/* Unicorn Emulator Engine */ /* By Nguyen Anh Quynh , 2015 */ #if defined(UNICORN_HAS_OSXKERNEL) #include #else #include #include #include #endif #include // nanosleep #include #include "uc_priv.h" // target specific headers #include "qemu/target/arm/unicorn.h" #include "qemu/target/i386/unicorn.h" #include "qemu/target/m68k/unicorn.h" #include "qemu/target/mips/unicorn.h" #include "qemu/target/riscv/unicorn.h" #include "qemu/target/sparc/unicorn.h" #include "qemu/include/hw/boards.h" #include "qemu/include/qemu/queue.h" static void free_table(gpointer key, gpointer value, gpointer data) { TypeInfo *ti = (TypeInfo*) value; g_hash_table_destroy(ti->class->properties); g_free((void *) ti->class); g_free((void *) ti->name); g_free((void *) ti->parent); g_free((void *) ti); } UNICORN_EXPORT unsigned int uc_version(unsigned int *major, unsigned int *minor) { if (major != NULL && minor != NULL) { *major = UC_API_MAJOR; *minor = UC_API_MINOR; } return (UC_API_MAJOR << 8) + UC_API_MINOR; } UNICORN_EXPORT uc_err uc_errno(uc_engine *uc) { return uc->errnum; } UNICORN_EXPORT const char *uc_strerror(uc_err code) { switch(code) { default: return "Unknown error code"; case UC_ERR_OK: return "OK (UC_ERR_OK)"; case UC_ERR_NOMEM: return "No memory available or memory not present (UC_ERR_NOMEM)"; case UC_ERR_ARCH: return "Invalid/unsupported architecture (UC_ERR_ARCH)"; case UC_ERR_HANDLE: return "Invalid handle (UC_ERR_HANDLE)"; case UC_ERR_MODE: return "Invalid mode (UC_ERR_MODE)"; case UC_ERR_VERSION: return "Different API version between core & binding (UC_ERR_VERSION)"; case UC_ERR_READ_UNMAPPED: return "Invalid memory read (UC_ERR_READ_UNMAPPED)"; case UC_ERR_WRITE_UNMAPPED: return "Invalid memory write (UC_ERR_WRITE_UNMAPPED)"; case UC_ERR_FETCH_UNMAPPED: return "Invalid memory fetch (UC_ERR_FETCH_UNMAPPED)"; case UC_ERR_HOOK: return "Invalid hook type (UC_ERR_HOOK)"; case UC_ERR_INSN_INVALID: return "Invalid instruction (UC_ERR_INSN_INVALID)"; case UC_ERR_MAP: return "Invalid memory mapping (UC_ERR_MAP)"; case UC_ERR_WRITE_PROT: return "Write to write-protected memory (UC_ERR_WRITE_PROT)"; case UC_ERR_READ_PROT: return "Read from non-readable memory (UC_ERR_READ_PROT)"; case UC_ERR_FETCH_PROT: return "Fetch from non-executable memory (UC_ERR_FETCH_PROT)"; case UC_ERR_ARG: return "Invalid argument (UC_ERR_ARG)"; case UC_ERR_READ_UNALIGNED: return "Read from unaligned memory (UC_ERR_READ_UNALIGNED)"; case UC_ERR_WRITE_UNALIGNED: return "Write to unaligned memory (UC_ERR_WRITE_UNALIGNED)"; case UC_ERR_FETCH_UNALIGNED: return "Fetch from unaligned memory (UC_ERR_FETCH_UNALIGNED)"; case UC_ERR_RESOURCE: return "Insufficient resource (UC_ERR_RESOURCE)"; case UC_ERR_EXCEPTION: return "Unhandled CPU exception (UC_ERR_EXCEPTION)"; } } UNICORN_EXPORT bool uc_arch_supported(uc_arch arch) { switch (arch) { #ifdef UNICORN_HAS_ARM case UC_ARCH_ARM: return true; #endif #ifdef UNICORN_HAS_ARM64 case UC_ARCH_ARM64: return true; #endif #ifdef UNICORN_HAS_M68K case UC_ARCH_M68K: return true; #endif #ifdef UNICORN_HAS_MIPS case UC_ARCH_MIPS: return true; #endif #ifdef UNICORN_HAS_PPC case UC_ARCH_PPC: return true; #endif #ifdef UNICORN_HAS_RISCV case UC_ARCH_RISCV: return true; #endif #ifdef UNICORN_HAS_SPARC case UC_ARCH_SPARC: return true; #endif #ifdef UNICORN_HAS_X86 case UC_ARCH_X86: return true; #endif /* Invalid or disabled arch */ default: return false; } } UNICORN_EXPORT uc_err uc_open(uc_arch arch, uc_mode mode, uc_engine **result) { struct uc_struct *uc; if (arch < UC_ARCH_MAX) { uc = calloc(1, sizeof(*uc)); if (!uc) { // memory insufficient return UC_ERR_NOMEM; } uc->errnum = UC_ERR_OK; uc->arch = arch; uc->mode = mode; // uc->ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) }; uc->ram_list.blocks.lh_first = NULL; uc->memory_listeners.tqh_first = NULL; uc->memory_listeners.tqh_last = &uc->memory_listeners.tqh_first; uc->address_spaces.tqh_first = NULL; uc->address_spaces.tqh_last = &uc->address_spaces.tqh_first; uc->phys_map_node_alloc_hint = 16; switch(arch) { default: break; #ifdef UNICORN_HAS_M68K case UC_ARCH_M68K: if ((mode & ~UC_MODE_M68K_MASK) || !