDING );
|
|
}
|
|
}
|
|
|
|
#if defined(MBEDTLS_PKCS1_V21)
|
|
/*
|
|
* Implementation of the PKCS#1 v2.1 RSASSA-PSS-SIGN function
|
|
*/
|
|
int mbedtls_rsa_rsassa_pss_sign( mbedtls_rsa_context *ctx,
|
|
int (*f_rng)(void *, unsigned char *, size_t),
|
|
void *p_rng,
|
|
int mode,
|
|
mbedtls_md_type_t md_alg,
|
|
unsigned int hashlen,
|
|
const unsigned char *hash,
|
|
unsigned char *sig )
|
|
{
|
|
size_t olen;
|
|
unsigned char *p = sig;
|
|
unsigned char salt[MBEDTLS_MD_MAX_SIZE];
|
|
unsigned int slen, hlen, offset = 0;
|
|
int ret;
|
|
size_t msb;
|
|
const mbedtls_md_info_t *md_info;
|
|
mbedtls_md_context_t md_ctx;
|
|
|
|
if( mode == MBEDTLS_RSA_PRIVATE && ctx->padding != MBEDTLS_RSA_PKCS_V21 )
|
|
return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
|
|
|
|
if( f_rng == NULL )
|
|
return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
|
|
|
|
olen = ctx->len;
|
|
|
|
if( md_alg != MBEDTLS_MD_NONE )
|
|
{
|
|
/* Gather length of hash to sign */
|
|
md_info = mbedtls_md_info_from_type( md_alg );
|
|
if( md_info == NULL )
|
|
return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
|
|
|
|
hashlen = mbedtls_md_get_size( md_info );
|
|
}
|
|
|
|
md_info = mbedtls_md_info_from_type( (mbedtls_md_type_t) ctx->hash_id );
|
|
if( md_info == NULL )
|
|
return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
|
|
|
|
hlen = mbedtls_md_get_size( md_info );
|
|
slen = hlen;
|
|
|
|
if( olen < hlen + slen + 2 )
|
|
return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
|
|
|
|
memset( sig, 0, olen );
|
|
|
|
/* Generate salt of length slen */
|
|
if( ( ret = f_rng( p_rng, salt, slen ) ) != 0 )
|
|
return( MBEDTLS_ERR_RSA_RNG_FAILED + ret );
|
|
|
|
/* Note: EMSA-PSS encoding is over the length of N - 1 bits */
|
|
msb = mbedtls_mpi_bitlen( &ctx->N ) - 1;
|
|
p += olen - hlen * 2 - 2;
|
|
*p++ = 0x01;
|
|
memcpy( p, salt, slen );
|
|
p += slen;
|
|
|
|
mbedtls_md_init( &md_ctx );
|
|
if( ( ret = mbedtls_md_setup( &md_ctx, md_info, 0 ) ) != 0 )
|
|
{
|
|
mbedtls_md_free( &md_ctx );
|
|
/* No need to zeroize salt: we didn't use it. */
|
|
return( ret );
|
|
}
|
|
|
|
/* Generate H = Hash( M' ) */
|
|
mbedtls_md_starts( &md_ctx );
|
|
mbedtls_md_update( &md_ctx, p, 8 );
|
|
mbedtls_md_update( &md_ctx, hash, hashlen );
|
|
mbedtls_md_update( &md_ctx, salt, slen );
|
|
mbedtls_md_finish( &md_ctx, p );
|
|
mbedtls_zeroize( salt, sizeof( salt ) );
|
|
|
|
/* Compensate for boundary condition when applying mask */
|
|
if( msb % 8 == 0 )
|
|
offset = 1;
|
|
|
|
/* maskedDB: Apply dbMask to DB */
|
|
mgf_mask( sig + offset, olen - hlen - 1 - offset, p, hlen, &md_ctx );
|
|
|
|
mbedtls_md_free( &md_ctx );
|
|
|
|
msb = mbedtls_mpi_bitlen( &ctx->N ) - 1;
|
|
sig[0] &= 0xFF >> ( olen * 8 - msb );
|
|
|
|
p += hlen;
|
|
*p++ = 0xBC;
|
|
|
|
