/* Unicorn Emulator Engine */ /* By Nguyen Anh Quynh , 2015 */ #include "qemu/osdep.h" #include "cpu.h" #include "hw/boards.h" #include "hw/arm/arm.h" #include "sysemu/cpus.h" #include "unicorn.h" #include "unicorn_common.h" #include "uc_priv.h" const int ARM_REGS_STORAGE_SIZE = offsetof(CPUARMState, tlb_table); static void arm_set_pc(struct uc_struct *uc, uint64_t address) { CPUArchState *state = uc->cpu->env_ptr; state->pc = address; state->regs[15] = address; } void arm_release(void* ctx); void arm_release(void* ctx) { TCGContext *s = (TCGContext *) ctx; struct uc_struct* uc = s->uc; ARMCPU* cpu = ARM_CPU(uc, uc->cpu); CPUArchState *env = &cpu->env; g_free(s->tb_ctx.tbs); g_free(cpu->cpreg_indexes); g_free(cpu->cpreg_values); g_free(cpu->cpreg_vmstate_indexes); g_free(cpu->cpreg_vmstate_values); g_free(env->pmsav7.drbar); g_free(env->pmsav7.drsr); g_free(env->pmsav7.dracr); release_common(ctx); } void arm_reg_reset(struct uc_struct *uc) { CPUArchState *env = uc->cpu->env_ptr; memset(env->regs, 0, sizeof(env->regs)); env->pc = 0; } int arm_reg_read(struct uc_struct *uc, unsigned int *regs, void **vals, int count) { CPUState *mycpu = uc->cpu; CPUARMState *state = &ARM_CPU(uc, mycpu)->env; int i; for (i = 0; i < count; i++) { unsigned int regid = regs[i]; void *value = vals[i]; if (regid >= UC_ARM_REG_R0 && regid <= UC_ARM_REG_R12) { *(int32_t *)value = state->regs[regid - UC_ARM_REG_R0]; } else if (regid >= UC_ARM_REG_D0 && regid <= UC_ARM_REG_D31) { const float64 *d_reg = aa32_vfp_dreg(state, regid - UC_ARM_REG_D0); *(float64 *)value = *d_reg; } else { switch(regid) { case UC_ARM_REG_APSR: *(int32_t *)value = cpsr_read(state) & CPSR_NZCV; break; case UC_ARM_REG_CPSR: *(int32_t *)value = cpsr_read(state); break; //case UC_ARM_REG_SP: case UC_ARM_REG_R13: *(int32_t *)value = state->regs[13]; break; //case UC_ARM_REG_LR: case UC_ARM_REG_R14: *(int32_t *)value = state->regs[14]; break; //case UC_ARM_REG_PC: case UC_ARM_REG_R15: *(int32_t *)value = state->regs[15]; break; case UC_ARM_REG_C1_C0_2: *(int32_t *)value = state->cp15.cpacr_el1; break; case UC_ARM_REG_C13_C0_3: *(int32_t *)value = state->cp15.tpidrro_el[0]; break; case UC_ARM_REG_FPEXC: *(int32_t *)value = state->vfp.xregs[ARM_VFP_FPEXC]; break; case UC_ARM_REG_FPSCR: *(int32_t *)value = vfp_get_fpscr(state); break; case UC_ARM_REG_IPSR: *(uint32_t *)value = xpsr_read(state) & XPSR_EXCP; break; case UC_ARM_REG_MSP: *(uint32_t *)value = helper_v7m_mrs(state, 8); break; case UC_ARM_REG_PSP: *(uint32_t *)value = helper_v7m_mrs(state, 9); break; case UC_ARM_REG_CONTROL: *(uint32_t *)value = helper_v7m_mrs(state, 20); break; } } } return 0; } int arm_reg_write(struct uc_struct *uc, unsigned int *regs, void* const* vals, int count) { CPUState *mycpu = uc->cpu; CPUARMState *state = &ARM_CPU(uc, mycpu)->env; int i; for (i = 0; i < count; i++) { unsigned int regid = regs[i]; const void *value = vals[i]; if (regid >= UC_ARM_REG_R0 && regid <= UC_ARM_REG_R12) { state->regs[regid - UC_ARM_REG_R0] = *(uint32_t *)value; } else if (regid >= UC_ARM_REG_D0 && regid <= UC_ARM_REG_D31) { float64 *d_reg = aa32_vfp_dreg(state, regid - UC_ARM_REG_D0); *d_reg = *(float64 *)value; } else { switch(regid) { case UC_ARM_REG_APSR: cpsr_write(state, *(uint32_t *)value, CPSR_NZCV, CPSRWriteRaw); break; case UC_ARM_REG_CPSR: cpsr_write(state, *(uint32_t *)value, ~0, CPSRWriteRaw); break; //case UC_ARM_REG_SP: case UC_ARM_REG_R13: state->regs[13] = *(uint32_t *)value; break; //case UC_ARM_REG_LR: case UC_ARM_REG_R14: state->regs[14] = *(uint32_t *)value; break; //case UC_ARM_REG_PC: case UC_ARM_REG_R15: state->pc = (*(uint32_t *)value & ~1); state->thumb = (*(uint32_t *)value & 1); state->uc->thumb = (*(uint32_t *)value & 1); state->regs[15] = (*(uint32_t *)value & ~1); // force to quit execution and flush TB uc->quit_request = true; uc_emu_stop(uc); break; case UC_ARM_REG_C1_C0_2: state->cp15.cpacr_el1 = *(int32_t *)value; break; case UC_ARM_REG_C13_C0_3: state->cp15.tpidrro_el[0] = *(int32_t *)value; break; case UC_ARM_REG_FPEXC: state->vfp.xregs[ARM_VFP_FPEXC] = *(int32_t *)value; break; case UC_ARM_REG_FPSCR: vfp_set_fpscr(state, *(uint32_t *)value); break; case UC_ARM_REG_IPSR: xpsr_write(state, *(uint32_t *)value, XPSR_EXCP); break; case UC_ARM_REG_MSP: helper_v7m_msr(state, 8, *(uint32_t *)value); break; case UC_ARM_REG_PSP: helper_v7m_msr(state, 9, *(uint32_t *)value); break; case UC_ARM_REG_CONTROL: helper_v7m_msr(state, 20, *(uint32_t *)value); break; } } } return 0; } static bool arm_stop_interrupt(int intno) { switch(intno) { default: return false; case EXCP_UDEF: case EXCP_YIELD: return true; } } static uc_err arm_query(struct uc_struct *uc, uc_query_type type, size_t *result) { CPUState *mycpu = uc->cpu; CPUARMState *state = &ARM_CPU(uc, mycpu)->env; uint32_t mode; switch(type) { case UC_QUERY_MODE: // zero out ARM/THUMB mode mode = uc->mode & ~(UC_MODE_ARM | UC_MODE_THUMB); // THUMB mode or ARM MOde mode += ((state->thumb != 0) ? UC_MODE_THUMB : UC_MODE_ARM); *result = mode; return UC_ERR_OK; default: return UC_ERR_ARG; } } #ifdef TARGET_WORDS_BIGENDIAN void armeb_uc_init(struct uc_struct* uc) #else void arm_uc_init(struct uc_struct* uc) #endif { register_accel_types(uc); arm_cpu_register_types(uc); tosa_machine_init_register_types(uc); uc->reg_read = arm_reg_read; uc->reg_write = arm_reg_write; uc->reg_reset = arm_reg_reset; uc->set_pc = arm_set_pc; uc->stop_interrupt = arm_stop_interrupt; uc->release = arm_release; uc->query = arm_query; uc_common_init(uc); }