(mode & UC_MODE_BIG_ENDIAN)) { free(uc); return UC_ERR_MODE; } uc->init_arch = m68k_uc_init; break; #endif #ifdef UNICORN_HAS_X86 case UC_ARCH_X86: if ((mode & ~UC_MODE_X86_MASK) || (mode & UC_MODE_BIG_ENDIAN) || !(mode & (UC_MODE_16|UC_MODE_32|UC_MODE_64))) { free(uc); return UC_ERR_MODE; } uc->init_arch = x86_uc_init; break; #endif #ifdef UNICORN_HAS_ARM case UC_ARCH_ARM: if ((mode & ~UC_MODE_ARM_MASK)) { free(uc); return UC_ERR_MODE; } if (mode & UC_MODE_BIG_ENDIAN) { uc->init_arch = armeb_uc_init; } else { uc->init_arch = arm_uc_init; } if (mode & UC_MODE_THUMB) uc->thumb = 1; break; #endif #ifdef UNICORN_HAS_ARM64 case UC_ARCH_ARM64: if (mode & ~UC_MODE_ARM_MASK) { free(uc); return UC_ERR_MODE; } if (mode & UC_MODE_BIG_ENDIAN) { uc->init_arch = arm64eb_uc_init; } else { uc->init_arch = arm64_uc_init; } break; #endif #if defined(UNICORN_HAS_MIPS) || defined(UNICORN_HAS_MIPSEL) || defined(UNICORN_HAS_MIPS64) || defined(UNICORN_HAS_MIPS64EL) case UC_ARCH_MIPS: if ((mode & ~UC_MODE_MIPS_MASK) || !(mode & (UC_MODE_MIPS32|UC_MODE_MIPS64))) { free(uc); return UC_ERR_MODE; } if (mode & UC_MODE_BIG_ENDIAN) { #ifdef UNICORN_HAS_MIPS if (mode & UC_MODE_MIPS32) uc->init_arch = mips_uc_init; #endif #ifdef UNICORN_HAS_MIPS64 if (mode & UC_MODE_MIPS64) uc->init_arch = mips64_uc_init; #endif } else { // little endian #ifdef UNICORN_HAS_MIPSEL if (mode & UC_MODE_MIPS32) uc->init_arch = mipsel_uc_init; #endif #ifdef UNICORN_HAS_MIPS64EL if (mode & UC_MODE_MIPS64) uc->init_arch = mips64el_uc_init; #endif } break; #endif #ifdef UNICORN_HAS_RISCV case UC_ARCH_RISCV: if (mode & ~UC_MODE_RISCV_MASK) { free(uc); return UC_ERR_MODE; } if (mode & UC_MODE_RISCV64) { #ifdef UNICORN_HAS_RISCV64 uc->init_arch = riscv64_uc_init; #endif } else { #ifdef UNICORN_HAS_RISCV32 uc->init_arch = riscv32_uc_init; #endif } break; #endif /* UNICORN_HAS_RISCV */ #ifdef UNICORN_HAS_SPARC case UC_ARCH_SPARC: if ((mode & ~UC_MODE_SPARC_MASK) || !(mode & UC_MODE_BIG_ENDIAN) || !(mode & (UC_MODE_SPARC32|UC_MODE_SPARC64))) { free(uc); return UC_ERR_MODE; } if (mode & UC_MODE_SPARC64) uc->init_arch = sparc64_uc_init; else uc->init_arch = sparc_uc_init; break; #endif } if (uc->init_arch == NULL) { return UC_ERR_ARCH; } if (machine_initialize(uc)) { return UC_ERR_RESOURCE; } *result = uc; if (uc->reg_reset) uc->reg_reset(uc); return UC_ERR_OK; } else { return UC_ERR_ARCH; } } static void free_hooks(uc_engine *uc) { struct list_item *cur; struct hook *hook; int i; // free hooks and hook lists for (i = 0; i < UC_HOOK_MAX; i++) { cur = uc->hook[i].head; // hook can be in more than one list // so we refcount to know when to free while (cur) { hook = (struct hook *)cur->data; if (--hook->refs == 0) { free(hook); } cur = cur->next; } list_clear(&uc->hook[i]); } } UNICORN_EXPORT uc_err uc_close(uc_engine *uc) { // Cleanup internally. if (uc->release) uc->release(uc->tcg_ctx); g_free(uc->tcg_ctx); // Cleanup CPU. g_free(uc->cpu->cpu_ases); g_free(uc->cpu->thread); // Cleanup all objects. OBJECT(uc->machine_state->accelerator)->ref = 1; OBJECT(uc->machine_state)->ref = 1; OBJECT(uc->owner)->ref = 1; OBJECT(uc->root)->ref = 