return( ( mode == MBEDTLS_RSA_PUBLIC )
|
|
? mbedtls_rsa_public( ctx, sig, sig )
|
|
: mbedtls_rsa_private( ctx, f_rng, p_rng, sig, sig ) );
|
|
}
|
|
#endif /* MBEDTLS_PKCS1_V21 */
|
|
|
|
#if defined(MBEDTLS_PKCS1_V15)
|
|
/*
|
|
* Implementation of the PKCS#1 v2.1 RSASSA-PKCS1-V1_5-SIGN function
|
|
*/
|
|
/*
|
|
* Do an RSA operation to sign the message digest
|
|
*/
|
|
int mbedtls_rsa_rsassa_pkcs1_v15_sign( mbedtls_rsa_context *ctx,
|
|
int (*f_rng)(void *, unsigned char *, size_t),
|
|
void *p_rng,
|
|
int mode,
|
|
mbedtls_md_type_t md_alg,
|
|
unsigned int hashlen,
|
|
const unsigned char *hash,
|
|
unsigned char *sig )
|
|
{
|
|
size_t nb_pad, olen, oid_size = 0;
|
|
unsigned char *p = sig;
|
|
const char *oid = NULL;
|
|
unsigned char *sig_try = NULL, *verif = NULL;
|
|
size_t i;
|
|
unsigned char diff;
|
|
volatile unsigned char diff_no_optimize;
|
|
int ret;
|
|
|
|
if( mode == MBEDTLS_RSA_PRIVATE && ctx->padding != MBEDTLS_RSA_PKCS_V15 )
|
|
return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
|
|
|
|
olen = ctx->len;
|
|
nb_pad = olen - 3;
|
|
|
|
if( md_alg != MBEDTLS_MD_NONE )
|
|
{
|
|
const mbedtls_md_info_t *md_info = mbedtls_md_info_from_type( md_alg );
|
|
if( md_info == NULL )
|
|
return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
|
|
|
|
if( mbedtls_oid_get_oid_by_md( md_alg, &oid, &oid_size ) != 0 )
|
|
return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
|
|
|
|
nb_pad -= 10 + oid_size;
|
|
|
|
hashlen = mbedtls_md_get_size( md_info );
|
|
}
|
|
|
|
nb_pad -= hashlen;
|
|
|
|
if( ( nb_pad < 8 ) || ( nb_pad > olen ) )
|
|
return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
|
|
|
|
*p++ = 0;
|
|
*p++ = MBEDTLS_RSA_SIGN;
|
|
memset( p, 0xFF, nb_pad );
|
|
p += nb_pad;
|
|
*p++ = 0;
|
|
|
|
if( md_alg == MBEDTLS_MD_NONE )
|
|
{
|
|
memcpy( p, hash, hashlen );
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
* DigestInfo ::= SEQUENCE {
|
|
* digestAlgorithm DigestAlgorithmIdentifier,
|
|
* digest Digest }
|
|
*
|
|
* DigestAlgorithmIdentifier ::= AlgorithmIdentifier
|
|
*
|
|
* Digest ::= OCTET STRING
|
|
*/
|
|
*p++ = MBEDTLS_ASN1_SEQUENCE | MBEDTLS_ASN1_CONSTRUCTED;
|
|
*p++ = (unsigned char) ( 0x08 + oid_size + hashlen );
|
|
*p++ = MBEDTLS_ASN1_SEQUENCE | MBEDTLS_ASN1_CONSTRUCTED;
|
|
*p++ = (unsigned char) ( 0x04 + oid_size );
|
|
*p++ = MBEDTLS_ASN1_OID;
|
|
*p++ = oid_size & 0xFF;
|
|
memcpy( p, oid, oid_size );
|
|
p += oid_size;
|
|
*p++ = MBEDTLS_ASN1_NULL;
|
|
*p++ = 0x00;
|
|
*p++ = MBEDTLS_ASN1_OCTET_STRING;
|
|
*p++ = hashlen;
|
|
memcpy( p, hash, hashlen );
|
|
}
|
|
|
|
if( mode == MBEDTLS_RSA_PUBLIC )
|
|
return( mbedtls_rsa_public( ctx, sig, sig ) );
|
|
|
|
/*
|
|
* In order to prevent Lenstra's attack, make the signature in a
|
|
* temporary buffer and check it before returning it.
