/* * QEMU AArch64 CPU * * Copyright (c) 2013 Linaro Ltd * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see * */ #include "qemu/osdep.h" #include "qapi/error.h" #include "cpu.h" #include "qemu-common.h" #include "hw/arm/arm.h" #include "sysemu/sysemu.h" #ifndef CONFIG_USER_ONLY static uint64_t a57_a53_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri) { ARMCPU *cpu = env_archcpu(env); /* Number of cores is in [25:24]; otherwise we RAZ */ return (cpu->core_count - 1) << 24; } #endif static const ARMCPRegInfo cortex_a72_a57_a53_cp_reginfo[] = { #ifndef CONFIG_USER_ONLY { .name = "L2CTLR_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 1, .crn = 11, .crm = 0, .opc2 = 2, .access = PL1_RW, .readfn = a57_a53_l2ctlr_read, .writefn = arm_cp_write_ignore }, { .name = "L2CTLR", .cp = 15, .opc1 = 1, .crn = 9, .crm = 0, .opc2 = 2, .access = PL1_RW, .readfn = a57_a53_l2ctlr_read, .writefn = arm_cp_write_ignore }, #endif { .name = "L2ECTLR_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 1, .crn = 11, .crm = 0, .opc2 = 3, .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "L2ECTLR", .cp = 15, .opc1 = 1, .crn = 9, .crm = 0, .opc2 = 3, .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "L2ACTLR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "CPUACTLR_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "CPUACTLR", .cp = 15, .opc1 = 0, .crm = 15, .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 }, { .name = "CPUECTLR_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "CPUECTLR", .cp = 15, .opc1 = 1, .crm = 15, .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 }, { .name = "CPUMERRSR_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 2, .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "CPUMERRSR", .cp = 15, .opc1 = 2, .crm = 15, .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 }, { .name = "L2MERRSR_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 3, .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "L2MERRSR", .cp = 15, .opc1 = 3, .crm = 15, .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 }, REGINFO_SENTINEL }; static void aarch64_a57_initfn(struct uc_struct *uc, Object *obj, void *opaque) { ARMCPU *cpu = ARM_CPU(uc, obj); set_feature(&cpu->env, ARM_FEATURE_V8); set_feature(&cpu->env, ARM_FEATURE_NEON); set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER); set_feature(&cpu->env, ARM_FEATURE_AARCH64); set_feature(&cpu->env, ARM_FEATURE_CBAR_RO); set_feature(&cpu->env, ARM_FEATURE_EL2); set_feature(&cpu->env, ARM_FEATURE_EL3); set_feature(&cpu->env, ARM_FEATURE_PMU); cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A57; cpu->midr = 0x411fd070; cpu->revidr = 0x00000000; cpu->reset_fpsid = 0x41034070; cpu->isar.mvfr0 = 0x10110222; cpu->isar.mvfr1 = 0x12111111; cpu->isar.mvfr2 = 0x00000043; cpu->ctr = 0x8444c004; cpu->reset_sctlr = 0x00c50838; cpu->isar.id_pfr0 = 0x00000131; cpu->isar.id_pfr1 = 0x00011011; cpu->isar.id_dfr0 = 0x03010066; cpu->id_afr0 = 