1; object_unref(uc, OBJECT(uc->machine_state->accelerator)); object_unref(uc, OBJECT(uc->machine_state)); object_unref(uc, OBJECT(uc->cpu)); object_unref(uc, OBJECT(&uc->io_mem_notdirty)); object_unref(uc, OBJECT(&uc->io_mem_unassigned)); object_unref(uc, OBJECT(&uc->io_mem_rom)); object_unref(uc, OBJECT(uc->root)); // System memory. g_free(uc->system_memory); // Thread relateds. if (uc->qemu_thread_data) g_free(uc->qemu_thread_data); // Other auxilaries. free(uc->l1_map); if (uc->bounce.buffer) { free(uc->bounce.buffer); } g_hash_table_foreach(uc->type_table, free_table, uc); g_hash_table_destroy(uc->type_table); free_hooks(uc); free(uc->mapped_blocks); // finally, free uc itself. memset(uc, 0, sizeof(*uc)); free(uc); return UC_ERR_OK; } UNICORN_EXPORT uc_err uc_reg_read_batch(uc_engine *uc, int *ids, void **vals, int count) { if (uc->reg_read) uc->reg_read(uc, (unsigned int *)ids, vals, count); else return -1; // FIXME: need a proper uc_err return UC_ERR_OK; } UNICORN_EXPORT uc_err uc_reg_write_batch(uc_engine *uc, int *ids, void *const *vals, int count) { if (uc->reg_write) uc->reg_write(uc, (unsigned int *)ids, vals, count); else return -1; // FIXME: need a proper uc_err return UC_ERR_OK; } UNICORN_EXPORT uc_err uc_reg_read(uc_engine *uc, int regid, void *value) { return uc_reg_read_batch(uc, ®id, &value, 1); } UNICORN_EXPORT uc_err uc_reg_write(uc_engine *uc, int regid, const void *value) { return uc_reg_write_batch(uc, ®id, (void *const *)&value, 1); } // check if a memory area is mapped // this is complicated because an area can overlap adjacent blocks static bool check_mem_area(uc_engine *uc, uint64_t address, size_t size) { size_t count = 0, len; while(count < size) { MemoryRegion *mr = memory_mapping(uc, address); if (mr) { len = (size_t)MIN(size - count, mr->end - address); count += len; address += len; } else // this address is not mapped in yet break; } return (count == size); } UNICORN_EXPORT uc_err uc_mem_read(uc_engine *uc, uint64_t address, void *_bytes, size_t size) { size_t count = 0, len; uint8_t *bytes = _bytes; if (uc->mem_redirect) { address = uc->mem_redirect(address); } if (!check_mem_area(uc, address, size)) return UC_ERR_READ_UNMAPPED; // memory area can overlap adjacent memory blocks while(count < size) { MemoryRegion *mr = memory_mapping(uc, address); if (mr) { len = (size_t)MIN(size - count, mr->end - address); if (uc->read_mem(uc->cpu->as, address, bytes, len) == false) break; count += len; address += len; bytes += len; } else // this address is not mapped in yet break; } if (count == size) return UC_ERR_OK; else return UC_ERR_READ_UNMAPPED; } UNICORN_EXPORT uc_err uc_mem_write(uc_engine *uc, uint64_t address, const void *_bytes, size_t size) { size_t count = 0, len; const uint8_t *bytes = _bytes; if (uc->mem_redirect) { address = uc->mem_redirect(address); } if (!check_mem_area(uc, address, size)) return UC_ERR_WRITE_UNMAPPED; // memory area can overlap adjacent memory blocks while(count < size) { MemoryRegion *mr = memory_mapping(uc, address); if (mr) { uint32_t operms = mr->perms; if (!(operms & UC_PROT_WRITE)) // write protected // but this is not the program accessing memory, so temporarily mark writable uc->readonly_mem(mr, false); len = (size_t)MIN(size - count, mr->end - address); if (uc->write_mem(uc->cpu->as, address, bytes, len) == false) break; if (!