|
|
*/
|
|
sig_try = mbedtls_calloc( 1, ctx->len );
|
|
if( sig_try == NULL )
|
|
return( MBEDTLS_ERR_MPI_ALLOC_FAILED );
|
|
|
|
verif = mbedtls_calloc( 1, ctx->len );
|
|
if( verif == NULL )
|
|
{
|
|
mbedtls_free( sig_try );
|
|
return( MBEDTLS_ERR_MPI_ALLOC_FAILED );
|
|
}
|
|
|
|
MBEDTLS_MPI_CHK( mbedtls_rsa_private( ctx, f_rng, p_rng, sig, sig_try ) );
|
|
MBEDTLS_MPI_CHK( mbedtls_rsa_public( ctx, sig_try, verif ) );
|
|
|
|
/* Compare in constant time just in case */
|
|
for( diff = 0, i = 0; i < ctx->len; i++ )
|
|
diff |= verif[i] ^ sig[i];
|
|
diff_no_optimize = diff;
|
|
|
|
if( diff_no_optimize != 0 )
|
|
{
|
|
ret = MBEDTLS_ERR_RSA_PRIVATE_FAILED;
|
|
goto cleanup;
|
|
}
|
|
|
|
memcpy( sig, sig_try, ctx->len );
|
|
|
|
cleanup:
|
|
mbedtls_free( sig_try );
|
|
mbedtls_free( verif );
|
|
|
|
return( ret );
|
|
}
|
|
#endif /* MBEDTLS_PKCS1_V15 */
|
|
|
|
/*
|
|
* Do an RSA operation to sign the message digest
|
|
*/
|
|
int mbedtls_rsa_pkcs1_sign( mbedtls_rsa_context *ctx,
|
|
int (*f_rng)(void *, unsigned char *, size_t),
|
|
void *p_rng,
|
|
int mode,
|
|
mbedtls_md_type_t md_alg,
|
|
unsigned int hashlen,
|
|
const unsigned char *hash,
|
|
unsigned char *sig )
|
|
{
|
|
switch( ctx->padding )
|
|
{
|
|
#if defined(MBEDTLS_PKCS1_V15)
|
|
case MBEDTLS_RSA_PKCS_V15:
|
|
return mbedtls_rsa_rsassa_pkcs1_v15_sign( ctx, f_rng, p_rng, mode, md_alg,
|
|
hashlen, hash, sig );
|
|
#endif
|
|
|
|
#if defined(MBEDTLS_PKCS1_V21)
|
|
case MBEDTLS_RSA_PKCS_V21:
|
|
return mbedtls_rsa_rsassa_pss_sign( ctx, f_rng, p_rng, mode, md_alg,
|
|
hashlen, hash, sig );
|
|
#endif
|
|
|
|
default:
|
|
return( MBEDTLS_ERR_RSA_INVALID_PADDING );
|
|
}
|
|
}
|
|
|
|
#if defined(MBEDTLS_PKCS1_V21)
|
|
/*
|
|
* Implementation of the PKCS#1 v2.1 RSASSA-PSS-VERIFY function
|
|
*/
|
|
int mbedtls_rsa_rsassa_pss_verify_ext( mbedtls_rsa_context *ctx,
|
|
int (*f_rng)(void *, unsigned char *, size_t),
|
|
void *p_rng,
|
|
int mode,
|
|
mbedtls_md_type_t md_alg,
|
|
unsigned int hashlen,
|
|
const unsigned char *hash,
|
|
mbedtls_md_type_t mgf1_hash_id,
|
|
int expected_salt_len,
|
|
const unsigned char *sig )
|
|
{
|
|
int ret;
|
|
size_t siglen;
|
|
unsigned char *p;
|
|
unsigned char result[MBEDTLS_MD_MAX_SIZE];
|
|
unsigned char zeros[8];
|
|
unsigned int hlen;
|
|
size_t slen, msb;
|
|
const mbedtls_md_info_t *md_info;
|
|
mbedtls_md_context_t md_ctx;
|
|
unsigned char buf[MBEDTLS_MPI_MAX_SIZE];
|
|
|
|
if( mode == MBEDTLS_RSA_PRIVATE && ctx->padding != MBEDTLS_RSA_PKCS_V21 )
|
|
return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
|
|
|
|
siglen = ctx->len;
|
|
|
|
if( siglen < 16 || siglen > sizeof( buf ) )
|
|
return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
|
|
|
|
ret = ( mode == MBEDTLS_RSA_PUBLIC )
|
|
? mbedtls_rsa_public( ctx, sig, buf )
|
|
: mbedtls_rsa_private( ctx, f_rng, p_rng, sig, buf );
|
|
|
|
if( ret != 0 )
|
|
return( ret );
|
|
|
|
p = buf;
|
|
|
|
if( buf[siglen - 1] != 0xBC )
|
|
return( MBEDTLS_ERR_RSA_INVALID_PADDING );
|
|
|
|
if( md_alg != MBEDTLS_MD_NONE )