0x00000000; cpu->isar.id_mmfr0 = 0x10101105; cpu->isar.id_mmfr1 = 0x40000000; cpu->isar.id_mmfr2 = 0x01260000; cpu->isar.id_mmfr3 = 0x02102211; cpu->isar.id_isar0 = 0x02101110; cpu->isar.id_isar1 = 0x13112111; cpu->isar.id_isar2 = 0x21232042; cpu->isar.id_isar3 = 0x01112131; cpu->isar.id_isar4 = 0x00011142; cpu->isar.id_isar5 = 0x00011121; cpu->isar.id_isar6 = 0; cpu->isar.id_aa64pfr0 = 0x00002222; cpu->isar.id_aa64dfr0 = 0x10305106; cpu->isar.id_aa64isar0 = 0x00011120; cpu->isar.id_aa64mmfr0 = 0x00001124; cpu->isar.dbgdidr = 0x3516d000; cpu->clidr = 0x0a200023; cpu->ccsidr[0] = 0x701fe00a; /* 32KB L1 dcache */ cpu->ccsidr[1] = 0x201fe012; /* 48KB L1 icache */ cpu->ccsidr[2] = 0x70ffe07a; /* 2048KB L2 cache */ cpu->dcz_blocksize = 4; /* 64 bytes */ cpu->isar.reset_pmcr_el0 = 0x41013000; define_arm_cp_regs(cpu, cortex_a72_a57_a53_cp_reginfo); } static void aarch64_a53_initfn(struct uc_struct *uc, Object *obj, void *opaque) { ARMCPU *cpu = ARM_CPU(uc, obj); cpu->dtb_compatible = "arm,cortex-a53"; set_feature(&cpu->env, ARM_FEATURE_V8); set_feature(&cpu->env, ARM_FEATURE_NEON); set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER); set_feature(&cpu->env, ARM_FEATURE_AARCH64); set_feature(&cpu->env, ARM_FEATURE_CBAR_RO); set_feature(&cpu->env, ARM_FEATURE_EL2); set_feature(&cpu->env, ARM_FEATURE_EL3); set_feature(&cpu->env, ARM_FEATURE_PMU); cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A53; cpu->midr = 0x410fd034; cpu->revidr = 0x00000000; cpu->reset_fpsid = 0x41034070; cpu->isar.mvfr0 = 0x10110222; cpu->isar.mvfr1 = 0x12111111; cpu->isar.mvfr2 = 0x00000043; cpu->ctr = 0x84448004; /* L1Ip = VIPT */ cpu->reset_sctlr = 0x00c50838; cpu->isar.id_pfr0 = 0x00000131; cpu->isar.id_pfr1 = 0x00011011; cpu->isar.id_dfr0 = 0x03010066; cpu->id_afr0 = 0x00000000; cpu->isar.id_mmfr0 = 0x10101105; cpu->isar.id_mmfr1 = 0x40000000; cpu->isar.id_mmfr2 = 0x01260000; cpu->isar.id_mmfr3 = 0x02102211; cpu->isar.id_isar0 = 0x02101110; cpu->isar.id_isar1 = 0x13112111; cpu->isar.id_isar2 = 0x21232042; cpu->isar.id_isar3 = 0x01112131; cpu->isar.id_isar4 = 0x00011142; cpu->isar.id_isar5 = 0x00011121; cpu->isar.id_isar6 = 0; cpu->isar.id_aa64pfr0 = 0x00002222; cpu->isar.id_aa64dfr0 = 0x10305106; cpu->isar.id_aa64isar0 = 0x00011120; cpu->isar.id_aa64mmfr0 = 0x00001122; /* 40 bit physical addr */ cpu->isar.dbgdidr = 0x3516d000; cpu->clidr = 0x0a200023; cpu->ccsidr[0] = 0x700fe01a; /* 32KB L1 dcache */ cpu->ccsidr[1] = 0x201fe00a; /* 32KB L1 icache */ cpu->ccsidr[2] = 0x707fe07a; /* 1024KB L2 cache */ cpu->dcz_blocksize = 4; /* 64 bytes */ cpu->isar.reset_pmcr_el0 = 0x41033000; define_arm_cp_regs(cpu, cortex_a72_a57_a53_cp_reginfo); } static void aarch64_a72_initfn(struct uc_struct *uc, Object *obj, void *opaque) { ARMCPU *cpu = ARM_CPU(uc, obj); cpu->dtb_compatible = "arm,cortex-a72"; set_feature(&cpu->env, ARM_FEATURE_V8); set_feature(&cpu->env, ARM_FEATURE_NEON); set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER); set_feature(&cpu->env, ARM_FEATURE_AARCH64); set_feature(&cpu->env, ARM_FEATURE_CBAR_RO); set_feature(&cpu->env, ARM_FEATURE_EL2); set_feature(&cpu->env, ARM_FEATURE_EL3); set_feature(&cpu->env, ARM_FEATURE_PMU); cpu->midr = 0x410fd083; cpu->revidr = 0x00000000; cpu->reset_fpsid = 0x41034080; cpu->isar.mvfr0 = 0x10110222; cpu->isar.mvfr1 = 0x12111111; cpu->isar.mvfr2 = 0x00000043; cpu->ctr = 0x8444c004; cpu->reset_sctlr = 0x00c50838; cpu->isar.id_pfr0 = 0x00000131; cpu->isar.id_pfr1 = 0x00011011; cpu->isar.id_dfr0 = 0x03010066; cpu->id_afr0 = 0x00000000; cpu->isar.id_mmfr0 = 0x10201105; cpu->isar.id_mmfr1 = 0x40000000; cpu->isar.id_mmfr2 = 0x01260000; cpu->isar.id_mmfr3 = 0x02102211; cpu->isar.id_isar0 = 0x02101110; cpu->isar.id_isar1 = 0x13112111; cpu->isar.id_isar2 = 0x21232042; cpu->isar.id_isar3 = 0x01112131; cpu->isar.id_isar4 = 0x00011142; cpu->isar.id_isar5 = 0x00011121; cpu->isar.id_aa64pfr0 = 0x00002222; cpu->isar.id_aa64dfr0 = 0x10305106; cpu->isar.id_aa64isar0 = 0x00011120; cpu->isar.id_aa64mmfr0 = 0x00001124; cpu->isar.dbgdidr = 0x3516d000; cpu->clidr = 0x0a200023; cpu->ccsidr[0] = 0x701fe00a; /* 32KB L1 dcache */ cpu->ccsidr[1] = 0x201fe012; /* 48KB L1 icache */ cpu->ccsidr[2] = 0x707fe07a; /* 1MB L2 cache */ cpu->dcz_blocksize = 4; /* 64 bytes */ cpu->isar.reset_pmcr_el0 = 0x41023000; define_arm_cp_regs(cpu, cortex_a72_a57_a53_cp_reginfo); } /* -cpu max: if KVM is enabled, like -cpu host (best possible with this host); * otherwise, a CPU with as many features enabled as our emulation supports. * The version of '-cpu max' for qemu-system-arm is defined in cpu.c; * this only needs to handle 64 bits. */ static void aarch64_max_initfn(struct uc_struct *uc, Object *obj, void *opaque) { ARMCPU *cpu = ARM_CPU(uc, obj); uint64_t t; uint32_t u; aarch64_a57_initfn(uc, obj, opaque); /* * Reset MIDR so the guest doesn't mistake our 'max' CPU type for a real * one and try to apply errata workarounds or use impdef features we * don't provide. * An IMPLEMENTER field of 0 means "reserved for software use"; * ARCHITECTURE must be 0xf indicating "v7 or later, check ID registers * to see which features are present"; * the VARIANT, PARTNUM and REVISION fields are all implementation * defined and we choose to define PARTNUM just in case guest * code needs to distinguish this QEMU CPU from other software * implementations, though this shouldn't be needed. */ t = FIELD_DP64(0, MIDR_EL1, IMPLEMENTER, 0); t = FIELD_DP64(t, MIDR_EL1, ARCHITECTURE, 0xf); t = FIELD_DP64(t, MIDR_EL1, PARTNUM, 'Q'); t = FIELD_DP64(t, MIDR_EL1, VARIANT, 0); t = FIELD_DP64(t, MIDR_EL1, REVISION, 0); cpu->midr = t; t = cpu->isar.id_aa64isar0; t = FIELD_DP64(t, ID_AA64ISAR0, AES, 2); /* AES + PMULL */ t = FIELD_DP64(t, ID_AA64ISAR0, SHA1, 1); t = FIELD_DP64(t, ID_AA64ISAR0, SHA2, 2); /* SHA512 */ t = FIELD_DP64(t, ID_AA64ISAR0, CRC32, 1); t = FIELD_DP64(t, ID_AA64ISAR0, ATOMIC, 2); t = FIELD_DP64(t, ID_AA64ISAR0, RDM, 1); t = FIELD_DP64(t, ID_AA64ISAR0, SHA3, 1); t = FIELD_DP64(t, ID_AA64ISAR0, SM3, 