/* * ARM NEON vector operations. * * Copyright (c) 2007, 2008 CodeSourcery. * Written by Paul Brook * * This code is licensed under the GNU GPL v2. */ #include "qemu/osdep.h" #include "cpu.h" #include "exec/exec-all.h" #include "exec/helper-proto.h" #define SIGNBIT (uint32_t)0x80000000 #define SIGNBIT64 ((uint64_t)1 << 63) #define SET_QC() env->vfp.xregs[ARM_VFP_FPSCR] |= CPSR_Q #define NEON_TYPE1(name, type) \ typedef struct \ { \ type v1; \ } neon_##name; #ifdef HOST_WORDS_BIGENDIAN #define NEON_TYPE2(name, type) \ typedef struct \ { \ type v2; \ type v1; \ } neon_##name; #define NEON_TYPE4(name, type) \ typedef struct \ { \ type v4; \ type v3; \ type v2; \ type v1; \ } neon_##name; #else #define NEON_TYPE2(name, type) \ typedef struct \ { \ type v1; \ type v2; \ } neon_##name; #define NEON_TYPE4(name, type) \ typedef struct \ { \ type v1; \ type v2; \ type v3; \ type v4; \ } neon_##name; #endif NEON_TYPE4(s8, int8_t) NEON_TYPE4(u8, uint8_t) NEON_TYPE2(s16, int16_t) NEON_TYPE2(u16, uint16_t) NEON_TYPE1(s32, int32_t) NEON_TYPE1(u32, uint32_t) #undef NEON_TYPE4 #undef NEON_TYPE2 #undef NEON_TYPE1 /* Copy from a uint32_t to a vector structure type. */ #define NEON_UNPACK(vtype, dest, val) do { \ union { \ vtype v; \ uint32_t i; \ } conv_u; \ conv_u.i = (val); \ dest = conv_u.v; \ } while(0) /* Copy from a vector structure type to a uint32_t. */ #define NEON_PACK(vtype, dest, val) do { \ union { \ vtype v; \ uint32_t i; \ } conv_u; \ conv_u.v = (val); \ dest = conv_u.i; \ } while(0) #define NEON_DO1 \ NEON_FN(vdest.v1, vsrc1.v1, vsrc2.v1); #define NEON_DO2 \ NEON_FN(vdest.v1, vsrc1.v1, vsrc2.v1); \ NEON_FN(vdest.v2, vsrc1.v2, vsrc2.v2); #define NEON_DO4 \ NEON_FN(vdest.v1, vsrc1.v1, vsrc2.v1); \ NEON_FN(vdest.v2, vsrc1.v2, vsrc2.v2); \ NEON_FN(vdest.v3, vsrc1.v3, vsrc2.v3); \ NEON_FN(vdest.v4, vsrc1.v4, vsrc2.v4); #define NEON_VOP_BODY(vtype, n) \ { \ uint32_t res; \ vtype vsrc1; \ vtype vsrc2; \ vtype vdest; \ NEON_UNPACK(vtype, vsrc1, arg1); \ NEON_UNPACK(vtype, vsrc2, arg2); \ NEON_DO##n; \ NEON_PACK(vtype, res, vdest); \ return res; \ } #define NEON_VOP(name, vtype, n) \ uint32_t HELPER(glue(neon_,name))(uint32_t arg1, uint32_t arg2) \ NEON_VOP_BODY(vtype, n) #define NEON_VOP_ENV(name, vtype, n) \ uint32_t HELPER(glue(neon_,name))(CPUARMState *env, uint32_t arg1, uint32_t arg2) \ NEON_VOP_BODY(vtype, n) /* Pairwise operations. */ /* For 32-bit elements each segment only contains a single element, so the elementwise and pairwise operations are the same. */ #define NEON_PDO2 \ NEON_FN(vdest.v1, vsrc1.v1, vsrc1.v2); \ NEON_FN(vdest.v2, vsrc2.v1, vsrc2.v2); #define NEON_PDO4 \ NEON_FN(vdest.v1, vsrc1.v1, vsrc1.v2); \ NEON_FN(vdest.v2, vsrc1.v3, vsrc1.v4); \ NEON_FN(vdest.v3, vsrc2.v1, vsrc2.v2); \ NEON_FN(vdest.v4, vsrc2.v3, vsrc2.v4); \ #define NEON_POP(name, vtype, n) \ uint32_t HELPER(glue(neon_,name))(uint32_t arg1, uint32_t arg2) \ { \ uint32_t res; \ vtype vsrc1; \ vtype vsrc2; \ vtype vdest; \ NEON_UNPACK(vtype, vsrc1, arg1); \ NEON_UNPACK(vtype, vsrc2, arg2); \ NEON_PDO##n; \ NEON_PACK(vtype, res, vdest); \ return res; \ } /* Unary operators. */ #define NEON_VOP1(name, vtype, n) \ uint32_t HELPER(glue(neon_,name))(uint32_t arg) \ { \ vtype vsrc1; \ vtype vdest; \ NEON_UNPACK(vtype, vsrc1, arg); \ NEON_DO##n; \ NEON_PACK(vtype, arg, vdest); \ return arg; \ } #define NEON_USAT(dest, src1, src2, type) do { \ uint32_t tmp = (uint32_t)src1 + (uint32_t)src2; \ if (tmp != (type)tmp) { \ SET_QC(); \ dest = ~0; \ } else { \ dest = tmp; \ }} while(0) #define NEON_FN(dest, src1, src2) NEON_USAT(dest, src1, src2, uint8_t) NEON_VOP_ENV(qadd_u8, neon_u8, 4) #undef NEON_FN #define NEON_FN(dest, src1, src2) NEON_USAT(dest, src1, src2, uint16_t) NEON_VOP_ENV(qadd_u16, neon_u16, 2) #undef NEON_FN #undef NEON_USAT uint32_t HELPER(neon_qadd_u32)(CPUARMState *env, uint32_t a, uint32_t b) { uint32_t res = a + b; if (res < a) { SET_QC(); res = ~0; } return res; } uint64_t HELPER(neon_qadd_u64)(CPUARMState *env, uint64_t src1, uint64_t src2) { uint64_t res; res = src1 + src2; if (res < src1) { SET_QC(); res = ~(uint64_t)0; } return res; } #define NEON_SSAT(dest, src1, src2, type) do { \ int32_t tmp = (uint32_t)src1 + (uint32_t)src2; \ if (tmp != (type)tmp) { \ SET_QC(); \ if (src2 > 0) { \ tmp = (1 << (sizeof(type) * 8 - 1)) - 1; \ } else { \ tmp = 1 << (sizeof(type) * 8 - 1); \ } \ } \ dest = tmp; \ } while(0) #define NEON_FN(dest, src1, src2) NEON_SSAT(dest, src1, src2, int8_t) NEON_VOP_ENV(qadd_s8, neon_s8, 4) #undef NEON_FN #define NEON_FN(dest, src1, src2) NEON_SSAT(dest, src1, src2, int16_t) NEON_VOP_ENV(qadd_s16, neon_s16, 2) #undef NEON_FN #undef NEON_SSAT uint32_t HELPER(neon_qadd_s32)(CPUARMState *env, uint32_t a, uint32_t b) { uint32_t res = a + b; if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT)) { SET_QC(); res = ~(((int32_t)a >> 31) ^ SIGNBIT); } return res; } uint64_t HELPER(neon_qadd_s64)(CPUARMState *env, uint64_t src1, uint64_t src2) { uint64_t res; res = src1 + src2; if (((res ^ src1) & SIGNBIT64) && !((src1 ^ src2) & SIGNBIT64)) { SET_QC(); res = ((int64_t)src1 >> 63) ^ ~SIGNBIT64; } return res; } /* Unsigned saturating accumulate of signed value * * Op1/Rn is treated as signed * Op2/Rd is treated as unsigned * * Explicit casting is used to ensure the correct sign extension of * inputs. The result is treated as a unsigned value and saturated as such. * * We use a macro for the 8/16 bit cases which expects signed integers of va, * vb, and vr for interim calculation and an unsigned 32 bit result value r. */ #define USATACC(bits, shift) \ do { \ va = sextract32(a, shift, bits); \ vb = extract32(b, shift, bits); \ vr = va + vb; \ if (vr > UINT##bits##_MAX) { \ SET_QC(); \ vr = UINT##bits##_MAX; \ } else if (vr < 0) { \ SET_QC(); \ vr = 0; \ } \ r = deposit32(r, shift, bits, vr); \ } while (0) uint32_t HELPER(neon_uqadd_s8)(CPUARMState *env, uint32_t a, uint32_t b) { int16_t va, vb, vr; uint32_t r = 0; USATACC(8, 0); USATACC(8, 8); USATACC(8, 16); USATACC(8, 24); return r; } uint32_t HELPER(neon_uqadd_s16)(CPUARMState *env, uint32_t a, uint32_t b) { int32_t va, vb, vr; uint64_t r = 0; USATACC(16, 0); USATACC(16, 16); return r; } #undef USATACC uint32_t HELPER(neon_uqadd_s32)(CPUARMState *env, uint32_t a, uint32_t b) { int64_t va = (int32_t)a; int64_t vb = (uint32_t)b; int64_t vr = va + vb; if (vr > UINT32_MAX) { SET_QC(); vr = UINT32_MAX; } else if (vr < 0) { SET_QC(); vr = 0; } return vr; } uint64_t HELPER(neon_uqadd_s64)(CPUARMState *env, uint64_t a, uint64_t b) { uint64_t res; res = a + b; /* We only need to look at the pattern of SIGN bits to detect * +ve/-ve saturation */ if (~a & b & ~res & SIGNBIT64) { SET_QC(); res = UINT64_MAX; } else if (a & ~b & res & SIGNBIT64) { SET_QC(); res = 0; } return res; } /* Signed saturating accumulate of unsigned value * * Op1/Rn is treated as unsigned * Op2/Rd is treated as signed * * The result is treated as a signed value and saturated as such * * We use a macro for the 8/16 bit cases which expects signed integers of va, * vb, and vr for interim calculation and an unsigned 32 bit result value r. */ #define SSATACC(bits, shift) \ do { \ va = extract32(a, shift, bits); \ vb = sextract32(b, shift, bits); \ vr = va + vb; \ if (vr > INT##bits##_MAX) { \ SET_QC(); \ vr = INT##bits##_MAX; \ } else if (vr < INT##bits##_MIN) { \ SET_QC(); \ vr = INT##bits##_MIN; \ } \ r = deposit32(r, shift, bits, vr); \ } while (0) uint32_t HELPER(neon_sqadd_u8)(CPUARMState *env, uint32_t a, uint32_t b) { int16_t va, vb, vr; uint32_t r = 0; SSATACC(8, 0); SSATACC(8, 8); SSATACC(8, 16); SSATACC(8, 24); return r; } uint32_t HELPER(neon_sqadd_u16)(CPUARMState *env, uint32_t a, uint32_t b) { int32_t va, vb, vr; uint32_t r = 0; SSATACC(16, 0); SSATACC(16, 16); return r; } #undef SSATACC uint32_t HELPER(neon_sqadd_u32)(CPUARMState *env, uint32_t a, uint32_t b) { int64_t res; int64_t op1 = (uint32_t)a; int64_t op2 = (int32_t)b; res = op1 + op2; if (res > INT32_MAX) { SET_QC(); res = INT32_MAX; } else if (res < INT32_MIN) { SET_QC(); res = INT32_MIN; } return res; } uint64_t HELPER(neon_sqadd_u64)(CPUARMState *env, uint64_t a, uint64_t b) { uint64_t res; res = a + b; /* We only need to look at the pattern of SIGN bits to detect an overflow */ if (((a & res) | (~b & res) | (a & ~b)) & SIGNBIT64) { SET_QC(); res = INT64_MAX; } return res; } #define NEON_USAT(dest, src1, src2, type) do { \ uint32_t tmp = (uint32_t)src1 - (uint32_t)src2; \ if (tmp != (type)tmp) { \ SET_QC(); \ dest = 0; \ } else { \ dest = tmp; \ }} while(0) #define NEON_FN(dest, src1, src2) NEON_USAT(dest, src1, src2, uint8_t) NEON_VOP_ENV(qsub_u8, neon_u8, 4) #undef NEON_FN #define NEON_FN(dest, src1, src2) NEON_USAT(dest, src1, src2, uint16_t) NEON_VOP_ENV(qsub_u16, neon_u16, 2) #undef NEON_FN #undef NEON_USAT uint32_t HELPER(neon_qsub_u32)(CPUARMState *env, uint32_t a, uint32_t b) { uint32_t res = a - b; if (res > a) { SET_QC(); res = 0; } return res; } uint64_t HELPER(neon_qsub_u64)(CPUARMState *env, uint64_t src1, uint64_t src2) { uint64_t res; if (src1 < src2) { SET_QC(); res = 0; } else { res = src1 - src2; } return res; } #define NEON_SSAT(dest, src1, src2, type) do { \ int32_t tmp = (uint32_t)src1 - (uint32_t)src2; \ if (tmp != (type)tmp) { \ SET_QC(); \ if (src2 < 0) { \ tmp = (1 << (sizeof(type) * 8 - 1)) - 1; \ } else { \ tmp = 1 << (sizeof(type) * 8 - 1); \ } \ } \ dest = tmp; \ } while(0) #define NEON_FN(dest, src1, src2) NEON_SSAT(dest, src1, src2, int8_t) NEON_VOP_ENV(qsub_s8, neon_s8, 4) #undef NEON_FN #define NEON_FN(dest, src1, src2) NEON_SSAT(dest, src1, src2, int16_t) NEON_VOP_ENV(qsub_s16, neon_s16, 2) #undef NEON_FN #undef NEON_SSAT uint32_t HELPER(neon_qsub_s32)(CPUARMState *env, uint32_t a, uint32_t b) { uint32_t res = a - b; if (((res ^ a) & SIGNBIT) && ((a ^ b) & SIGNBIT)) { SET_QC(); res = ~(((int32_t)a >> 31) ^ SIGNBIT); } return res; } uint64_t HELPER(neon_qsub_s64)(CPUARMState *env, uint64_t src1, uint64_t src2) { uint64_t res; res = src1 - src2; if (((res ^ src1) & SIGNBIT64) && ((src1 ^ src2) & SIGNBIT64)) { SET_QC(); res = ((int64_t)src1 >> 63) ^ ~SIGNBIT64; } return res; } #define NEON_FN(dest, src1, src2) dest = (src1 + src2) >> 1 NEON_VOP(hadd_s8, neon_s8, 4) NEON_VOP(hadd_u8, neon_u8, 4) NEON_VOP(hadd_s16, neon_s16, 2) NEON_VOP(hadd_u16, neon_u16, 2) #undef NEON_FN int32_t HELPER(neon_hadd_s32)(int32_t src1, int32_t src2) { int32_t dest; dest = (src1 >> 1) + (src2 >> 1); if (src1 & src2 & 1) dest++; return dest; } uint32_t HELPER(neon_hadd_u32)(uint32_t src1, uint32_t src2) { uint32_t dest; dest = (src1 >> 1) + (src2 >> 1); if (src1 & src2 & 1) dest++; return dest; } #define NEON_FN(dest, src1, src2) dest = (src1 + src2 + 1) >> 1 NEON_VOP(rhadd_s8, neon_s8, 4) NEON_VOP(rhadd_u8, neon_u8, 4) NEON_VOP(rhadd_s16, neon_s16, 2) NEON_VOP(rhadd_u16, neon_u16, 2) #undef NEON_FN int32_t HELPER(neon_rhadd_s32)(int32_t src1, int32_t src2) { int32_t dest; dest = (src1 >> 1) + (src2 >> 1); if ((src1 | src2) & 1) dest++; return dest; } uint32_t HELPER(neon_rhadd_u32)(uint32_t src1, uint32_t src2) { uint32_t dest; dest = (src1 >> 1) + (src2 >> 1); if ((src1 | src2) & 1) dest++; return dest; } #define NEON_FN(dest, src1, src2) dest = (src1 - src2) >> 1 NEON_VOP(hsub_s8, neon_s8, 4) NEON_VOP(hsub_u8, neon_u8, 4) NEON_VOP(hsub_s16, neon_s16, 2) NEON_VOP(hsub_u16, neon_u16, 2) #undef NEON_FN int32_t HELPER(neon_hsub_s32)(int32_t src1, int32_t src2) { int32_t dest; dest = (src1 >> 1) - (src2 >> 1); if ((~src1) & src2 & 1) dest--; return dest; } uint32_t HELPER(neon_hsub_u32)(uint32_t src1, uint32_t src2) { uint32_t dest; dest = (src1 >> 1) - (src2 >> 1); if ((~src1) & src2 & 1) dest--; return dest; } #define NEON_FN(dest, src1, src2) dest = (src1 > src2) ? ~0 : 0 NEON_VOP(cgt_s8, neon_s8, 4) NEON_VOP(cgt_u8, neon_u8, 4) NEON_VOP(cgt_s16, neon_s16, 2) NEON_VOP(cgt_u16, neon_u16, 2) NEON_VOP(cgt_s32, neon_s32, 1) NEON_VOP(cgt_u32, neon_u32, 1) #undef NEON_FN #define NEON_FN(dest, src1, src2) dest = (src1 >= src2) ? ~0 : 0 NEON_VOP(cge_s8, neon_s8, 4) NEON_VOP(cge_u8, neon_u8, 4) NEON_VOP(cge_s16, neon_s16, 2) NEON_VOP(cge_u16, neon_u16, 2) NEON_VOP(cge_s32, neon_s32, 1) NEON_VOP(cge_u32, neon_u32, 1) #undef NEON_FN #define NEON_FN(dest, src1, src2) dest = (src1 < src2) ? src1 : src2 NEON_VOP(min_s8, neon_s8, 4) NEON_VOP(min_u8, neon_u8, 4) NEON_VOP(min_s16, neon_s16, 2) NEON_VOP(min_u16, neon_u16, 2) NEON_VOP(min_s32, neon_s32, 1) NEON_VOP(min_u32, neon_u32, 