(operms & UC_PROT_WRITE)) // write protected // now write protect it again uc->readonly_mem(mr, true); count += len; address += len; bytes += len; } else // this address is not mapped in yet break; } if (count == size) return UC_ERR_OK; else return UC_ERR_WRITE_UNMAPPED; } #define TIMEOUT_STEP 2 // microseconds static void *_timeout_fn(void *arg) { struct uc_struct *uc = arg; int64_t current_time = get_clock(); do { usleep(TIMEOUT_STEP); // perhaps emulation is even done before timeout? if (uc->emulation_done) break; } while((uint64_t)(get_clock() - current_time) < uc->timeout); // timeout before emulation is done? if (!uc->emulation_done) { // force emulation to stop uc_emu_stop(uc); } return NULL; } static void enable_emu_timer(uc_engine *uc, uint64_t timeout) { uc->timeout = timeout; qemu_thread_create(uc, &uc->timer, "timeout", _timeout_fn, uc, QEMU_THREAD_JOINABLE); } static void hook_count_cb(struct uc_struct *uc, uint64_t address, uint32_t size, void *user_data) { // count this instruction. ah ah ah. uc->emu_counter++; if (uc->emu_counter > uc->emu_count) uc_emu_stop(uc); } UNICORN_EXPORT uc_err uc_emu_start(uc_engine* uc, uint64_t begin, uint64_t until, uint64_t timeout, size_t count) { // reset the counter uc->emu_counter = 0; uc->invalid_error = UC_ERR_OK; uc->block_full = false; uc->emulation_done = false; switch(uc->arch) { default: break; #ifdef UNICORN_HAS_M68K case UC_ARCH_M68K: uc_reg_write(uc, UC_M68K_REG_PC, &begin); break; #endif #ifdef UNICORN_HAS_X86 case UC_ARCH_X86: switch(uc->mode) { default: break; case UC_MODE_16: { uint64_t ip; uint16_t cs; uc_reg_read(uc, UC_X86_REG_CS, &cs); // compensate for later adding up IP & CS ip = begin - cs*16; uc_reg_write(uc, UC_X86_REG_IP, &ip); break; } case UC_MODE_32: uc_reg_write(uc, UC_X86_REG_EIP, &begin); break; case UC_MODE_64: uc_reg_write(uc, UC_X86_REG_RIP, &begin); break; } break; #endif #ifdef UNICORN_HAS_ARM case UC_ARCH_ARM: uc_reg_write(uc, UC_ARM_REG_R15, &begin); break; #endif #ifdef UNICORN_HAS_ARM64 case UC_ARCH_ARM64: uc_reg_write(uc, UC_ARM64_REG_PC, &begin); break; #endif #ifdef UNICORN_HAS_MIPS case UC_ARCH_MIPS: // TODO: MIPS32/MIPS64/BIGENDIAN etc uc_reg_write(uc, UC_MIPS_REG_PC, &begin); break; #endif #ifdef UNICORN_HAS_RISCV case UC_ARCH_RISCV: uc_reg_write(uc, UC_RISCV_REG_PC, &begin); break; #endif #ifdef UNICORN_HAS_SPARC case UC_ARCH_SPARC: // TODO: Sparc/Sparc64 uc_reg_write(uc, UC_SPARC_REG_PC, &begin); break; #endif } uc->stop_request = false; uc->emu_count = count; // remove count hook if counting isn't necessary if (count <= 0 && uc->count_hook != 0) { uc_hook_del(uc, uc->count_hook); uc->count_hook = 0; } // set up count hook to count instructions. if (count > 0 && uc->count_hook == 0) { uc_err err; // callback to count instructions must be run before everything else, // so instead of appending, we must insert the hook at the begin // of the hook list uc->hook_insert = 1; err = uc_hook_add(uc, &uc->count_hook, UC_HOOK_CODE, hook_count_cb, NULL, 1, 0); // restore to append mode for uc_hook_add() uc->hook_insert = 0; if (err != UC_ERR_OK) { return err; } } uc->addr_end = until; if (timeout) enable_emu_timer(uc, timeout * 1000); // microseconds -> nanoseconds if (uc->vm_start(uc)) { return UC_ERR_RESOURCE; } // emulation is done uc->emulation_done = true; if (timeout) { // wait for the timer to finish qemu_thread_join(&uc->timer); } return uc->invalid_error; } UNICORN_EXPORT uc_err uc_emu_stop(uc_engine *uc) { if (uc->emulation_done) return UC_ERR_OK; uc->stop_request = true; // TODO: make this atomic somehow? if (uc->current_cpu) { // exit the current TB cpu_exit(uc->current_cpu); } return UC_ERR_OK; } // find if a memory range overlaps with existing mapped regions static bool memory_overlap(struct uc_struct *uc, uint64_t begin, size_t size) { unsigned int i; uint64_t end = begin + size - 1; for(i = 0; i < uc->mapped_block_count; i++) { // begin address