|
|
{
|
|
/* Gather length of hash to sign */
|
|
md_info = mbedtls_md_info_from_type( md_alg );
|
|
if( md_info == NULL )
|
|
return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
|
|
|
|
hashlen = mbedtls_md_get_size( md_info );
|
|
}
|
|
|
|
md_info = mbedtls_md_info_from_type( mgf1_hash_id );
|
|
if( md_info == NULL )
|
|
return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
|
|
|
|
hlen = mbedtls_md_get_size( md_info );
|
|
slen = siglen - hlen - 1; /* Currently length of salt + padding */
|
|
|
|
memset( zeros, 0, 8 );
|
|
|
|
/*
|
|
* Note: EMSA-PSS verification is over the length of N - 1 bits
|
|
*/
|
|
msb = mbedtls_mpi_bitlen( &ctx->N ) - 1;
|
|
|
|
/* Compensate for boundary condition when applying mask */
|
|
if( msb % 8 == 0 )
|
|
{
|
|
p++;
|
|
siglen -= 1;
|
|
}
|
|
if( buf[0] >> ( 8 - siglen * 8 + msb ) )
|
|
return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
|
|
|
|
mbedtls_md_init( &md_ctx );
|
|
if( ( ret = mbedtls_md_setup( &md_ctx, md_info, 0 ) ) != 0 )
|
|
{
|
|
mbedtls_md_free( &md_ctx );
|
|
return( ret );
|
|
}
|
|
|
|
mgf_mask( p, siglen - hlen - 1, p + siglen - hlen - 1, hlen, &md_ctx );
|
|
|
|
buf[0] &= 0xFF >> ( siglen * 8 - msb );
|
|
|
|
while( p < buf + siglen && *p == 0 )
|
|
p++;
|
|
|
|
if( p == buf + siglen ||
|
|
*p++ != 0x01 )
|
|
{
|
|
mbedtls_md_free( &md_ctx );
|
|
return( MBEDTLS_ERR_RSA_INVALID_PADDING );
|
|
}
|
|
|
|
/* Actual salt len */
|
|
slen -= p - buf;
|
|
|
|
if( expected_salt_len != MBEDTLS_RSA_SALT_LEN_ANY &&
|
|
slen != (size_t) expected_salt_len )
|
|
{
|
|
mbedtls_md_free( &md_ctx );
|
|
return( MBEDTLS_ERR_RSA_INVALID_PADDING );
|
|
}
|
|
|
|
/*
|
|
* Generate H = Hash( M' )
|
|
*/
|
|
mbedtls_md_starts( &md_ctx );
|
|
mbedtls_md_update( &md_ctx, zeros, 8 );
|
|
mbedtls_md_update( &md_ctx, hash, hashlen );
|
|
mbedtls_md_update( &md_ctx, p, slen );
|
|
mbedtls_md_finish( &md_ctx, result );
|
|
|
|
mbedtls_md_free( &md_ctx );
|
|
|
|
if( memcmp( p + slen, result, hlen ) == 0 )
|
|
return( 0 );
|
|
else
|
|
return( MBEDTLS_ERR_RSA_VERIFY_FAILED );
|
|
}
|
|
|
|
/*
|
|
* Simplified PKCS#1 v2.1 RSASSA-PSS-VERIFY function
|
|
*/
|
|
int mbedtls_rsa_rsassa_pss_verify( mbedtls_rsa_context *ctx,
|
|
int (*f_rng)(void *, unsigned char *, size_t),
|
|
void *p_rng,
|
|
int mode,
|
|
mbedtls_md_type_t md_alg,
|
|
unsigned int hashlen,
|
|
const unsigned char *hash,
|
|
const unsigned char *sig )
|
|
{
|
|
mbedtls_md_type_t mgf1_hash_id = ( ctx->hash_id != MBEDTLS_MD_NONE )
|
|
? (mbedtls_md_type_t) ctx->hash_id
|
|
: md_alg;
|
|
|
|
return( mbedtls_rsa_rsassa_pss_verify_ext( ctx, f_rng, p_rng, mode,
|
|
md_alg, hashlen, hash,
|
|
mgf1_hash_id, MBEDTLS_RSA_SALT_LEN_ANY,
|
|
sig ) );
|
|
|
|
}
|
|
#endif /* MBEDTLS_PKCS1_V21 */
|
|
|
|
#if defined(MBEDTLS_PKCS1_V15)
|
|
/*
|
|
* Implementation of the PKCS#1 v2.1 RSASSA-PKCS1-v1_5-VERIFY function
|
|
*/
|
|
int mbedtls_rsa_rsassa_pkcs1_v15_verify( mbedtls_rsa_context *ctx,
|
|
int (*f_rng)(void *, unsigned char *, size_t),
|
|
void *p_rng,
|
|