1) NEON_POP(pmin_s8, neon_s8, 4) NEON_POP(pmin_u8, neon_u8, 4) NEON_POP(pmin_s16, neon_s16, 2) NEON_POP(pmin_u16, neon_u16, 2) #undef NEON_FN #define NEON_FN(dest, src1, src2) dest = (src1 > src2) ? src1 : src2 NEON_VOP(max_s8, neon_s8, 4) NEON_VOP(max_u8, neon_u8, 4) NEON_VOP(max_s16, neon_s16, 2) NEON_VOP(max_u16, neon_u16, 2) NEON_VOP(max_s32, neon_s32, 1) NEON_VOP(max_u32, neon_u32, 1) NEON_POP(pmax_s8, neon_s8, 4) NEON_POP(pmax_u8, neon_u8, 4) NEON_POP(pmax_s16, neon_s16, 2) NEON_POP(pmax_u16, neon_u16, 2) #undef NEON_FN #define NEON_FN(dest, src1, src2) \ dest = (src1 > src2) ? (src1 - src2) : (src2 - src1) NEON_VOP(abd_s8, neon_s8, 4) NEON_VOP(abd_u8, neon_u8, 4) NEON_VOP(abd_s16, neon_s16, 2) NEON_VOP(abd_u16, neon_u16, 2) NEON_VOP(abd_s32, neon_s32, 1) NEON_VOP(abd_u32, neon_u32, 1) #undef NEON_FN #define NEON_FN(dest, src1, src2) do { \ int8_t tmp; \ tmp = (int8_t)src2; \ if (tmp >= (ssize_t)sizeof(src1) * 8 || \ tmp <= -(ssize_t)sizeof(src1) * 8) { \ dest = 0; \ } else if (tmp < 0) { \ dest = src1 >> -tmp; \ } else { \ dest = src1 << tmp; \ }} while (0) NEON_VOP(shl_u8, neon_u8, 4) NEON_VOP(shl_u16, neon_u16, 2) NEON_VOP(shl_u32, neon_u32, 1) #undef NEON_FN uint64_t HELPER(neon_shl_u64)(uint64_t val, uint64_t shiftop) { int8_t shift = (int8_t)shiftop; if (shift >= 64 || shift <= -64) { val = 0; } else if (shift < 0) { val >>= -shift; } else { val <<= shift; } return val; } #define NEON_FN(dest, src1, src2) do { \ int8_t tmp; \ tmp = (int8_t)src2; \ if (tmp >= (ssize_t)sizeof(src1) * 8) { \ dest = 0; \ } else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \ dest = src1 >> (sizeof(src1) * 8 - 1); \ } else if (tmp < 0) { \ dest = src1 >> -tmp; \ } else { \ dest = src1 << tmp; \ }} while (0) NEON_VOP(shl_s8, neon_s8, 4) NEON_VOP(shl_s16, neon_s16, 2) NEON_VOP(shl_s32, neon_s32, 1) #undef NEON_FN uint64_t HELPER(neon_shl_s64)(uint64_t valop, uint64_t shiftop) { int8_t shift = (int8_t)shiftop; int64_t val = valop; if (shift >= 64) { val = 0; } else if (shift <= -64) { val >>= 63; } else if (shift < 0) { val >>= -shift; } else { val <<= shift; } return val; } #define NEON_FN(dest, src1, src2) do { \ int8_t tmp; \ tmp = (int8_t)src2; \ if ((tmp >= (ssize_t)sizeof(src1) * 8) \ || (tmp <= -(ssize_t)sizeof(src1) * 8)) { \ dest = 0; \ } else if (tmp < 0) { \ dest = (src1 + (1 << (-1 - tmp))) >> -tmp; \ } else { \ dest = src1 << tmp; \ }} while (0) NEON_VOP(rshl_s8, neon_s8, 4) NEON_VOP(rshl_s16, neon_s16, 2) #undef NEON_FN /* The addition of the rounding constant may overflow, so we use an * intermediate 64 bit accumulator. */ uint32_t HELPER(neon_rshl_s32)(uint32_t valop, uint32_t shiftop) { int32_t dest; int32_t val = (int32_t)valop; int8_t shift = (int8_t)shiftop; if ((shift >= 32) || (shift <= -32)) { dest = 0; } else if (shift < 0) { int64_t big_dest = ((int64_t)val + (1ULL << (-1 - shift))); dest = big_dest >> -shift; } else { dest = val << shift; } return dest; } /* Handling addition overflow with 64 bit input values is more * tricky than with 32 bit values. */ uint64_t HELPER(neon_rshl_s64)(uint64_t valop, uint64_t shiftop) { int8_t shift = (int8_t)shiftop; int64_t val = valop; if ((shift >= 64) || (shift <= -64)) { val = 0; } else if (shift < 0) { val >>= (-shift - 1); if (val == INT64_MAX) { /* In this case, it means that the rounding constant is 1, * and the addition would overflow. Return the actual * result directly. */ val = 0x4000000000000000LL; } else { val++; val >>= 1; } } else { val <<= shift; } return val; } #define NEON_FN(dest, src1, src2) do { \ int8_t tmp; \ tmp = (int8_t)src2; \ if (tmp >= (ssize_t)sizeof(src1) * 8 || \ tmp < -(ssize_t)sizeof(src1) * 8) { \ dest = 0; \ } else if (tmp == -(ssize_t)sizeof(src1) * 8) { \ dest = src1 >> (-tmp - 1); \ } else if (tmp < 0) { \ dest = (src1 + (1 << (-1 - tmp))) >> -tmp; \ } else { \ dest = src1 << tmp; \ }} while (0) NEON_VOP(rshl_u8, neon_u8, 4) NEON_VOP(rshl_u16, neon_u16, 2) #undef NEON_FN /* The addition of the rounding constant may overflow, so we use an * intermediate 64 bit accumulator. */ uint32_t HELPER(neon_rshl_u32)(uint32_t val, uint32_t shiftop) { uint32_t dest; int8_t shift = (int8_t)shiftop; if (shift >= 32 || shift < -32) { dest = 0; } else if (shift == -32) { dest = val >> 31; } else if (shift < 0) { uint64_t big_dest = ((uint64_t)val + (1ULL << (-1 - shift))); dest = big_dest >> -shift; } else { dest = val << shift; } return dest; } /* Handling addition overflow with 64 bit input values is more * tricky than with 32 bit values. */ uint64_t HELPER(neon_rshl_u64)(uint64_t val, uint64_t shiftop) { int8_t shift = (uint8_t)shiftop; if (shift >= 64 || shift < -64) { val = 0; } else if (shift == -64) { /* Rounding a 1-bit result just preserves that bit. */ val >>= 63; } else if (shift < 0) { val >>= (-shift - 1); if (val == UINT64_MAX) { /* In this case, it means that the rounding constant is 1, * and the addition would overflow. Return the actual * result directly. */ val = 0x8000000000000000ULL; } else { val++; val >>= 1; } } else { val <<= shift; } return val; } #define NEON_FN(dest, src1, src2) do { \ int8_t tmp; \ tmp = (int8_t)src2; \ if (tmp >= (ssize_t)sizeof(src1) * 8) { \ if (src1) { \ SET_QC(); \ dest = ~0; \ } else { \ dest = 0; \ } \ } else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \ dest = 0; \ } else if (tmp < 0) { \ dest = src1 >> -tmp; \ } else { \ dest = src1 << tmp; \ if ((dest >> tmp) != src1) { \ SET_QC(); \ dest = ~0; \ } \ }} while (0) NEON_VOP_ENV(qshl_u8, neon_u8, 4) NEON_VOP_ENV(qshl_u16, neon_u16, 2) NEON_VOP_ENV(qshl_u32, neon_u32, 1) #undef NEON_FN uint64_t HELPER(neon_qshl_u64)(CPUARMState *env, uint64_t val, uint64_t shiftop) { int8_t shift = (int8_t)shiftop; if (shift >= 64) { if (val) { val = ~(uint64_t)0; SET_QC(); } } else if (shift <= -64) { val = 0; } else if (shift < 0) { val >>= -shift; } else { uint64_t tmp = val; val <<= shift; if ((val >> shift) != tmp) { SET_QC(); val = ~(uint64_t)0; } } return val; } #define NEON_FN(dest, src1, src2) do { \ int8_t tmp; \ tmp = (int8_t)src2; \ if (tmp >= (ssize_t)sizeof(src1) * 8) { \ if (src1) { \ SET_QC(); \ dest = (uint32_t)(1 << (sizeof(src1) * 8 - 1)); \ if (src1 > 0) { \ dest--; \ } \ } else { \ dest = src1; \ } \ } else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \ dest = src1 >> 31; \ } else if (tmp < 0) { \ dest = src1 >> -tmp; \ } else { \ dest = src1 << tmp; \ if ((dest >> tmp) != src1) { \ SET_QC(); \ dest = (uint32_t)(1 << (sizeof(src1) * 8 - 1)); \ if (src1 > 0) { \ dest--; \ } \ } \ }} while (0) NEON_VOP_ENV(qshl_s8, neon_s8, 4) NEON_VOP_ENV(qshl_s16, neon_s16, 2) NEON_VOP_ENV(qshl_s32, neon_s32, 1) #undef NEON_FN uint64_t HELPER(neon_qshl_s64)(CPUARMState *env, uint64_t valop, uint64_t shiftop) { int8_t shift = (uint8_t)shiftop; int64_t val = valop; if (shift >= 64) { if (val) { SET_QC(); val = (val >> 63) ^ ~SIGNBIT64; } } else if (shift <= -64) { val >>= 63; } else if (shift < 0) { val >>= -shift; } else { int64_t tmp = val; val <<= shift; if ((val >> shift) != tmp) { SET_QC(); val = (tmp >> 63) ^ ~SIGNBIT64; } } return val; } #define NEON_FN(dest, src1, src2) do { \ if (src1 & (1 << (sizeof(src1) * 8 - 1))) { \ SET_QC(); \ dest = 0; \ } else { \ int8_t tmp; \ tmp = (int8_t)src2; \ if (tmp >= (ssize_t)sizeof(src1) * 8) { \ if (src1) { \ SET_QC(); \ dest = ~0; \ } else { \ dest = 0; \ } \ } else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \ dest = 0; \ } else if (tmp < 0) { \ dest = src1 >> -tmp; \ } else { \ dest = src1 << tmp; \ if ((dest >> tmp) != src1) { \ SET_QC(); \ dest = ~0; \ } \ } \ }} while (0) NEON_VOP_ENV(qshlu_s8, neon_u8, 4) NEON_VOP_ENV(qshlu_s16, neon_u16, 2) #undef NEON_FN uint32_t HELPER(neon_qshlu_s32)(CPUARMState *env, uint32_t valop, uint32_t shiftop) { if ((int32_t)valop < 0) { SET_QC(); return 0; } return helper_neon_qshl_u32(env, valop, shiftop); } uint64_t HELPER(neon_qshlu_s64)(CPUARMState *env, uint64_t valop, uint64_t shiftop) { if ((int64_t)valop < 0) { SET_QC(); return 0; } return helper_neon_qshl_u64(env, valop, shiftop); } #define NEON_FN(dest, src1, src2) do { \ int8_t tmp; \ tmp = (int8_t)src2; \ if (tmp >= (ssize_t)sizeof(src1) * 8) { \ if (src1) { \ SET_QC(); \ dest = ~0; \ } else { \ dest = 0; \ } \ } else if (tmp < -(ssize_t)sizeof(src1) * 8) { \ dest = 0; \ } else if (tmp == -(ssize_t)sizeof(src1) * 8) { \ dest = src1 >> (sizeof(src1) * 8 - 1); \ } else if (tmp < 0) { \ dest = (src1 + (1 << (-1 - tmp))) >> -tmp; \ } else { \ dest = src1 << tmp; \ if ((dest >> tmp) != src1) { \ SET_QC(); \ dest = ~0; \ } \ }} while (0) NEON_VOP_ENV(qrshl_u8, neon_u8, 4) NEON_VOP_ENV(qrshl_u16, neon_u16, 2) #undef NEON_FN /* The addition of the rounding constant may overflow, so we use an * intermediate 64 bit accumulator. */ uint32_t HELPER(neon_qrshl_u32)(CPUARMState *env, uint32_t val, uint32_t shiftop) { uint32_t dest; int8_t shift = (int8_t)shiftop; if (shift >= 32) { if (val) { SET_QC(); dest = ~0; } else { dest = 0; } } else if (shift < -32) { dest = 0; } else if (shift == -32) { dest = val >> 31; } else if (shift < 0) { uint64_t big_dest = ((uint64_t)val + (1ULL << (-1 - shift))); dest = big_dest >> -shift; } else { dest = val << shift; if ((dest >> shift) != val) { SET_QC(); dest = ~0; } } return dest; } /* Handling addition overflow with 64 bit input values is more * tricky than with 32 bit values. */ uint64_t HELPER(neon_qrshl_u64)(CPUARMState *env, uint64_t val, uint64_t shiftop) { int8_t shift = (int8_t)shiftop; if (shift >= 64) { if (val) { SET_QC(); val = ~0; } } else if (shift < -64) { val = 0; } else if (shift == -64) { val >>= 63; } else if (shift < 0) { val >>= (-shift - 1); if (val == UINT64_MAX) { /* In this case, it means that the rounding constant is 1, * and the addition would overflow. Return the actual * result directly. */ val = 0x8000000000000000ULL; } else { val++; val >>= 1; } } else { \ uint64_t tmp = val; val <<= shift; if ((val >> shift) != tmp) { SET_QC(); val = ~0; } } return val; } // Unicorn: Silences an implicit truncation warning with Clang, however // this can't be brought to MSVC as it doesn't // implement the typeof compiler extension #ifdef _MSC_VER #define SILENCE_NEON_WARNING(dest, src1) \ (1 << (sizeof(src1) * 8 - 1)); #else #define SILENCE_NEON_WARNING(dest, src1) \ (typeof(dest))(1 << (sizeof(src1) * 8 - 1)); #endif #define NEON_FN(dest, src1, src2) do { \ int8_t tmp; \ tmp = (int8_t)src2; \ if (tmp >= (ssize_t)sizeof(src1) * 8) { \ if (src1) { \ SET_QC(); \ dest = SILENCE_NEON_WARNING(dest, src1) \ if (src1 > 0) { \ dest--; \ } \ } else { \ dest = 0; \ } \ } else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \ dest = 0; \ } else if (tmp < 0) { \ dest = (src1 + (1 << (-1 - tmp))) >> -tmp; \ } else { \ dest = src1 << tmp; \ if ((dest >> tmp) != src1) { \ SET_QC(); \ dest = (uint32_t)(1 << (sizeof(src1) * 8 - 1)); \ if (src1 > 0) { \ dest--; \ } \ } \ }} while (0) NEON_VOP_ENV(qrshl_s8, neon_s8, 4) NEON_VOP_ENV(qrshl_s16, neon_s16, 2) #undef NEON_FN /* The addition of the rounding constant may overflow, so we use an * intermediate 64 bit accumulator. */ uint32_t HELPER(neon_qrshl_s32)(CPUARMState *env, uint32_t valop, uint32_t shiftop) { int32_t dest; int32_t val = (int32_t)valop; int8_t shift = (int8_t)shiftop; if (shift >= 32) { if (val) { SET_QC(); dest = (val >> 31) ^ ~SIGNBIT; } else { dest = 0; } } else if (shift <= -32) { dest = 0; } else if (shift < 0) { int64_t big_dest = ((int64_t)val + (1ULL << (-1 - shift))); dest = big_dest >> -shift; } else { dest = val << shift; if ((dest >> shift) != val) { SET_QC(); dest = (val >> 31) ^ ~SIGNBIT; } } return dest; } /* Handling addition overflow with 64 bit input values is more * tricky than with 32 bit values. */ uint64_t HELPER(neon_qrshl_s64)(CPUARMState *env, uint64_t valop, uint64_t shiftop) { int8_t shift = (uint8_t)shiftop; int64_t val = valop; if (shift >= 64) { if (val) { SET_QC(); val = (val >> 63) ^ ~SIGNBIT64; } } else if (shift <= -64) { val = 0; } else if (shift < 0) { val >>= (-shift - 1); if (val == INT64_MAX) { /* In this case, it means that the rounding constant is 1, * and the addition would overflow. Return the actual * result directly. */ val = 0x4000000000000000ULL; } else { val++; val >>= 1; } } else { int64_t tmp = val; val <<= shift; if ((val >> shift) != tmp) { SET_QC(); val = (tmp >> 63) ^ ~SIGNBIT64; } } return val; } uint32_t HELPER(neon_add_u8)(uint32_t a, uint32_t b) { uint32_t mask; mask = (a ^ b) & 0x80808080u; a &= ~0x80808080u; b &= ~0x80808080u; return (a + b) ^ mask; } uint32_t HELPER(neon_add_u16)(uint32_t a, uint32_t b) { uint32_t mask; mask = (a ^ b) & 0x80008000u; a &= ~0x80008000u; b &= ~0x80008000u; return (a + b) ^ mask; } #define NEON_FN(dest, src1, src2) dest = src1 + src2 NEON_POP(padd_u8, neon_u8, 4) NEON_POP(padd_u16, neon_u16, 2) #undef NEON_FN #define NEON_FN(dest, src1, src2) dest = src1 - src2 NEON_VOP(sub_u8, neon_u8, 4) NEON_VOP(sub_u16, neon_u16, 2) #undef NEON_FN #define NEON_FN(dest, src1, src2) dest = src1 * src2 NEON_VOP(mul_u8, neon_u8, 4) NEON_VOP(mul_u16, neon_u16, 2) #undef NEON_FN /* Polynomial multiplication is like integer multiplication except the partial products are XORed, not added. */ uint32_t HELPER(neon_mul_p8)(uint32_t op1, uint32_t op2) { uint32_t mask; uint32_t result; result = 0; while (op1) { mask = 0; if (op1 & 1) mask |= 0xff; if (op1 & (1 << 8)) mask |= (0xff << 8); if (op1 & (1 << 16)) mask |= (0xff << 16); if (op1 & (1 << 24)) mask |= (0xff << 24); result ^= op2 & mask; op1 = (op1 >> 1) & 0x7f7f7f7f; op2 = (op2 << 1) & 0xfefefefe; } return result; } uint64_t HELPER(neon_mull_p8)(uint32_t op1, uint32_t op2) { uint64_t result = 0; uint64_t mask; uint64_t op2ex = op2; op2ex = (op2ex & 0xff) | ((op2ex & 0xff00) << 8) | ((op2ex & 0xff0000) << 16) | ((op2ex & 0xff000000) << 24); while (op1) { mask = 0; if (op1 & 1) { mask |= 0xffff; } if (op1 & (1 << 8)) { mask |= (0xffffU << 16); } if (op1 & (1 << 16)) { mask |= (0xffffULL << 32); } if (op1 & (1 << 24)) { mask |= (0xffffULL << 48); } result ^= op2ex & mask; op1 = (op1 >> 1) & 0x7f7f7f7f; op2ex <<= 1; } return result; } #define NEON_FN(dest, src1, src2) dest = (src1 & src2) ? -1 : 0 NEON_VOP(tst_u8, neon_u8, 4) NEON_VOP(tst_u16, neon_u16, 2) NEON_VOP(tst_u32, neon_u32, 1) #undef NEON_FN #define NEON_FN(dest, src1, src2) dest = (src1 == src2) ? -1 : 0 NEON_VOP(ceq_u8, neon_u8, 4) NEON_VOP(ceq_u16, neon_u16, 2) NEON_VOP(ceq_u32, neon_u32, 1) #undef NEON_FN #define NEON_FN(dest, src, dummy) dest = (src < 0) ? -src : src NEON_VOP1(abs_s8, neon_s8, 4) NEON_VOP1(abs_s16, neon_s16, 2) #undef NEON_FN /* Count Leading Sign/Zero Bits. */ static inline int do_clz8(uint8_t x) { int n; for (n = 8; x; n--) x >>= 1; return n; } static inline int do_clz16(uint16_t x) { int n; for (n = 16; x; n--) x >>= 1; return n; } #define NEON_FN(dest, src, dummy) dest = do_clz8(src) NEON_VOP1(clz_u8, neon_u8, 4) #undef NEON_FN #define NEON_FN(dest, src, dummy) dest = do_clz16(src) NEON_VOP1(clz_u16, neon_u16, 2) #undef NEON_FN #define NEON_FN(dest, src, dummy) dest = do_clz8((src < 0) ? ~src : src) - 1 NEON_VOP1(cls_s8, neon_s8, 4) #undef NEON_FN #define NEON_FN(dest, src, dummy) dest = do_clz16((src < 0) ? ~src : src) - 1 NEON_VOP1(cls_s16, neon_s16, 2) #undef NEON_FN uint32_t HELPER(neon_cls_s32)(uint32_t x) { int count; if ((int32_t)x < 0) x = ~x; for (count = 32; x; count--) x = x >> 1; return count - 1; } /* Bit count. */ uint32_t HELPER(neon_cnt_u8)(uint32_t x) { x = (x & 0x55555555) + ((x >> 1) & 0x55555555); x = (x & 0x33333333) + ((x >> 2) & 0x33333333); x = (x & 0x0f0f0f0f) + ((x >> 4) & 0x0f0f0f0f); return x; } /* Reverse bits in each 8 bit word */ uint32_t HELPER(neon_rbit_u8)(uint32_t x) { x = ((x & 0xf0f0f0f0) >> 4) | ((x & 0x0f0f0f0f) << 4); x = ((x & 0x88888888) >> 3) | ((x & 0x44444444) >> 1) | ((x & 0x22222222) << 1) | ((x & 0x11111111) << 3); return x; } #define NEON_QDMULH16(dest, src1, src2, round) do { \ uint32_t tmp = (int32_t)(int16_t) src1 * (int16_t) src2; \ if ((tmp ^ (tmp << 1)) & SIGNBIT) { \ SET_QC(); \ tmp = (tmp >> 31) ^ ~SIGNBIT; \ } else { \ tmp <<= 1; \ } \ if (round) { \ int32_t old = tmp; \ tmp += 1 << 15; \ if ((int32_t)tmp < old) { \ SET_QC(); \ tmp = SIGNBIT - 1; \ } \ } \ dest = tmp >> 16; \ } while(0) #define NEON_FN(dest, src1, src2) NEON_QDMULH16(dest, src1, src2, 0) NEON_VOP_ENV(qdmulh_s16, neon_s16, 2) #undef NEON_FN #define NEON_FN(dest, src1, src2) NEON_QDMULH16(dest, src1, src2, 1) NEON_VOP_ENV(qrdmulh_s16, neon_s16, 2) #undef NEON_FN #undef NEON_QDMULH16 #define NEON_QDMULH32(dest, src1, src2, round) do { \ uint64_t tmp = (int64_t)(int32_t) src1 * (int32_t) src2; \ if ((tmp ^ (tmp << 1)) & SIGNBIT64) { \ SET_QC(); \ tmp = (tmp >> 63) ^ ~SIGNBIT64; \ } else { \ tmp <<= 1; \ } \ if (round) { \ int64_t old = tmp; \ tmp += (int64_t)1 << 31; \ if ((int64_t)tmp < old) { \ SET_QC(); \ tmp = SIGNBIT64 - 1; \ } \ } \ dest = tmp >> 32; \ } while(0) #define NEON_FN(dest, src1, src2) NEON_QDMULH32(dest, src1, src2, 0) NEON_VOP_ENV(qdmulh_s32, neon_s32, 1) #undef NEON_FN #define NEON_FN(dest, src1, src2) NEON_QDMULH32(dest, src1, src2, 1) NEON_VOP_ENV(qrdmulh_s32, neon_s32, 1) #undef NEON_FN #undef NEON_QDMULH32 uint32_t HELPER(neon_narrow_u8)(uint64_t x) { return (x & 0xffu) | ((x >> 8) & 0xff00u) | ((x >> 16) & 0xff0000u) | ((x >> 24) & 0xff000000u); } uint32_t HELPER(neon_narrow_u16)(uint64_t x) { return (x & 0xffffu) | ((x >> 16) & 0xffff0000u); } uint32_t HELPER(neon_narrow_high_u8)(uint64_t x) { return ((x >> 8) & 0xff) | ((x >> 16) & 0xff00) | ((x >> 24) & 0xff0000) | ((x >> 32) & 0xff000000); } uint32_t HELPER(neon_narrow_high_u16)(uint64_t x) { return ((x >> 16) & 0xffff) | ((x >> 32) & 0xffff0000); } uint32_t HELPER(neon_narrow_round_high_u8)(uint64_t x) { x &= 0xff80ff80ff80ff80ull; x += 0x0080008000800080ull; return ((x >> 8) & 0xff) | ((x >> 16) & 0xff00) | ((x >> 24) & 0xff0000) | ((x >> 32) & 0xff000000); } uint32_t HELPER(neon_narrow_round_high_u16)(uint64_t x) { x &= 0xffff8000ffff8000ull; x += 0x0000800000008000ull; return ((x >> 16) & 0xffff) | ((x >> 32) & 0xffff0000); } uint32_t HELPER(neon_unarrow_sat8)(CPUARMState *env, uint64_t x) { uint16_t s; uint8_t d; uint32_t res = 0; #define SAT8(n) \ s = x >> n; \ if (s & 0x8000) { \ SET_QC(); \ } else { \ if (s > 0xff) { \ d = 0xff; \ SET_QC(); \ } else { \ d = s; \ } \ res |= (uint32_t)d << (n / 2); \ } SAT8(0); SAT8(16); SAT8(32); SAT8(48); #undef SAT8 return res; } uint32_t HELPER(neon_narrow_sat_u8)(CPUARMState *env, uint64_t x) { uint16_t s; uint8_t d; uint32_t res = 0; #define SAT8(n) \ s = x >> n; \ if (s > 0xff) { \ d = 0xff; \ SET_QC(); \ } else { \ d = s; \ } \ res |= (uint32_t)d << (n / 2); SAT8(0); SAT8(16); SAT8(32); SAT8(48); #undef