#include #include "unicorn_test.h" #define OK(x) uc_assert_success(x) #define CF_MASK (1<<0) #define PF_MASK (1<<2) #define ZF_MASK (1<<6) #define SF_MASK (1<<7) #define OF_MASK (1<<11) #define ALL_MASK (OF_MASK|SF_MASK|ZF_MASK|PF_MASK|CF_MASK) #define NO_MASK 0xFFFFFFFF typedef struct _reg_value { uint32_t regId, regValue, mask; } reg_value; typedef struct _instruction { const char* asmStr; const uint8_t* code; uint32_t codeSize; const reg_value* values; uint32_t nbValues; } instruction; typedef struct _block { instruction* insts[255]; uint32_t nbInsts; uint32_t size; } block; typedef struct _exec_state { uint32_t curr; block* block; } exec_state; /******************************************************************************/ #define CAT2(X, Y) X ## Y #define CAT(X, Y) CAT2(X, Y) #define ADD_INSTRUCTION(BLOCK, CODE_ASM, CODE, REGVALUES) \ const uint8_t CAT(code, __LINE__)[] = CODE; \ const reg_value CAT(regValues, __LINE__)[] = REGVALUES; \ inst = newInstruction(CAT(code, __LINE__), sizeof(CAT(code, __LINE__)), CODE_ASM, CAT(regValues, __LINE__), sizeof(CAT(regValues, __LINE__)) / sizeof(reg_value)); \ addInstructionToBlock(BLOCK, inst); #define V(...) { __VA_ARGS__ } /******************************************************************************/ instruction* newInstruction(const uint8_t * _code, uint32_t _codeSize, const char* _asmStr, const reg_value* _values, uint32_t _nbValues); void addInstructionToBlock(block* _b, instruction* _i); uint32_t loadBlock(uc_engine *_uc, block* _block, uint32_t _at); void freeBlock(block* _block); const char* getRegisterName(uint32_t _regid); uint32_t getRegisterValue(uc_engine *uc, uint32_t _regid); /******************************************************************************/ void hook_code_test_i386_shl(uc_engine *uc, uint64_t address, uint32_t size, void *user_data) { uint32_t i; exec_state* es = (exec_state*)user_data; instruction* currInst = es->block->insts[es->curr]; print_message("|\teip=%08x - %s\n", (uint32_t)address, es->block->insts[es->curr]->asmStr); for (i = 0; i < currInst->nbValues; i++) { if (currInst->values[i].regId == UC_X86_REG_INVALID) continue; uint32_t regValue = getRegisterValue(uc, currInst->values[i].regId); print_message("|\t\ttesting %s : ", getRegisterName(currInst->values[i].regId)); assert_int_equal(regValue & currInst->values[i].mask, currInst->values[i].regValue); print_message("ok\n"); } es->curr++; if (es->curr >= es->block->nbInsts) { print_message("stopping emulation\n"); uc_emu_stop(uc); } } #define ADDR_START 0x100000 static void test_i386_shl_prob(void **state) { uc_engine *uc; uc_hook trace1; // Initialize emulator in X86-32bit mode OK(uc_open(UC_ARCH_X86, UC_MODE_32, &uc)); OK(uc_mem_map(uc, ADDR_START, 0x1000, UC_PROT_ALL)); { exec_state es; block block_shl_prob; instruction* inst; es.curr = 0; es.block = &block_shl_prob; block_shl_prob.nbInsts = 0; ADD_INSTRUCTION(&block_shl_prob, "mov ebx, 3Ch", V(0xBB, 0x3C, 0x00, 0x00, 0x00), V(V(UC_X86_REG_INVALID, 0x0, NO_MASK))); ADD_INSTRUCTION(&block_shl_prob, "mov cl, 2", V(0xB1, 0x02), V(V(UC_X86_REG_EBX, 0x3C, NO_MASK))); ADD_INSTRUCTION(&block_shl_prob, "shl ebx, cl", V(0xD3, 0xE3), V(V(UC_X86_REG_EBX, 0x3C, NO_MASK), V(UC_X86_REG_CL, 0x2, NO_MASK))); ADD_INSTRUCTION(&block_shl_prob, "lahf", V(0x9F), V(V(UC_X86_REG_EBX, 0xF0, NO_MASK), V(UC_X86_REG_CL, 0x2, NO_MASK), V(UC_X86_REG_EFLAGS, 0x4, ALL_MASK))); ADD_INSTRUCTION(&block_shl_prob, "int3", V(0xCC), V(V(UC_X86_REG_AH, 0x4, PF_MASK), V(UC_X86_REG_EBX, 0xF0, NO_MASK), V(UC_X86_REG_CL, 0x2, NO_MASK), V(UC_X86_REG_EFLAGS, 0x4, ALL_MASK))); loadBlock(uc, &block_shl_prob, ADDR_START); // initialize machine registers uint32_t zero = 0; OK(uc_reg_write(uc, UC_X86_REG_EAX, &zero)); OK(uc_reg_write(uc, UC_X86_REG_EBX, &zero)); OK(uc_reg_write(uc, UC_X86_REG_ECX, &zero)); OK(uc_reg_write(uc, UC_X86_REG_EDX, &zero)); OK(uc_hook_add(uc, &trace1, UC_HOOK_CODE, hook_code_test_i386_shl, &es, 1, 0)); // emulate machine code in infinite time OK(uc_emu_start(uc, ADDR_START, ADDR_START + block_shl_prob.size - 1, 0, 0)); freeBlock(&block_shl_prob); } uc_close(uc); } static void test_i386_shl_ok(void **state) { uc_engine *uc; uc_hook trace1; // Initialize emulator in X86-32bit mode OK(uc_open(UC_ARCH_X86, UC_MODE_32, &uc)); OK(uc_mem_map(uc, ADDR_START, 0x1000, UC_PROT_ALL)); { exec_state es; block block_shl_ok; instruction* inst; es.curr = 0; es.block = &block_shl_ok; block_shl_ok.nbInsts = 0; ADD_INSTRUCTION(&block_shl_ok, "mov ebx, 3Ch", V(0xBB, 0x3C, 0x00, 0x00, 0x00), V(V(UC_X86_REG_INVALID, 0x0, NO_MASK))); ADD_INSTRUCTION(&block_shl_ok, "shl ebx, 2", V(0xC1, 0xE3, 0x02), V(V(UC_X86_REG_EBX, 0x3C, NO_MASK))); ADD_INSTRUCTION(&block_shl_ok, "lahf", V(0x9F), V(V(UC_X86_REG_EBX, 0xF0, NO_MASK), V(UC_X86_REG_EFLAGS, 0x4, ALL_MASK))); ADD_INSTRUCTION(&block_shl_ok, "int3", V(0xCC), V(V(UC_X86_REG_AH, 0x4, PF_MASK), V(UC_X86_REG_EBX, 0xF0, NO_MASK), V(UC_X86_REG_EFLAGS, 0x4, ALL_MASK))); loadBlock(uc, &block_shl_ok, ADDR_START); // initialize machine registers uint32_t zero = 0; OK(uc_reg_write(uc, UC_X86_REG_EAX, &zero)); OK(uc_reg_write(uc, UC_X86_REG_EBX, &zero)); OK(uc_reg_write(uc, UC_X86_REG_ECX, &zero)); OK(uc_reg_write(uc, UC_X86_REG_EDX, &zero)); OK(uc_hook_add(uc, &trace1, UC_HOOK_CODE, hook_code_test_i386_shl, &es, 1, 0)); // emulate machine code in infinite time OK(uc_emu_start(uc, ADDR_START, ADDR_START + block_shl_ok.size - 1, 0, 0)); freeBlock(&block_shl_ok); } uc_close(uc); } /******************************************************************************/ int main(void) { const struct CMUnitTest tests[] = { cmocka_unit_test(test_i386_shl_prob), cmocka_unit_test(test_i386_shl_ok), }; return cmocka_run_group_tests(tests, NULL, NULL); } /******************************************************************************/ instruction* newInstruction(const uint8_t * _code, uint32_t _codeSize, const char* _asmStr, const reg_value* _values, uint32_t _nbValues) { instruction* inst = (instruction*)malloc(sizeof(instruction)); inst->asmStr = _asmStr; inst->code = _code; inst->codeSize = _codeSize; inst->values = _values; inst->nbValues = _nbValues; return inst; } void addInstructionToBlock(block* _b, instruction* _i) { _b->insts[_b->nbInsts++] = _i; } uint32_t loadBlock(uc_engine *_uc, block* _block, uint32_t _at) { uint32_t i, offset; for (i = 0, offset = 0; i < _block->nbInsts; i++) { OK(uc_mem_write(_uc, _at + offset, _block->insts[i]->code, _block->insts[i]->codeSize)); offset += _block->insts[i]->codeSize; } _block->size = offset; return offset; } void freeBlock(block* _block) { uint32_t i; for (i = 0; i < _block->nbInsts; i++) free(_block->insts[i]); } const char* getRegisterName(uint32_t _regid) { switch (_regid) { //8 case UC_X86_REG_AH: return "AH"; case UC_X86_REG_AL: return "AL"; case UC_X86_REG_BH: return "BH"; case UC_X86_REG_BL: return "BL"; case UC_X86_REG_CL: return "CL"; case UC_X86_REG_CH: return "CH"; case UC_X86_REG_DH: return "DH"; case UC_X86_REG_DL: return "DL"; //16 case UC_X86_REG_AX: return "AX"; case UC_X86_REG_BX: return "BX"; case UC_X86_REG_CX: return "CX"; case UC_X86_REG_DX: return "DX"; //32 case UC_X86_REG_EAX: return "EAX"; case UC_X86_REG_EBX: return "EBX"; case UC_X86_REG_ECX: return "ECX"; case UC_X86_REG_EDX: return "EDX"; case UC_X86_REG_EDI: return "EDI"; case UC_X86_REG_ESI: return "ESI"; case UC_X86_REG_EBP: return "EBP"; case UC_X86_REG_ESP: return "ESP"; case UC_X86_REG_EIP: return "EIP"; case UC_X86_REG_EFLAGS: return "EFLAGS"; default: fail(); } return "UNKNOWN"; } uint32_t getRegisterValue(uc_engine *uc, uint32_t _regid) { switch (_regid) { //8 case UC_X86_REG_AH: case UC_X86_REG_AL: case UC_X86_REG_BH: case UC_X86_REG_BL: case UC_X86_REG_CL: case UC_X86_REG_CH: case UC_X86_REG_DH: case UC_X86_REG_DL: { uint8_t val = 0; uc_reg_read(uc, _regid, &val); return val; } //16 case UC_X86_REG_AX: case UC_X86_REG_BX: case UC_X86_REG_CX: case UC_X86_REG_DX: { uint16_t val = 0; uc_reg_read(uc, _regid, &val); return val; } //32 case UC_X86_REG_EAX: case UC_X86_REG_EBX: case UC_X86_REG_ECX: case UC_X86_REG_EDX: case UC_X86_REG_EDI: case UC_X86_REG_ESI: case UC_X86_REG_EBP: case UC_X86_REG_ESP: case UC_X86_REG_EIP: case UC_X86_REG_EFLAGS: { uint32_t val = 0; uc_reg_read(uc, _regid, &val); return val; } default: fail(); } return 0; }