int mode,
|
|
mbedtls_md_type_t md_alg,
|
|
unsigned int hashlen,
|
|
const unsigned char *hash,
|
|
const unsigned char *sig )
|
|
{
|
|
int ret;
|
|
size_t len, siglen, asn1_len;
|
|
unsigned char *p, *p0, *end;
|
|
mbedtls_md_type_t msg_md_alg;
|
|
const mbedtls_md_info_t *md_info;
|
|
mbedtls_asn1_buf oid;
|
|
unsigned char buf[MBEDTLS_MPI_MAX_SIZE];
|
|
|
|
if( mode == MBEDTLS_RSA_PRIVATE && ctx->padding != MBEDTLS_RSA_PKCS_V15 )
|
|
return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
|
|
|
|
siglen = ctx->len;
|
|
|
|
if( siglen < 16 || siglen > sizeof( buf ) )
|
|
return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
|
|
|
|
ret = ( mode == MBEDTLS_RSA_PUBLIC )
|
|
? mbedtls_rsa_public( ctx, sig, buf )
|
|
: mbedtls_rsa_private( ctx, f_rng, p_rng, sig, buf );
|
|
|
|
if( ret != 0 )
|
|
return( ret );
|
|
|
|
p = buf;
|
|
|
|
if( *p++ != 0 || *p++ != MBEDTLS_RSA_SIGN )
|
|
return( MBEDTLS_ERR_RSA_INVALID_PADDING );
|
|
|
|
while( *p != 0 )
|
|
{
|
|
if( p >= buf + siglen - 1 || *p != 0xFF )
|
|
return( MBEDTLS_ERR_RSA_INVALID_PADDING );
|
|
p++;
|
|
}
|
|
p++; /* skip 00 byte */
|
|
|
|
/* We've read: 00 01 PS 00 where PS must be at least 8 bytes */
|
|
if( p - buf < 11 )
|
|
return( MBEDTLS_ERR_RSA_INVALID_PADDING );
|
|
|
|
len = siglen - ( p - buf );
|
|
|
|
if( len == hashlen && md_alg == MBEDTLS_MD_NONE )
|
|
{
|
|
if( memcmp( p, hash, hashlen ) == 0 )
|
|
return( 0 );
|
|
else
|
|
return( MBEDTLS_ERR_RSA_VERIFY_FAILED );
|
|
}
|
|
|
|
md_info = mbedtls_md_info_from_type( md_alg );
|
|
if( md_info == NULL )
|
|
return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
|
|
hashlen = mbedtls_md_get_size( md_info );
|
|
|
|
end = p + len;
|
|
|
|
/*
|
|
* Parse the ASN.1 structure inside the PKCS#1 v1.5 structure.
|
|
* Insist on 2-byte length tags, to protect against variants of
|
|
* Bleichenbacher's forgery attack against lax PKCS#1v1.5 verification.
|
|
*/
|
|
p0 = p;
|
|
if( ( ret = mbedtls_asn1_get_tag( &p, end, &asn1_len,
|
|
MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE ) ) != 0 )
|
|
return( MBEDTLS_ERR_RSA_VERIFY_FAILED );
|
|
if( p != p0 + 2 || asn1_len + 2 != len )
|
|
return( MBEDTLS_ERR_RSA_VERIFY_FAILED );
|
|
|
|
p0 = p;
|
|
if( ( ret = mbedtls_asn1_get_tag( &p, end, &asn1_len,
|
|
MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE ) ) != 0 )
|
|
return( MBEDTLS_ERR_RSA_VERIFY_FAILED );
|
|
if( p != p0 + 2 || asn1_len + 6 + hashlen != len )
|
|
return( MBEDTLS_ERR_RSA_VERIFY_FAILED );
|
|
|
|
p0 = p;
|
|
if( ( ret = mbedtls_asn1_get_tag( &p, end, &oid.len, MBEDTLS_ASN1_OID ) ) != 0 )
|
|
return( MBEDTLS_ERR_RSA_VERIFY_FAILED );
|
|
if( p != p0 + 2 )
|
|
return( MBEDTLS_ERR_RSA_VERIFY_FAILED );
|
|
|
|
oid.p = p;
|
|
p += oid.len;
|
|
|
|
if( mbedtls_oid_get_md_alg( &oid, &msg_md_alg ) != 0 )
|
|
return( MBEDTLS_ERR_RSA_VERIFY_FAILED );
|
|
|
|
if( md_alg != msg_md_alg )
|
|
return( MBEDTLS_ERR_RSA_VERIFY_FAILED );
|
|
|
|
/*
|
|
* assume the algorithm parameters must be NULL
|
|
*/
|
|
p0 = p;
|
|