SAT8 return res; } uint32_t HELPER(neon_narrow_sat_s8)(CPUARMState *env, uint64_t x) { int16_t s; uint8_t d; uint32_t res = 0; #define SAT8(n) \ s = x >> n; \ if (s != (int8_t)s) { \ d = (s >> 15) ^ 0x7f; \ SET_QC(); \ } else { \ d = s; \ } \ res |= (uint32_t)d << (n / 2); SAT8(0); SAT8(16); SAT8(32); SAT8(48); #undef SAT8 return res; } uint32_t HELPER(neon_unarrow_sat16)(CPUARMState *env, uint64_t x) { uint32_t high; uint32_t low; low = x; if (low & 0x80000000) { low = 0; SET_QC(); } else if (low > 0xffff) { low = 0xffff; SET_QC(); } high = x >> 32; if (high & 0x80000000) { high = 0; SET_QC(); } else if (high > 0xffff) { high = 0xffff; SET_QC(); } return low | (high << 16); } uint32_t HELPER(neon_narrow_sat_u16)(CPUARMState *env, uint64_t x) { uint32_t high; uint32_t low; low = x; if (low > 0xffff) { low = 0xffff; SET_QC(); } high = x >> 32; if (high > 0xffff) { high = 0xffff; SET_QC(); } return low | (high << 16); } uint32_t HELPER(neon_narrow_sat_s16)(CPUARMState *env, uint64_t x) { int32_t low; int32_t high; low = x; if (low != (int16_t)low) { low = (low >> 31) ^ 0x7fff; SET_QC(); } high = x >> 32; if (high != (int16_t)high) { high = (high >> 31) ^ 0x7fff; SET_QC(); } return (uint16_t)low | (high << 16); } uint32_t HELPER(neon_unarrow_sat32)(CPUARMState *env, uint64_t x) { if (x & 0x8000000000000000ull) { SET_QC(); return 0; } if (x > 0xffffffffu) { SET_QC(); return 0xffffffffu; } return x; } uint32_t HELPER(neon_narrow_sat_u32)(CPUARMState *env, uint64_t x) { if (x > 0xffffffffu) { SET_QC(); return 0xffffffffu; } return x; } uint32_t HELPER(neon_narrow_sat_s32)(CPUARMState *env, uint64_t x) { if ((int64_t)x != (int32_t)x) { SET_QC(); return ((int64_t)x >> 63) ^ 0x7fffffff; } return x; } uint64_t HELPER(neon_widen_u8)(uint32_t x) { uint64_t tmp; uint64_t ret; ret = (uint8_t)x; tmp = (uint8_t)(x >> 8); ret |= tmp << 16; tmp = (uint8_t)(x >> 16); ret |= tmp << 32; tmp = (uint8_t)(x >> 24); ret |= tmp << 48; return ret; } uint64_t HELPER(neon_widen_s8)(uint32_t x) { uint64_t tmp; uint64_t ret; ret = (uint16_t)(int8_t)x; tmp = (uint16_t)(int8_t)(x >> 8); ret |= tmp << 16; tmp = (uint16_t)(int8_t)(x >> 16); ret |= tmp << 32; tmp = (uint16_t)(int8_t)(x >> 24); ret |= tmp << 48; return ret; } uint64_t HELPER(neon_widen_u16)(uint32_t x) { uint64_t high = (uint16_t)(x >> 16); return ((uint16_t)x) | (high << 32); } uint64_t HELPER(neon_widen_s16)(uint32_t x) { uint64_t high = (int16_t)(x >> 16); return ((uint32_t)(int16_t)x) | (high << 32); } uint64_t HELPER(neon_addl_u16)(uint64_t a, uint64_t b) { uint64_t mask; mask = (a ^ b) & 0x8000800080008000ull; a &= ~0x8000800080008000ull; b &= ~0x8000800080008000ull; return (a + b) ^ mask; } uint64_t HELPER(neon_addl_u32)(uint64_t a, uint64_t b) { uint64_t mask; mask = (a ^ b) & 0x8000000080000000ull; a &= ~0x8000000080000000ull; b &= ~0x8000000080000000ull; return (a + b) ^ mask; } uint64_t HELPER(neon_paddl_u16)(uint64_t a, uint64_t b) { uint64_t tmp; uint64_t tmp2; tmp = a & 0x0000ffff0000ffffull; tmp += (a >> 16) & 0x0000ffff0000ffffull; tmp2 = b & 0xffff0000ffff0000ull; tmp2 += (b << 16) & 0xffff0000ffff0000ull; return ( tmp & 0xffff) | ((tmp >> 16) & 0xffff0000ull) | ((tmp2 << 16) & 0xffff00000000ull) | ( tmp2 & 0xffff000000000000ull); } uint64_t HELPER(neon_paddl_u32)(uint64_t a, uint64_t b) { uint32_t low = a + (a >> 32); uint32_t high = b + (b >> 32); return low + ((uint64_t)high << 32); } uint64_t HELPER(neon_subl_u16)(uint64_t a, uint64_t b) { uint64_t mask; mask = (a ^ ~b) & 0x8000800080008000ull; a |= 0x8000800080008000ull; b &= ~0x8000800080008000ull; return (a - b) ^ mask; } uint64_t HELPER(neon_subl_u32)(uint64_t a, uint64_t b) { uint64_t mask; mask = (a ^ ~b) & 0x8000000080000000ull; a |= 0x8000000080000000ull; b &= ~0x8000000080000000ull; return (a - b) ^ mask; } uint64_t HELPER(neon_addl_saturate_s32)(CPUARMState *env, uint64_t a, uint64_t b) { uint32_t x, y; uint32_t low, high; x = a; y = b; low = x + y; if (((low ^ x) & SIGNBIT) && !((x ^ y) & SIGNBIT)) { SET_QC(); low = ((int32_t)x >> 31) ^ ~SIGNBIT; } x = a >> 32; y = b >> 32; high = x + y; if (((high ^ x) & SIGNBIT) && !((x ^ y) & SIGNBIT)) { SET_QC(); high = ((int32_t)x >> 31) ^ ~SIGNBIT; } return low | ((uint64_t)high << 32); } uint64_t HELPER(neon_addl_saturate_s64)(CPUARMState *env, uint64_t a, uint64_t b) { uint64_t result; result = a + b; if (((result ^ a) & SIGNBIT64) && !((a ^ b) & SIGNBIT64)) { SET_QC(); result = ((int64_t)a >> 63) ^ ~SIGNBIT64; } return result; } /* We have to do the arithmetic in a larger type than * the input type, because for example with a signed 32 bit * op the absolute difference can overflow a signed 32 bit value. */ #define DO_ABD(dest, x, y, intype, arithtype) do { \ arithtype tmp_x = (intype)(x); \ arithtype tmp_y = (intype)(y); \ dest = ((tmp_x > tmp_y) ? tmp_x - tmp_y : tmp_y - tmp_x); \ } while(0) uint64_t HELPER(neon_abdl_u16)(uint32_t a, uint32_t b) { uint64_t tmp; uint64_t result; DO_ABD(result, a, b, uint8_t, uint32_t); DO_ABD(tmp, a >> 8, b >> 8, uint8_t, uint32_t); result |= tmp << 16; DO_ABD(tmp, a >> 16, b >> 16, uint8_t, uint32_t); result |= tmp << 32; DO_ABD(tmp, a >> 24, b >> 24, uint8_t, uint32_t); result |= tmp << 48; return result; } uint64_t HELPER(neon_abdl_s16)(uint32_t a, uint32_t b) { uint64_t tmp; uint64_t result; DO_ABD(result, a, b, int8_t, int32_t); DO_ABD(tmp, a >> 8, b >> 8, int8_t, int32_t); result |= tmp << 16; DO_ABD(tmp, a >> 16, b >> 16, int8_t, int32_t); result |= tmp << 32; DO_ABD(tmp, a >> 24, b >> 24, int8_t, int32_t); result |= tmp << 48; return result; } uint64_t HELPER(neon_abdl_u32)(uint32_t a, uint32_t b) { uint64_t tmp; uint64_t result; DO_ABD(result, a, b, uint16_t, uint32_t); DO_ABD(tmp, a >> 16, b >> 16, uint16_t, uint32_t); return result | (tmp << 32); } uint64_t HELPER(neon_abdl_s32)(uint32_t a, uint32_t b) { uint64_t tmp; uint64_t result; DO_ABD(result, a, b, int16_t, int32_t); DO_ABD(tmp, a >> 16, b >> 16, int16_t, int32_t); return result | (tmp << 32); } uint64_t HELPER(neon_abdl_u64)(uint32_t a, uint32_t b) { uint64_t result; DO_ABD(result, a, b, uint32_t, uint64_t); return result; } uint64_t HELPER(neon_abdl_s64)(uint32_t a, uint32_t b) { uint64_t