1); t = FIELD_DP64(t, ID_AA64ISAR0, SM4, 1); t = FIELD_DP64(t, ID_AA64ISAR0, DP, 1); t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 1); t = FIELD_DP64(t, ID_AA64ISAR0, TS, 2); /* v8.5-CondM */ t = FIELD_DP64(t, ID_AA64ISAR0, RNDR, 1); cpu->isar.id_aa64isar0 = t; t = cpu->isar.id_aa64isar1; t = FIELD_DP64(t, ID_AA64ISAR1, DPB, 2); t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 1); t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 1); t = FIELD_DP64(t, ID_AA64ISAR1, APA, 1); /* PAuth, architected only */ t = FIELD_DP64(t, ID_AA64ISAR1, API, 0); t = FIELD_DP64(t, ID_AA64ISAR1, GPA, 1); t = FIELD_DP64(t, ID_AA64ISAR1, GPI, 0); t = FIELD_DP64(t, ID_AA64ISAR1, SB, 1); t = FIELD_DP64(t, ID_AA64ISAR1, SPECRES, 1); t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 1); t = FIELD_DP64(t, ID_AA64ISAR1, LRCPC, 2); /* ARMv8.4-RCPC */ cpu->isar.id_aa64isar1 = t; t = cpu->isar.id_aa64pfr0; t = FIELD_DP64(t, ID_AA64PFR0, SVE, 1); t = FIELD_DP64(t, ID_AA64PFR0, FP, 1); t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 1); t = FIELD_DP64(t, ID_AA64PFR0, SEL2, 1); t = FIELD_DP64(t, ID_AA64PFR0, DIT, 1); cpu->isar.id_aa64pfr0 = t; t = cpu->isar.id_aa64pfr1; t = FIELD_DP64(t, ID_AA64PFR1, BT, 1); t = FIELD_DP64(t, ID_AA64PFR1, SSBS, 2); /* * Begin with full support for MTE; will be downgraded to MTE=1 * during realize if the board provides no tag memory. */ t = FIELD_DP64(t, ID_AA64PFR1, MTE, 2); cpu->isar.id_aa64pfr1 = t; t = cpu->isar.id_aa64mmfr0; t = FIELD_DP64(t, ID_AA64MMFR0, PARANGE, 5); /* PARange: 48 bits */ cpu->isar.id_aa64mmfr0 = t; t = cpu->isar.id_aa64mmfr1; t = FIELD_DP64(t, ID_AA64MMFR1, HPDS, 1); /* HPD */ t = FIELD_DP64(t, ID_AA64MMFR1, LO, 1); t = FIELD_DP64(t, ID_AA64MMFR1, VH, 1); t = FIELD_DP64(t, ID_AA64MMFR1, PAN, 2); /* ATS1E1 */ t = FIELD_DP64(t, ID_AA64MMFR1, VMIDBITS, 2); /* VMID16 */ t = FIELD_DP64(t, ID_AA64MMFR1, XNX, 1); /* TTS2UXN */ cpu->isar.id_aa64mmfr1 = t; t = cpu->isar.id_aa64mmfr2; t = FIELD_DP64(t, ID_AA64MMFR2, UAO, 1); t = FIELD_DP64(t, ID_AA64MMFR2, CNP, 1); /* TTCNP */ t = FIELD_DP64(t, ID_AA64MMFR2, ST, 1); /* TTST */ cpu->isar.id_aa64mmfr2 = t; /* Replicate the same data to the 32-bit id registers. */ u = cpu->isar.id_isar5; u = FIELD_DP32(u, ID_ISAR5, AES, 2); /* AES + PMULL */ u = FIELD_DP32(u, ID_ISAR5, SHA1, 1); u = FIELD_DP32(u, ID_ISAR5, SHA2, 1); u = FIELD_DP32(u, ID_ISAR5, CRC32, 1); u = FIELD_DP32(u, ID_ISAR5, RDM, 1); u = FIELD_DP32(u, ID_ISAR5, VCMA, 1); cpu->isar.id_isar5 = u; u = cpu->isar.id_isar6; u = FIELD_DP32(u, ID_ISAR6, JSCVT, 1); u = FIELD_DP32(u, ID_ISAR6, DP, 1); u = FIELD_DP32(u, ID_ISAR6, FHM, 1); u = FIELD_DP32(u, ID_ISAR6, SB, 1); u = FIELD_DP32(u, ID_ISAR6, SPECRES, 1); cpu->isar.id_isar6 = u; u = cpu->isar.id_pfr0; u = FIELD_DP32(u, ID_PFR0, DIT, 1); cpu->isar.id_pfr0 = u; u = cpu->isar.id_pfr2; u = FIELD_DP32(u, ID_PFR2, SSBS, 1); cpu->isar.id_pfr2 = u; u = cpu->isar.id_mmfr3; u = FIELD_DP32(u, ID_MMFR3, PAN, 2); /* ATS1E1 */ cpu->isar.id_mmfr3 = u; u = cpu->isar.id_mmfr4; u = FIELD_DP32(u, ID_MMFR4, HPDS, 1); /* AA32HPD */ u = FIELD_DP32(u, ID_MMFR4, AC2, 1); /* ACTLR2, HACTLR2 */ u = FIELD_DP32(u, ID_MMFR4, CNP, 1); /* TTCNP */ u = FIELD_DP32(u, ID_MMFR4, XNX, 1); /* TTS2UXN */ cpu->isar.id_mmfr4 = u; t = cpu->isar.id_aa64dfr0; t = FIELD_DP64(t, ID_AA64DFR0, PMUVER, 5); /* v8.4-PMU */ cpu->isar.id_aa64dfr0 = t; u = cpu->isar.id_dfr0; u = FIELD_DP32(u, ID_DFR0, PERFMON, 5); /* v8.4-PMU */ cpu->isar.id_dfr0 = u; u = cpu->isar.mvfr1; u = FIELD_DP32(u, MVFR1, FPHP, 3); /* v8.2-FP16 */ u = FIELD_DP32(u, MVFR1, SIMDHP, 2); /* v8.2-FP16 */ cpu->isar.mvfr1 = u; /* For usermode -cpu max we can use a larger and more efficient DCZ * blocksize since we don't have to follow what the hardware does. */ cpu->ctr = 0x80038003; /* 32 byte I and D cacheline size, VIPT icache */ cpu->dcz_blocksize = 7; /* 512 bytes */ /* Enable all PAC keys by default. */ cpu->env.cp15.sctlr_el[1] |= SCTLR_EnIA | SCTLR_EnIB; cpu->env.cp15.sctlr_el[1] |= SCTLR_EnDA | SCTLR_EnDB; cpu->sve_max_vq = ARM_MAX_VQ; } static const ARMCPUInfo aarch64_cpus[] = { { .name = "cortex-a57", .initfn = aarch64_a57_initfn }, { .name = "cortex-a53", .initfn = aarch64_a53_initfn }, { .name = "cortex-a72", .initfn = aarch64_a72_initfn }, { .name = "max", .initfn = aarch64_max_initfn }, }; static QEMU_UNUSED_FUNC bool aarch64_cpu_get_aarch64(Object *obj, Error **errp) { ARMCPU *cpu = ARM_CPU(NULL, obj); return arm_feature(&cpu->env, ARM_FEATURE_AARCH64); } static void aarch64_cpu_initfn(struct uc_struct *uc, Object *obj, void *opaque) { } static void aarch64_cpu_finalizefn(struct uc_struct *uc, Object *obj, void *opaque) { } static void aarch64_cpu_class_init(struct uc_struct *uc, ObjectClass *oc, void *data) { CPUClass *cc = CPU_CLASS(uc, oc); #ifdef CONFIG_TCG cc->tcg_ops.cpu_exec_interrupt = arm_cpu_exec_interrupt; #endif /* CONFIG_TCG */ } void aarch64_cpu_register(struct uc_struct *uc, const ARMCPUInfo *info) { TypeInfo type_info = { .parent = TYPE_AARCH64_CPU, .instance_size = sizeof(ARMCPU), .instance_init = info->initfn, .class_size = sizeof(ARMCPUClass), .class_init = info->class_init, .class_data = (void *)info, }; type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name); type_register(uc, &type_info); g_free((void *)type_info.name); } void aarch64_cpu_register_types(void *opaque) { size_t i; static TypeInfo aarch64_cpu_type_info = { 0 }; aarch64_cpu_type_info.name = TYPE_AARCH64_CPU; aarch64_cpu_type_info.parent = TYPE_ARM_CPU; aarch64_cpu_type_info.instance_size = sizeof(ARMCPU); aarch64_cpu_type_info.instance_init = aarch64_cpu_initfn; aarch64_cpu_type_info.instance_finalize = aarch64_cpu_finalizefn; aarch64_cpu_type_info.abstract = true; aarch64_cpu_type_info.class_size = sizeof(AArch64CPUClass); aarch64_cpu_type_info.class_init = aarch64_cpu_class_init; type_register_static(opaque, &aarch64_cpu_type_info); for (i = 0; i < ARRAY_SIZE(aarch64_cpus); ++i) { aarch64_cpu_register(opaque, &aarch64_cpus[i]); } }