falls inside this region? if (begin >= uc->mapped_blocks[i]->addr && begin <= uc->mapped_blocks[i]->end - 1) return true; // end address falls inside this region? if (end >= uc->mapped_blocks[i]->addr && end <= uc->mapped_blocks[i]->end - 1) return true; // this region falls totally inside this range? if (begin < uc->mapped_blocks[i]->addr && end > uc->mapped_blocks[i]->end - 1) return true; } // not found return false; } // common setup/error checking shared between uc_mem_map and uc_mem_map_ptr static uc_err mem_map(uc_engine *uc, uint64_t address, size_t size, uint32_t perms, MemoryRegion *block) { MemoryRegion **regions; if (block == NULL) return UC_ERR_NOMEM; if ((uc->mapped_block_count & (MEM_BLOCK_INCR - 1)) == 0) { //time to grow regions = (MemoryRegion**)g_realloc(uc->mapped_blocks, sizeof(MemoryRegion*) * (uc->mapped_block_count + MEM_BLOCK_INCR)); if (regions == NULL) { return UC_ERR_NOMEM; } uc->mapped_blocks = regions; } uc->mapped_blocks[uc->mapped_block_count] = block; uc->mapped_block_count++; return UC_ERR_OK; } static uc_err mem_map_check(uc_engine *uc, uint64_t address, size_t size, uint32_t perms) { if (size == 0) // invalid memory mapping return UC_ERR_ARG; // address cannot wrapp around if (address + size - 1 < address) return UC_ERR_ARG; // address must be aligned to uc->target_page_size if ((address & uc->target_page_align) != 0) return UC_ERR_ARG; // size must be multiple of uc->target_page_size if ((size & uc->target_page_align) != 0) return UC_ERR_ARG; // check for only valid permissions if ((perms & ~UC_PROT_ALL) != 0) return UC_ERR_ARG; // this area overlaps existing mapped regions? if (memory_overlap(uc, address, size)) { return UC_ERR_MAP; } return UC_ERR_OK; } UNICORN_EXPORT uc_err uc_mem_map(uc_engine *uc, uint64_t address, size_t size, uint32_t perms) { uc_err res; if (uc->mem_redirect) { address = uc->mem_redirect(address); } res = mem_map_check(uc, address, size, perms); if (res) return res; return mem_map(uc, address, size, perms, uc->memory_map(uc, address, size, perms)); } UNICORN_EXPORT uc_err uc_mem_map_ptr(uc_engine *uc, uint64_t address, size_t size, uint32_t perms, void *ptr) { uc_err res; if (ptr == NULL) return UC_ERR_ARG; if (uc->mem_redirect) { address = uc->mem_redirect(address); } res = mem_map_check(uc, address, size, perms); if (res) return res; return mem_map(uc, address, size, UC_PROT_ALL, uc->memory_map_ptr(uc, address, size, perms, ptr)); } // Create a backup copy of the indicated MemoryRegion. // Generally used in prepartion for splitting a MemoryRegion. static uint8_t *copy_region(struct uc_struct *uc, MemoryRegion *mr) { uint8_t *block = (uint8_t *)g_malloc0((size_t)int128_get64(mr->size)); if (block != NULL) { uc_err err = uc_mem_read(uc, mr->addr, block, (size_t)int128_get64(mr->size)); if (err != UC_ERR_OK) { free(block); block = NULL; } } return block; } /* Split the given MemoryRegion at the indicated address for the indicated size this may result in the create of up to 3 spanning sections. If the delete parameter is true, the no new section will be created to replace the indicate range. This functions exists to support uc_mem_protect and uc_mem_unmap. This is a static function and callers have already done some preliminary parameter validation. The do_delete argument indicates that we are being called to support uc_mem_unmap. In this case we save some time by choosing NOT to remap the areas that are intended to get unmapped */ // TODO: investigate whether qemu region manipulation functions already offered // this capability static bool split_region(struct uc_struct *uc, MemoryRegion *mr, uint64_t