result; DO_ABD(result, a, b, int32_t, int64_t); return result; } #undef DO_ABD /* Widening multiply. Named type is the source type. */ #define DO_MULL(dest, x, y, type1, type2) do { \ type1 tmp_x = x; \ type1 tmp_y = y; \ dest = (type2)((type2)tmp_x * (type2)tmp_y); \ } while(0) uint64_t HELPER(neon_mull_u8)(uint32_t a, uint32_t b) { uint64_t tmp; uint64_t result; DO_MULL(result, a, b, uint8_t, uint16_t); DO_MULL(tmp, a >> 8, b >> 8, uint8_t, uint16_t); result |= tmp << 16; DO_MULL(tmp, a >> 16, b >> 16, uint8_t, uint16_t); result |= tmp << 32; DO_MULL(tmp, a >> 24, b >> 24, uint8_t, uint16_t); result |= tmp << 48; return result; } uint64_t HELPER(neon_mull_s8)(uint32_t a, uint32_t b) { uint64_t tmp; uint64_t result; DO_MULL(result, a, b, int8_t, uint16_t); DO_MULL(tmp, a >> 8, b >> 8, int8_t, uint16_t); result |= tmp << 16; DO_MULL(tmp, a >> 16, b >> 16, int8_t, uint16_t); result |= tmp << 32; DO_MULL(tmp, a >> 24, b >> 24, int8_t, uint16_t); result |= tmp << 48; return result; } uint64_t HELPER(neon_mull_u16)(uint32_t a, uint32_t b) { uint64_t tmp; uint64_t result; DO_MULL(result, a, b, uint16_t, uint32_t); DO_MULL(tmp, a >> 16, b >> 16, uint16_t, uint32_t); return result | (tmp << 32); } uint64_t HELPER(neon_mull_s16)(uint32_t a, uint32_t b) { uint64_t tmp; uint64_t result; DO_MULL(result, a, b, int16_t, uint32_t); DO_MULL(tmp, a >> 16, b >> 16, int16_t, uint32_t); return result | (tmp << 32); } uint64_t HELPER(neon_negl_u16)(uint64_t x) { uint16_t tmp; uint64_t result; result = (uint16_t)(0-x); tmp = 0-(x >> 16); result |= (uint64_t)tmp << 16; tmp = 0-(x >> 32); result |= (uint64_t)tmp << 32; tmp = 0-(x >> 48); result |= (uint64_t)tmp << 48; return result; } uint64_t HELPER(neon_negl_u32)(uint64_t x) { uint32_t low = 0-x; uint32_t high = 0-(x >> 32); return low | ((uint64_t)high << 32); } /* Saturating sign manipulation. */ /* ??? Make these use NEON_VOP1 */ #define DO_QABS8(x) do { \ if (x == (int8_t)0x80) { \ x = 0x7f; \ SET_QC(); \ } else if (x < 0) { \ x = -x; \ }} while (0) uint32_t HELPER(neon_qabs_s8)(CPUARMState *env, uint32_t x) { neon_s8 vec; NEON_UNPACK(neon_s8, vec, x); DO_QABS8(vec.v1); DO_QABS8(vec.v2); DO_QABS8(vec.v3); DO_QABS8(vec.v4); NEON_PACK(neon_s8, x, vec); return x; } #undef DO_QABS8 #define DO_QNEG8(x) do { \ if (x == (int8_t)0x80) { \ x = 0x7f; \ SET_QC(); \ } else { \ x = -x; \ }} while (0) uint32_t HELPER(neon_qneg_s8)(CPUARMState *env, uint32_t x) { neon_s8 vec; NEON_UNPACK(neon_s8, vec, x); DO_QNEG8(vec.v1); DO_QNEG8(vec.v2); DO_QNEG8(vec.v3); DO_QNEG8(vec.v4); NEON_PACK(neon_s8, x, vec); return x; } #undef DO_QNEG8 #define DO_QABS16(x) do { \ if (x == (int16_t)0x8000) { \ x = 0x7fff; \ SET_QC(); \ } else if (x < 0) { \ x = -x; \ }} while (0) uint32_t HELPER(neon_qabs_s16)(CPUARMState *env, uint32_t x) { neon_s16 vec; NEON_UNPACK(neon_s16, vec, x); DO_QABS16(vec.v1); DO_QABS16(vec.v2); NEON_PACK(neon_s16, x, vec); return x; } #undef DO_QABS16 #define DO_QNEG16(x) do { \ if (x == (int16_t)0x8000) { \ x = 0x7fff; \ SET_QC(); \ } else { \ x = -x; \ }} while (0) uint32_t HELPER(neon_qneg_s16)(CPUARMState *env, uint32_t x) { neon_s16 vec; NEON_UNPACK(neon_s16, vec, x); DO_QNEG16(vec.v1); DO_QNEG16(vec.v2); NEON_PACK(neon_s16, x, vec); return x; } #undef DO_QNEG16 uint32_t HELPER(neon_qabs_s32)(CPUARMState *env, uint32_t x) { if (x == SIGNBIT) { SET_QC(); x = ~SIGNBIT; } else if ((int32_t)x < 0) { x = 0-x; } return x; } uint32_t HELPER(neon_qneg_s32)(CPUARMState *env, uint32_t x) { if (x == SIGNBIT) { SET_QC(); x = ~SIGNBIT; } else { x = 0-x; } return x; } uint64_t HELPER(neon_qabs_s64)(CPUARMState *env, uint64_t x) { if (x == SIGNBIT64) { SET_QC(); x = ~SIGNBIT64; } else if ((int64_t)x < 0) { x = 0-x; } return x; } uint64_t HELPER(neon_qneg_s64)(CPUARMState *env, uint64_t x) { if (x == SIGNBIT64) { SET_QC(); x = ~SIGNBIT64; } else { x = 0-x; } return x; } /* NEON Float helpers. */ uint32_t HELPER(neon_abd_f32)(uint32_t a, uint32_t b, void *fpstp) { float_status *fpst = fpstp; float32 f0 = make_float32(a); float32 f1 = make_float32(b); return float32_val(float32_abs(float32_sub(f0, f1, fpst))); } /* Floating point comparisons produce an integer result. * Note that EQ doesn't signal InvalidOp for QNaNs but GE and GT do. * Softfloat routines return 0/1, which we convert to the 0/-1 Neon requires. */ uint32_t HELPER(neon_ceq_f32)(uint32_t a, uint32_t b, void *fpstp) { float_status *fpst = fpstp; return -float32_eq_quiet(make_float32(a), make_float32(b), fpst); } uint32_t HELPER(neon_cge_f32)(uint32_t a, uint32_t b, void *fpstp) { float_status *fpst = fpstp; return -float32_le(make_float32(b), make_float32(a), fpst); } uint32_t HELPER(neon_cgt_f32)(uint32_t a, uint32_t b, void *fpstp) { float_status *fpst = fpstp; return -float32_lt(make_float32(b), make_float32(a), fpst); } uint32_t HELPER(neon_acge_f32)(uint32_t a, uint32_t b, void *fpstp) { float_status *fpst = fpstp; float32 f0 = float32_abs(make_float32(a)); float32 f1 = float32_abs(make_float32(b)); return -float32_le(f1, f0, fpst); } uint32_t HELPER(neon_acgt_f32)(uint32_t a, uint32_t b, void *fpstp) { float_status *fpst = fpstp; float32 f0 = float32_abs(make_float32(a)); float32 f1 = float32_abs(make_float32(b)); return -float32_lt(f1, f0, fpst); } uint64_t HELPER(neon_acge_f64)(uint64_t a, uint64_t b, void *fpstp) { float_status *fpst = fpstp; float64 f0 = float64_abs(make_float64(a)); float64 f1 = float64_abs(make_float64(b)); return -float64_le(f1, f0, fpst); } uint64_t HELPER(neon_acgt_f64)(uint64_t a, uint64_t b, void *fpstp) { float_status *fpst = fpstp; float64 f0 = float64_abs(make_float64(a)); float64 f1 = float64_abs(make_float64(b)); return -float64_lt(f1, f0, fpst); } #define ELEM(V, N, SIZE) (((V) >> ((N) * (SIZE))) & ((1ull << (SIZE)) - 1)) void HELPER(neon_qunzip8)(void *vd, void *vm) { uint64_t *rd = vd, *rm = vm; uint64_t zd0 = rd[0], zd1 = rd[1]; uint64_t zm0 = rm[0], zm1 = rm[1]; uint64_t d0 = ELEM(zd0, 0, 8) | (ELEM(zd0, 2, 8) << 8) | (ELEM(zd0, 4, 8) << 16) | (ELEM(zd0, 6, 8) << 24) | (ELEM(zd1, 0, 8) << 32) | (ELEM(zd1, 2, 8) << 40) | (ELEM(zd1, 4, 8) << 48) | (ELEM(zd1, 6, 8) << 56); uint64_t d1 = ELEM(zm0, 0, 8) | (ELEM(zm0, 2, 8) << 8) | (ELEM(zm0, 4, 8) << 16) | (ELEM(zm0, 6, 8) << 24) | (ELEM(zm1, 