if( ( ret = mbedtls_asn1_get_tag( &p, end, &asn1_len, MBEDTLS_ASN1_NULL ) ) != 0 )
|
|
return( MBEDTLS_ERR_RSA_VERIFY_FAILED );
|
|
if( p != p0 + 2 )
|
|
return( MBEDTLS_ERR_RSA_VERIFY_FAILED );
|
|
|
|
p0 = p;
|
|
if( ( ret = mbedtls_asn1_get_tag( &p, end, &asn1_len, MBEDTLS_ASN1_OCTET_STRING ) ) != 0 )
|
|
return( MBEDTLS_ERR_RSA_VERIFY_FAILED );
|
|
if( p != p0 + 2 || asn1_len != hashlen )
|
|
return( MBEDTLS_ERR_RSA_VERIFY_FAILED );
|
|
|
|
if( memcmp( p, hash, hashlen ) != 0 )
|
|
return( MBEDTLS_ERR_RSA_VERIFY_FAILED );
|
|
|
|
p += hashlen;
|
|
|
|
if( p != end )
|
|
return( MBEDTLS_ERR_RSA_VERIFY_FAILED );
|
|
|
|
return( 0 );
|
|
}
|
|
#endif /* MBEDTLS_PKCS1_V15 */
|
|
|
|
/*
|
|
* Do an RSA operation and check the message digest
|
|
*/
|
|
int mbedtls_rsa_pkcs1_verify( mbedtls_rsa_context *ctx,
|
|
int (*f_rng)(void *, unsigned char *, size_t),
|
|
void *p_rng,
|
|
int mode,
|
|
mbedtls_md_type_t md_alg,
|
|
unsigned int hashlen,
|
|
const unsigned char *hash,
|
|
const unsigned char *sig )
|
|
{
|
|
switch( ctx->padding )
|
|
{
|
|
#if defined(MBEDTLS_PKCS1_V15)
|
|
case MBEDTLS_RSA_PKCS_V15:
|
|
return mbedtls_rsa_rsassa_pkcs1_v15_verify( ctx, f_rng, p_rng, mode, md_alg,
|
|
hashlen, hash, sig );
|
|
#endif
|
|
|
|
#if defined(MBEDTLS_PKCS1_V21)
|
|
case MBEDTLS_RSA_PKCS_V21:
|
|
return mbedtls_rsa_rsassa_pss_verify( ctx, f_rng, p_rng, mode, md_alg,
|
|
hashlen, hash, sig );
|
|
#endif
|
|
|
|
default:
|
|
return( MBEDTLS_ERR_RSA_INVALID_PADDING );
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Copy the components of an RSA key
|
|
*/
|
|
int mbedtls_rsa_copy( mbedtls_rsa_context *dst, const mbedtls_rsa_context *src )
|
|
{
|
|
int ret;
|
|
|
|
dst->ver = src->ver;
|
|
dst->len = src->len;
|
|
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->N, &src->N ) );
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->E, &src->E ) );
|
|
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->D, &src->D ) );
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->P, &src->P ) );
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->Q, &src->Q ) );
|
|
|
|
#if !defined(MBEDTLS_RSA_NO_CRT)
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->DP, &src->DP ) );
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->DQ, &src->DQ ) );
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->QP, &src->QP ) );
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->RP, &src->RP ) );
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->RQ, &src->RQ ) );
|
|
#endif
|
|
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->RN, &src->RN ) );
|
|
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->Vi, &src->Vi ) );
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->Vf, &src->Vf ) );
|
|
|
|
dst->padding = src->padding;
|
|
dst->hash_id = src->hash_id;
|
|
|
|
cleanup:
|
|
if( ret != 0 )
|
|
mbedtls_rsa_free( dst );
|
|
|
|
return( ret );
|
|
}
|
|
|
|
/*
|
|
* Free the components of an RSA key
|
|
*/
|
|
void mbedtls_rsa_free( mbedtls_rsa_context *ctx )
|
|
{
|
|