address, size_t size, bool do_delete) { uint8_t *backup; uint32_t perms; uint64_t begin, end, chunk_end; size_t l_size, m_size, r_size; chunk_end = address + size; // if this region belongs to area [address, address+size], // then there is no work to do. if (address <= mr->addr && chunk_end >= mr->end) return true; if (size == 0) // trivial case return true; if (address >= mr->end || chunk_end <= mr->addr) // impossible case return false; backup = copy_region(uc, mr); if (backup == NULL) return false; // save the essential information required for the split before mr gets deleted perms = mr->perms; begin = mr->addr; end = mr->end; // unmap this region first, then do split it later if (uc_mem_unmap(uc, mr->addr, (size_t)int128_get64(mr->size)) != UC_ERR_OK) goto error; /* overlapping cases * |------mr------| * case 1 |---size--| * case 2 |--size--| * case 3 |---size--| */ // adjust some things if (address < begin) address = begin; if (chunk_end > end) chunk_end = end; // compute sub region sizes l_size = (size_t)(address - begin); r_size = (size_t)(end - chunk_end); m_size = (size_t)(chunk_end - address); // If there are error in any of the below operations, things are too far gone // at that point to recover. Could try to remap orignal region, but these smaller // allocation just failed so no guarantee that we can recover the original // allocation at this point if (l_size > 0) { if (uc_mem_map(uc, begin, l_size, perms) != UC_ERR_OK) goto error; if (uc_mem_write(uc, begin, backup, l_size) != UC_ERR_OK) goto error; } if (m_size > 0 && !do_delete) { if (uc_mem_map(uc, address, m_size, perms) != UC_ERR_OK) goto error; if (uc_mem_write(uc, address, backup + l_size, m_size) != UC_ERR_OK) goto error; } if (r_size > 0) { if (uc_mem_map(uc, chunk_end, r_size, perms) != UC_ERR_OK) goto error; if (uc_mem_write(uc, chunk_end, backup + l_size + m_size, r_size) != UC_ERR_OK) goto error; } free(backup); return true; error: free(backup); return false; } UNICORN_EXPORT uc_err uc_mem_protect(struct uc_struct *uc, uint64_t address, size_t size, uint32_t perms) { MemoryRegion *mr; uint64_t addr = address; size_t count, len; bool remove_exec = false; if (size == 0) // trivial case, no change return UC_ERR_OK; // address must be aligned to uc->target_page_size if ((address & uc->target_page_align) != 0) return UC_ERR_ARG; // size must be multiple of uc->target_page_size if ((size & uc->target_page_align) != 0) return UC_ERR_ARG; // check for only valid permissions if ((perms & ~UC_PROT_ALL) != 0) return UC_ERR_ARG; if (uc->mem_redirect) { address = uc->mem_redirect(address); } // check that user's entire requested block is mapped if (!check_mem_area(uc, address, size)) return UC_ERR_NOMEM; // Now we know entire region is mapped, so change permissions // We may need to split regions if this area spans adjacent regions addr = address; count = 0; while(count < size) { mr = memory_mapping(uc, addr); len = (size_t)MIN(size - count, mr->end - addr); if (!split_region(uc, mr, addr, len, false)) return UC_ERR_NOMEM; mr = memory_mapping(uc, addr); // will this remove EXEC permission? if (((mr->perms & UC_PROT_EXEC) != 0) && ((perms & UC_PROT_EXEC) == 0)) remove_exec = true; mr->perms = perms; uc->readonly_mem(mr, (perms & UC_PROT_WRITE) == 0); count += len; addr += len; } // if EXEC permission is removed, then quit TB and continue at the same place if (remove_exec) { uc->quit_request = true; uc_emu_stop(uc); } return UC_ERR_OK; } UNICORN_EXPORT uc_err uc_mem_unmap(struct uc_struct *uc, uint64_t address, size_t size) { MemoryRegion *mr; uint64_t addr; size_t count, len; if (size == 0) // nothing