0, 8) << 32) | (ELEM(zm1, 2, 8) << 40) | (ELEM(zm1, 4, 8) << 48) | (ELEM(zm1, 6, 8) << 56); uint64_t m0 = ELEM(zd0, 1, 8) | (ELEM(zd0, 3, 8) << 8) | (ELEM(zd0, 5, 8) << 16) | (ELEM(zd0, 7, 8) << 24) | (ELEM(zd1, 1, 8) << 32) | (ELEM(zd1, 3, 8) << 40) | (ELEM(zd1, 5, 8) << 48) | (ELEM(zd1, 7, 8) << 56); uint64_t m1 = ELEM(zm0, 1, 8) | (ELEM(zm0, 3, 8) << 8) | (ELEM(zm0, 5, 8) << 16) | (ELEM(zm0, 7, 8) << 24) | (ELEM(zm1, 1, 8) << 32) | (ELEM(zm1, 3, 8) << 40) | (ELEM(zm1, 5, 8) << 48) | (ELEM(zm1, 7, 8) << 56); rm[0] = m0; rm[1] = m1; rd[0] = d0; rd[1] = d1; } void HELPER(neon_qunzip16)(void *vd, void *vm) { uint64_t *rd = vd, *rm = vm; uint64_t zd0 = rd[0], zd1 = rd[1]; uint64_t zm0 = rm[0], zm1 = rm[1]; uint64_t d0 = ELEM(zd0, 0, 16) | (ELEM(zd0, 2, 16) << 16) | (ELEM(zd1, 0, 16) << 32) | (ELEM(zd1, 2, 16) << 48); uint64_t d1 = ELEM(zm0, 0, 16) | (ELEM(zm0, 2, 16) << 16) | (ELEM(zm1, 0, 16) << 32) | (ELEM(zm1, 2, 16) << 48); uint64_t m0 = ELEM(zd0, 1, 16) | (ELEM(zd0, 3, 16) << 16) | (ELEM(zd1, 1, 16) << 32) | (ELEM(zd1, 3, 16) << 48); uint64_t m1 = ELEM(zm0, 1, 16) | (ELEM(zm0, 3, 16) << 16) | (ELEM(zm1, 1, 16) << 32) | (ELEM(zm1, 3, 16) << 48); rm[0] = m0; rm[1] = m1; rd[0] = d0; rd[1] = d1; } void HELPER(neon_qunzip32)(void *vd, void *vm) { uint64_t *rd = vd, *rm = vm; uint64_t zd0 = rd[0], zd1 = rd[1]; uint64_t zm0 = rm[0], zm1 = rm[1]; uint64_t d0 = ELEM(zd0, 0, 32) | (ELEM(zd1, 0, 32) << 32); uint64_t d1 = ELEM(zm0, 0, 32) | (ELEM(zm1, 0, 32) << 32); uint64_t m0 = ELEM(zd0, 1, 32) | (ELEM(zd1, 1, 32) << 32); uint64_t m1 = ELEM(zm0, 1, 32) | (ELEM(zm1, 1, 32) << 32); rm[0] = m0; rm[1] = m1; rd[0] = d0; rd[1] = d1; } void HELPER(neon_unzip8)(void *vd, void *vm) { uint64_t *rd = vd, *rm = vm; uint64_t zd = rd[0], zm = rm[0]; uint64_t d0 = ELEM(zd, 0, 8) | (ELEM(zd, 2, 8) << 8) | (ELEM(zd, 4, 8) << 16) | (ELEM(zd, 6, 8) << 24) | (ELEM(zm, 0, 8) << 32) | (ELEM(zm, 2, 8) << 40) | (ELEM(zm, 4, 8) << 48) | (ELEM(zm, 6, 8) << 56); uint64_t m0 = ELEM(zd, 1, 8) | (ELEM(zd, 3, 8) << 8) | (ELEM(zd, 5, 8) << 16) | (ELEM(zd, 7, 8) << 24) | (ELEM(zm, 1, 8) << 32) | (ELEM(zm, 3, 8) << 40) | (ELEM(zm, 5, 8) << 48) | (ELEM(zm, 7, 8) << 56); rm[0] = m0; rd[0] = d0; } void HELPER(neon_unzip16)(void *vd, void *vm) { uint64_t *rd = vd, *rm = vm; uint64_t zd = rd[0], zm = rm[0]; uint64_t d0 = ELEM(zd, 0, 16) | (ELEM(zd, 2, 16) << 16) | (ELEM(zm, 0, 16) << 32) | (ELEM(zm, 2, 16) << 48); uint64_t m0 = ELEM(zd, 1, 16) | (ELEM(zd, 3, 16) << 16) | (ELEM(zm, 1, 16) << 32) | (ELEM(zm, 3, 16) << 48); rm[0] = m0; rd[0] = d0; } void HELPER(neon_qzip8)(void *vd, void *vm) { uint64_t *rd = vd, *rm = vm; uint64_t zd0 = rd[0], zd1 = rd[1]; uint64_t zm0 = rm[0], zm1 = rm[1]; uint64_t d0 = ELEM(zd0, 0, 8) | (ELEM(zm0, 0, 8) << 8) | (ELEM(zd0, 1, 8) << 16) | (ELEM(zm0, 1, 8) << 24) | (ELEM(zd0, 2, 8) << 32) | (ELEM(zm0, 2, 8) << 40) | (ELEM(zd0, 3, 8) << 48) | (ELEM(zm0, 3, 8) << 56); uint64_t d1 = ELEM(zd0, 4, 8) | (ELEM(zm0, 4, 8) << 8) | (ELEM(zd0, 5, 8) << 16) | (ELEM(zm0, 5, 8) << 24) | (ELEM(zd0, 6, 8) << 32) | (ELEM(zm0, 6, 8) << 40) | (ELEM(zd0, 7, 8) << 48) | (ELEM(zm0, 7, 8) << 56); uint64_t m0 = ELEM(zd1, 0, 8) | (ELEM(zm1, 0, 8) << 8) | (ELEM(zd1, 1, 8) << 16) | (ELEM(zm1, 1, 8) << 24) | (ELEM(zd1, 2, 8) << 32) | (ELEM(zm1, 2, 8) << 40) | (ELEM(zd1, 3, 8) << 48) | (ELEM(zm1, 3, 8) << 56); uint64_t m1 = ELEM(zd1, 4, 8) | (ELEM(zm1, 4, 8) << 8) | (ELEM(zd1, 5, 8) << 16) | (ELEM(zm1, 5, 8) << 24) | (ELEM(zd1, 6, 8) << 32) | (ELEM(zm1, 6, 8) << 40) | (ELEM(zd1, 7, 8) << 48) | (ELEM(zm1, 7, 8) << 56); rm[0] = m0; rm[1] = m1; rd[0] = d0; rd[1] = d1; } void HELPER(neon_qzip16)(void *vd, void *vm) { uint64_t *rd = vd, *rm = vm; uint64_t zd0 = rd[0], zd1 = rd[1]; uint64_t zm0 = rm[0], zm1 = rm[1]; uint64_t d0 = ELEM(zd0, 0, 16) | (ELEM(zm0, 0, 16) << 16) | (ELEM(zd0, 1, 16) << 32) | (ELEM(zm0, 1, 16) << 48); uint64_t d1 = ELEM(zd0, 2, 16) | (ELEM(zm0, 2, 16) << 16) | (ELEM(zd0, 3, 16) << 32) | (ELEM(zm0, 3, 16) << 48); uint64_t m0 = ELEM(zd1, 0, 16) | (ELEM(zm1, 0, 16) << 16) | (ELEM(zd1, 1, 16) << 32) | (ELEM(zm1, 1, 16) << 48); uint64_t m1 = ELEM(zd1, 2, 16) | (ELEM(zm1, 2, 16) << 16) | (ELEM(zd1, 3, 16) << 32) | (ELEM(zm1, 3, 16) << 48); rm[0] = m0; rm[1] = m1; rd[0] = d0; rd[1] = d1; } void HELPER(neon_qzip32)(void *vd, void *vm) { uint64_t *rd = vd, *rm = vm; uint64_t zd0 = rd[0], zd1 = rd[1]; uint64_t zm0 = rm[0], zm1 = rm[1]; uint64_t d0 = ELEM(zd0, 0, 32) | (ELEM(zm0, 0, 32) << 32); uint64_t d1 = ELEM(zd0, 1, 32) | (ELEM(zm0, 1, 32) << 32); uint64_t m0 = ELEM(zd1, 0, 32) | (ELEM(zm1, 0, 32) << 32); uint64_t m1 = ELEM(zd1, 1, 32) | (ELEM(zm1, 1, 32) << 32); rm[0] = m0; rm[1] = m1; rd[0] = d0; rd[1] = d1; } void HELPER(neon_zip8)(void *vd, void *vm) { uint64_t *rd = vd, *rm = vm; uint64_t zd = rd[0], zm = rm[0]; uint64_t d0 = ELEM(zd, 0, 8) | (ELEM(zm, 0, 8) << 8) | (ELEM(zd, 1, 8) << 16) | (ELEM(zm, 1, 8) << 24) | (ELEM(zd, 2, 8) << 32) | (ELEM(zm, 2, 8) << 40) | (ELEM(zd, 3, 8) << 48) | (ELEM(zm, 3, 8) << 56); uint64_t m0 = ELEM(zd, 4, 8) | (ELEM(zm, 4, 8) << 8) | (ELEM(zd, 5, 8) << 16) | (ELEM(zm, 5, 8) << 24) | (ELEM(zd, 6, 8) << 32) | (ELEM(zm, 6, 8) << 40) | (ELEM(zd, 7, 8) << 48) | (ELEM(zm, 7, 8) << 56); rm[0] = m0; rd[0] = d0; } void HELPER(neon_zip16)(void *vd, void *vm) { uint64_t *rd = vd, *rm = vm; uint64_t zd = rd[0], zm = rm[0]; uint64_t d0 = ELEM(zd, 0, 16) | (ELEM(zm, 0, 16) << 16) | (ELEM(zd, 1, 16) << 32) | (ELEM(zm, 1, 16) << 48); uint64_t m0 = ELEM(zd, 2, 16) | (ELEM(zm, 2, 16) << 16) | (ELEM(zd, 3, 16) << 32) | (ELEM(zm, 3, 16) << 48); rm[0] = m0; rd[0] = d0; } /* Helper function for 64 bit polynomial multiply case: * perform PolynomialMult(op1, op2) and return either the top or * bottom half of the 128 bit result. */ uint64_t HELPER(neon_pmull_64_lo)(uint64_t op1, uint64_t op2) { int bitnum; uint64_t res = 0; for (bitnum = 0; bitnum < 64; bitnum++) { if (op1 & (1ULL << bitnum)) { res ^= op2 << bitnum; } } return res; } uint64_t HELPER(neon_pmull_64_hi)(uint64_t op1, uint64_t op2) { int bitnum; uint64_t res = 0; /* bit 0 of op1 can't influence the high 64 bits at all */ for (bitnum = 1; bitnum < 64; bitnum++) { if (op1 & (1ULL << bitnum)) { res ^= op2 >> (64 - bitnum); } } return res; }