mbedtls_mpi_free( &ctx->Vi ); mbedtls_mpi_free( &ctx->Vf );
|
|
mbedtls_mpi_free( &ctx->RN ); mbedtls_mpi_free( &ctx->D );
|
|
mbedtls_mpi_free( &ctx->Q ); mbedtls_mpi_free( &ctx->P );
|
|
mbedtls_mpi_free( &ctx->E ); mbedtls_mpi_free( &ctx->N );
|
|
|
|
#if !defined(MBEDTLS_RSA_NO_CRT)
|
|
mbedtls_mpi_free( &ctx->RQ ); mbedtls_mpi_free( &ctx->RP );
|
|
mbedtls_mpi_free( &ctx->QP ); mbedtls_mpi_free( &ctx->DQ );
|
|
mbedtls_mpi_free( &ctx->DP );
|
|
#endif /* MBEDTLS_RSA_NO_CRT */
|
|
|
|
#if defined(MBEDTLS_THREADING_C)
|
|
mbedtls_mutex_free( &ctx->mutex );
|
|
#endif
|
|
}
|
|
|
|
#endif /* !MBEDTLS_RSA_ALT */
|
|
|
|
#if defined(MBEDTLS_SELF_TEST)
|
|
|
|
#include "mbedtls/sha1.h"
|
|
|
|
/*
|
|
* Example RSA-1024 keypair, for test purposes
|
|
*/
|
|
#define KEY_LEN 128
|
|
|
|
#define RSA_N "9292758453063D803DD603D5E777D788" \
|
|
"8ED1D5BF35786190FA2F23EBC0848AEA" \
|
|
"DDA92CA6C3D80B32C4D109BE0F36D6AE" \
|
|
"7130B9CED7ACDF54CFC7555AC14EEBAB" \
|
|
"93A89813FBF3C4F8066D2D800F7C38A8" \
|
|
"1AE31942917403FF4946B0A83D3D3E05" \
|
|
"EE57C6F5F5606FB5D4BC6CD34EE0801A" \
|
|
"5E94BB77B07507233A0BC7BAC8F90F79"
|
|
|
|
#define RSA_E "10001"
|
|
|
|
#define RSA_D "24BF6185468786FDD303083D25E64EFC" \
|
|
"66CA472BC44D253102F8B4A9D3BFA750" \
|
|
"91386C0077937FE33FA3252D28855837" \
|
|
"AE1B484A8A9A45F7EE8C0C634F99E8CD" \
|
|
"DF79C5CE07EE72C7F123142198164234" \
|
|
"CABB724CF78B8173B9F880FC86322407" \
|
|
"AF1FEDFDDE2BEB674CA15F3E81A1521E" \
|
|
"071513A1E85B5DFA031F21ECAE91A34D"
|
|
|
|
#define RSA_P "C36D0EB7FCD285223CFB5AABA5BDA3D8" \
|
|
"2C01CAD19EA484A87EA4377637E75500" \
|
|
"FCB2005C5C7DD6EC4AC023CDA285D796" \
|
|
"C3D9E75E1EFC42488BB4F1D13AC30A57"
|
|
|
|
#define RSA_Q "C000DF51A7C77AE8D7C7370C1FF55B69" \
|
|
"E211C2B9E5DB1ED0BF61D0D9899620F4" \
|
|
"910E4168387E3C30AA1E00C339A79508" \
|
|
"8452DD96A9A5EA5D9DCA68DA636032AF"
|
|
|
|
#define PT_LEN 24
|
|
#define RSA_PT "\xAA\xBB\xCC\x03\x02\x01\x00\xFF\xFF\xFF\xFF\xFF" \
|
|
"\x11\x22\x33\x0A\x0B\x0C\xCC\xDD\xDD\xDD\xDD\xDD"
|
|
|
|
#if defined(MBEDTLS_PKCS1_V15)
|
|
static int myrand( void *rng_state, unsigned char *output, size_t len )
|
|
{
|
|
#if !defined(__OpenBSD__)
|
|
size_t i;
|
|
|
|
if( rng_state != NULL )
|
|
rng_state = NULL;
|
|
|
|
for( i = 0; i < len; ++i )
|
|
output[i] = rand();
|
|
#else
|
|
if( rng_state != NULL )
|
|
rng_state = NULL;
|
|
|
|
arc4random_buf( output, len );
|
|
#endif /* !OpenBSD */
|
|
|
|
return( 0 );
|
|
}
|
|
#endif /* MBEDTLS_PKCS1_V15 */
|
|
|
|
/*
|
|
* Checkup routine
|
|
*/
|
|
int mbedtls_rsa_self_test( int verbose )
|
|
{
|
|
int ret = 0;
|
|
#if defined(MBEDTLS_PKCS1_V15)
|
|
size_t len;
|
|
mbedtls_rsa_context rsa;
|
|
unsigned char rsa_plaintext[PT_LEN];
|
|
unsigned char rsa_decrypted[PT_LEN];
|
|
unsigned char rsa_ciphertext[KEY_LEN];
|
|
#if defined(MBEDTLS_SHA1_C)
|
|
unsigned char sha1sum[20];
|
|
#endif
|
|
|
|
mbedtls_mpi K;
|
|
|
|
mbedtls_mpi_init( &K );
|
|
mbedtls_rsa_init( &rsa, MBEDTLS_RSA_PKCS_V15, 0 );
|
|
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &K, 16, RSA_N ) );