to unmap return UC_ERR_OK; // address must be aligned to uc->target_page_size if ((address & uc->target_page_align) != 0) return UC_ERR_ARG; // size must be multiple of uc->target_page_size if ((size & uc->target_page_align) != 0) return UC_ERR_ARG; if (uc->mem_redirect) { address = uc->mem_redirect(address); } // check that user's entire requested block is mapped if (!check_mem_area(uc, address, size)) return UC_ERR_NOMEM; // Now we know entire region is mapped, so do the unmap // We may need to split regions if this area spans adjacent regions addr = address; count = 0; while(count < size) { mr = memory_mapping(uc, addr); len = (size_t)MIN(size - count, mr->end - addr); if (!split_region(uc, mr, addr, len, true)) return UC_ERR_NOMEM; // if we can retrieve the mapping, then no splitting took place // so unmap here mr = memory_mapping(uc, addr); if (mr != NULL) uc->memory_unmap(uc, mr); count += len; addr += len; } return UC_ERR_OK; } // find the memory region of this address MemoryRegion *memory_mapping(struct uc_struct* uc, uint64_t address) { unsigned int i; if (uc->mapped_block_count == 0) return NULL; if (uc->mem_redirect) { address = uc->mem_redirect(address); } // try with the cache index first i = uc->mapped_block_cache_index; if (i < uc->mapped_block_count && address >= uc->mapped_blocks[i]->addr && address < uc->mapped_blocks[i]->end) return uc->mapped_blocks[i]; for(i = 0; i < uc->mapped_block_count; i++) { if (address >= uc->mapped_blocks[i]->addr && address <= uc->mapped_blocks[i]->end - 1) { // cache this index for the next query uc->mapped_block_cache_index = i; return uc->mapped_blocks[i]; } } // not found return NULL; } UNICORN_EXPORT uc_err uc_hook_add(uc_engine *uc, uc_hook *hh, int type, void *callback, void *user_data, uint64_t begin, uint64_t end, ...) { int ret = UC_ERR_OK; int i = 0; struct hook *hook = calloc(1, sizeof(struct hook)); if (hook == NULL) { return UC_ERR_NOMEM; } hook->begin = begin; hook->end = end; hook->type = type; hook->callback = callback; hook->user_data = user_data; hook->refs = 0; *hh = (uc_hook)hook; // UC_HOOK_INSN has an extra argument for instruction ID if (type & UC_HOOK_INSN) { va_list valist; va_start(valist, end); hook->insn = va_arg(valist, int); va_end(valist); if (uc->insn_hook_validate) { if (! uc->insn_hook_validate(hook->insn)) { free(hook); return UC_ERR_HOOK; } } if (uc->hook_insert) { if (list_insert(&uc->hook[UC_HOOK_INSN_IDX], hook) == NULL) { free(hook); return UC_ERR_NOMEM; } } else { if (list_append(&uc->hook[UC_HOOK_INSN_IDX], hook) == NULL) { free(hook); return UC_ERR_NOMEM; } } hook->refs++; return UC_ERR_OK; } while ((type >> i) > 0) { if ((type >> i) & 1) { // TODO: invalid hook error? if (i < UC_HOOK_MAX) { if (uc->hook_insert) { if (list_insert(&uc->hook[i], hook) == NULL) { if (hook->refs == 0) { free(hook); } return UC_ERR_NOMEM; } } else { if (list_append(&uc->hook[i], hook) == NULL) { if (hook->refs == 0) { free(hook); } return UC_ERR_NOMEM; } } hook->refs++; } } i++; } // we didn't use the hook // TODO: return an error? if (hook->refs == 0) { free(hook); } return ret; } UNICORN_EXPORT uc_err uc_hook_del(uc_engine *uc, uc_hook hh) { int i; struct hook *hook = (struct hook *)hh; // we can't dereference hook->type if hook is invalid // so for now we need to iterate over all possible types to remove the hook // which is less efficient // an optimization would be to align the hook pointer // and store the type mask in the hook pointer. for (i = 0; i < UC_HOOK_MAX; i++) { if (list_remove(&uc->hook[i], (void *)hook)) { if (--hook->refs == 0) { free(hook); break; } } } return UC_ERR_OK; } // TCG helper void helper_uc_tracecode(int32_t size, uc_hook_type type, void *handle, int64_t address); void helper_uc_tracecode(int32_t size, uc_hook_type type, void *handle, int64_t address) { struct uc_struct *uc = handle; struct list_item *cur = uc->hook[type].head; struct hook *hook; // sync PC in CPUArchState with address if (uc->set_pc) { uc->set_pc(uc, address); } while (cur != NULL && !uc->stop_request) { hook = (struct hook *)cur->data; if (HOOK_BOUND_CHECK(hook, (uint64_t)address)) { ((uc_cb_hookcode_t)hook->callback)(uc, address, size, hook->user_data); } cur = cur->next; } } UNICORN_EXPORT uint32_t uc_mem_regions(uc_engine *uc, uc_mem_region **regions, uint32_t *count) { uint32_t i; uc_mem_region *r = NULL; *count = uc->mapped_block_count; if (*count) { r = g_malloc0(*count * sizeof(uc_mem_region)); if (r == NULL) { // out of memory return UC_ERR_NOMEM; } } for (i = 0; i < *count; i++) { r[i].begin = uc->mapped_blocks[i]->addr; r[i].end = uc->mapped_blocks[i]->end - 1; r[i].perms = uc->mapped_blocks[i]->perms; } *regions = r; return UC_ERR_OK; } UNICORN_EXPORT uc_err uc_query(uc_engine *uc, uc_query_type type, size_t *result) { if (type == UC_QUERY_PAGE_SIZE) { *result = uc->target_page_size; return UC_ERR_OK; } if (type == UC_QUERY_ARCH) { *result = uc->arch; return UC_ERR_OK; } switch(uc->arch) { #ifdef UNICORN_HAS_ARM case UC_ARCH_ARM: return uc->query(uc, type, result); #endif default: return UC_ERR_ARG; } return UC_ERR_OK; } static size_t cpu_context_size(uc_arch arch, uc_mode mode) { // each of these constants is defined by offsetof(CPUXYZState, tlb_table) // tbl_table is the first entry in the CPU_COMMON macro, so it marks the end // of the interesting CPU registers switch (arch) { #ifdef UNICORN_HAS_M68K case UC_ARCH_M68K: return M68K_REGS_STORAGE_SIZE; #endif #ifdef UNICORN_HAS_X86 case UC_ARCH_X86: return X86_REGS_STORAGE_SIZE; #endif #ifdef UNICORN_HAS_ARM case UC_ARCH_ARM: return mode & UC_MODE_BIG_ENDIAN ? ARM_REGS_STORAGE_SIZE_armeb : ARM_REGS_STORAGE_SIZE_arm; #endif #ifdef UNICORN_HAS_ARM64 case UC_ARCH_ARM64: return mode & UC_MODE_BIG_ENDIAN ? ARM64_REGS_STORAGE_SIZE_aarch64eb : ARM64_REGS_STORAGE_SIZE_aarch64; #endif #ifdef UNICORN_HAS_MIPS case UC_ARCH_MIPS: if (mode & UC_MODE_MIPS64) { if (mode & UC_MODE_BIG_ENDIAN) { return MIPS64_REGS_STORAGE_SIZE_mips64; } else { return MIPS64_REGS_STORAGE_SIZE_mips64el; } } else { if (mode & UC_MODE_BIG_ENDIAN) { return MIPS_REGS_STORAGE_SIZE_mips; } else { return MIPS_REGS_STORAGE_SIZE_mipsel; } } #endif #ifdef UNICORN_HAS_RISCV case UC_ARCH_RISCV: if (mode & UC_MODE_RISCV64) { return RISCV64_REGS_STORAGE_SIZE_riscv64; } return RISCV32_REGS_STORAGE_SIZE_riscv32; #endif #ifdef UNICORN_HAS_SPARC case UC_ARCH_SPARC: return mode & UC_MODE_SPARC64 ? SPARC64_REGS_STORAGE_SIZE : SPARC_REGS_STORAGE_SIZE; #endif default: return 0; } } UNICORN_EXPORT uc_err uc_context_alloc(uc_engine *uc, uc_context **context) { struct uc_context **_context = context; size_t size = cpu_context_size(uc->arch, uc->mode); *_context = malloc(size + sizeof(uc_context)); if (*_context) { (*_context)->size = size; return UC_ERR_OK; } else { return UC_ERR_NOMEM; } } UNICORN_EXPORT uc_err uc_free(void *mem) { g_free(mem); return UC_ERR_OK; } UNICORN_EXPORT uc_err uc_context_save(uc_engine *uc, uc_context *context) { struct uc_context *_context = context; memcpy(_context->data, uc->cpu->env_ptr, _context->size); return UC_ERR_OK; } UNICORN_EXPORT uc_err uc_context_restore(uc_engine *uc, uc_context *context) { struct uc_context *_context = context; memcpy(uc->cpu->env_ptr, _context->data, _context->size); return UC_ERR_OK; }