|
|
MBEDTLS_MPI_CHK( mbedtls_rsa_import( &rsa, &K, NULL, NULL, NULL, NULL ) );
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &K, 16, RSA_P ) );
|
|
MBEDTLS_MPI_CHK( mbedtls_rsa_import( &rsa, NULL, &K, NULL, NULL, NULL ) );
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &K, 16, RSA_Q ) );
|
|
MBEDTLS_MPI_CHK( mbedtls_rsa_import( &rsa, NULL, NULL, &K, NULL, NULL ) );
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &K, 16, RSA_D ) );
|
|
MBEDTLS_MPI_CHK( mbedtls_rsa_import( &rsa, NULL, NULL, NULL, &K, NULL ) );
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &K, 16, RSA_E ) );
|
|
MBEDTLS_MPI_CHK( mbedtls_rsa_import( &rsa, NULL, NULL, NULL, NULL, &K ) );
|
|
|
|
MBEDTLS_MPI_CHK( mbedtls_rsa_complete( &rsa ) );
|
|
|
|
if( verbose != 0 )
|
|
mbedtls_printf( " RSA key validation: " );
|
|
|
|
if( mbedtls_rsa_check_pubkey( &rsa ) != 0 ||
|
|
mbedtls_rsa_check_privkey( &rsa ) != 0 )
|
|
{
|
|
if( verbose != 0 )
|
|
mbedtls_printf( "failed\n" );
|
|
|
|
return( 1 );
|
|
}
|
|
|
|
if( verbose != 0 )
|
|
mbedtls_printf( "passed\n PKCS#1 encryption : " );
|
|
|
|
memcpy( rsa_plaintext, RSA_PT, PT_LEN );
|
|
|
|
if( mbedtls_rsa_pkcs1_encrypt( &rsa, myrand, NULL, MBEDTLS_RSA_PUBLIC,
|
|
PT_LEN, rsa_plaintext,
|
|
rsa_ciphertext ) != 0 )
|
|
{
|
|
if( verbose != 0 )
|
|
mbedtls_printf( "failed\n" );
|
|
|
|
return( 1 );
|
|
}
|
|
|
|
if( verbose != 0 )
|
|
mbedtls_printf( "passed\n PKCS#1 decryption : " );
|
|
|
|
if( mbedtls_rsa_pkcs1_decrypt( &rsa, myrand, NULL, MBEDTLS_RSA_PRIVATE,
|
|
&len, rsa_ciphertext, rsa_decrypted,
|
|
sizeof(rsa_decrypted) ) != 0 )
|
|
{
|
|
if( verbose != 0 )
|
|
mbedtls_printf( "failed\n" );
|
|
|
|
return( 1 );
|
|
}
|
|
|
|
if( memcmp( rsa_decrypted, rsa_plaintext, len ) != 0 )
|
|
{
|
|
if( verbose != 0 )
|
|
mbedtls_printf( "failed\n" );
|
|
|
|
return( 1 );
|
|
}
|
|
|
|
if( verbose != 0 )
|
|
mbedtls_printf( "passed\n" );
|
|
|
|
#if defined(MBEDTLS_SHA1_C)
|
|
if( verbose != 0 )
|
|
mbedtls_printf( " PKCS#1 data sign : " );
|
|
|
|
mbedtls_sha1( rsa_plaintext, PT_LEN, sha1sum );
|
|
|
|
if( mbedtls_rsa_pkcs1_sign( &rsa, myrand, NULL,
|
|
MBEDTLS_RSA_PRIVATE, MBEDTLS_MD_SHA1, 0,
|
|
sha1sum, rsa_ciphertext ) != 0 )
|
|
{
|
|
if( verbose != 0 )
|
|
mbedtls_printf( "failed\n" );
|
|
|
|
return( 1 );
|
|
}
|
|
|
|
if( verbose != 0 )
|
|
mbedtls_printf( "passed\n PKCS#1 sig. verify: " );
|
|
|
|
if( mbedtls_rsa_pkcs1_verify( &rsa, NULL, NULL,
|
|
MBEDTLS_RSA_PUBLIC, MBEDTLS_MD_SHA1, 0,
|
|
sha1sum, rsa_ciphertext ) != 0 )
|
|
{
|
|
if( verbose != 0 )
|
|
mbedtls_printf( "failed\n" );
|
|
|
|
return( 1 );
|
|
}
|
|
|
|
if( verbose != 0 )
|
|
mbedtls_printf( "passed\n" );
|
|
#endif /* MBEDTLS_SHA1_C */
|
|
|
|
if( verbose != 0 )
|
|
mbedtls_printf( "\n" );
|
|
|
|
cleanup:
|
|
mbedtls_mpi_free( &K );
|
|
mbedtls_rsa_free( &rsa );
|
|
#else /* MBEDTLS_PKCS1_V15 */
|
|
((void) verbose);
|
|
#endif /* MBEDTLS_PKCS1_V15 */
|
|
return( ret );
|
|
}
|
|
|
|
#endif /* MBEDTLS_SELF_TEST */
|
|
|
|
#endif /* MBEDTLS_RSA_C */
|