/* * Utility compute operations used by translated code. * * Copyright (c) 2007 Thiemo Seufer * Copyright (c) 2007 Jocelyn Mayer * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #ifndef HOST_UTILS_H #define HOST_UTILS_H #include "qemu/compiler.h" /* QEMU_GNUC_PREREQ */ #include "qemu/bswap.h" #include #ifdef CONFIG_INT128 static inline void mulu64(uint64_t *plow, uint64_t *phigh, uint64_t a, uint64_t b) { __uint128_t r = (__uint128_t)a * b; *plow = r; *phigh = r >> 64; } static inline void muls64(uint64_t *plow, uint64_t *phigh, int64_t a, int64_t b) { __int128_t r = (__int128_t)a * b; *plow = r; *phigh = r >> 64; } /* compute with 96 bit intermediate result: (a*b)/c */ static inline uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c) { return (__int128_t)a * b / c; } static inline int divu128(uint64_t *plow, uint64_t *phigh, uint64_t divisor) { if (divisor == 0) { return 1; } else { __uint128_t dividend = ((__uint128_t)*phigh << 64) | *plow; __uint128_t result = dividend / divisor; *plow = result; *phigh = dividend % divisor; return result > UINT64_MAX; } } static inline int divs128(int64_t *plow, int64_t *phigh, int64_t divisor) { if (divisor == 0) { return 1; } else { __int128_t dividend = ((__int128_t)*phigh << 64) | *plow; __int128_t result = dividend / divisor; *plow = result; *phigh = dividend % divisor; return result != *plow; } } #else void muls64(uint64_t *phigh, uint64_t *plow, int64_t a, int64_t b); void mulu64(uint64_t *phigh, uint64_t *plow, uint64_t a, uint64_t b); int divu128(uint64_t *plow, uint64_t *phigh, uint64_t divisor); int divs128(int64_t *plow, int64_t *phigh, int64_t divisor); /* compute with 96 bit intermediate result: (a*b)/c */ static inline uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c) { union { uint64_t ll; struct { #ifdef HOST_WORDS_BIGENDIAN uint32_t high, low; #else uint32_t low, high; #endif } l; } u, res; uint64_t rl, rh; u.ll = a; rl = (uint64_t)u.l.low * (uint64_t)b; rh = (uint64_t)u.l.high * (uint64_t)b; rh += (rl >> 32); res.l.high = (uint32_t)(rh / c); res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c; return res.ll; } #endif /** * clz32 - count leading zeros in a 32-bit value. * @val: The value to search * * Returns 32 if the value is zero. Note that the GCC builtin is * undefined if the value is zero. */ static inline int clz32(uint32_t val) { return val ? __builtin_clz(val) : 32; } /** * clo32 - count leading ones in a 32-bit value. * @val: The value to search * * Returns 32 if the value is -1. */ static inline int clo32(uint32_t val) { return clz32(~val); } /** * clz64 - count leading zeros in a 64-bit value. * @val: The value to search * * Returns 64 if the value is zero. Note that the GCC builtin is * undefined if the value is zero. */ static inline int clz64(uint64_t val) { return val ? __builtin_clzll(val) : 64; } /** * clo64 - count leading ones in a 64-bit value. * @val: The value to search * * Returns 64 if the value is -1. */ static inline int clo64(uint64_t val) { return clz64(~val); } /** * ctz32 - count trailing zeros in a 32-bit value. * @val: The value to search * * Returns 32 if the value is zero. Note that the GCC builtin is * undefined if the value is zero. */ static inline int ctz32(uint32_t val) { return val ? __builtin_ctz(val) : 32; } /** * cto32 - count trailing ones in a 32-bit value. * @val: The value to search * * Returns 32 if the value is -1. */ static inline int cto32(uint32_t val) { return ctz32(~val); } /** * ctz64 - count trailing zeros in a 64-bit value. * @val: The value to search * * Returns 64 if the value is zero. Note that the GCC builtin is * undefined if the value is zero. */ static inline int ctz64(uint64_t val) { return val ? __builtin_ctzll(val) : 64; } /** * cto64 - count trailing ones in a 64-bit value. * @val: The value to search * * Returns 64 if the value is -1. */ static inline int cto64(uint64_t val) { return ctz64(~val); } /** * clrsb32 - count leading redundant sign bits in a 32-bit value. * @val: The value to search * * Returns the number of bits following the sign bit that are equal to it. * No special cases; output range is [0-31]. */ static inline int clrsb32(uint32_t val) { #if QEMU_GNUC_PREREQ(4, 7) return __builtin_clrsb(val); #else return clz32(val ^ ((int32_t)val >> 1)) - 1; #endif } /** * clrsb64 - count leading redundant sign bits in a 64-bit value. * @val: The value to search * * Returns the number of bits following the sign bit that are equal to it. * No special cases; output range is [0-63]. */ static inline int clrsb64(uint64_t val) { #if QEMU_GNUC_PREREQ(4, 7) return __builtin_clrsbll(val); #else return clz64(val ^ ((int64_t)val >> 1)) - 1; #endif } /** * ctpop8 - count the population of one bits in an 8-bit value. * @val: The value to search */ static inline int ctpop8(uint8_t val) { return __builtin_popcount(val); } /** * ctpop16 - count the population of one bits in a 16-bit value. * @val: The value to search */ static inline int ctpop16(uint16_t val) { return __builtin_popcount(val); } /** * ctpop32 - count the population of one bits in a 32-bit value. * @val: The value to search */ static inline int ctpop32(uint32_t val) { return __builtin_popcount(val); } /** * ctpop64 - count the population of one bits in a 64-bit value. * @val: The value to search */ static inline int ctpop64(uint64_t val) { return __builtin_popcountll(val); } /** * revbit8 - reverse the bits in an 8-bit value. * @x: The value to modify. */ static inline uint8_t revbit8(uint8_t x) { /* Assign the correct nibble position. */ x = ((x & 0xf0) >> 4) | ((x & 0x0f) << 4); /* Assign the correct bit position. */ x = ((x & 0x88) >> 3) | ((x & 0x44) >> 1) | ((x & 0x22) << 1) | ((x & 0x11) << 3); return x; } /** * revbit16 - reverse the bits in a 16-bit value. * @x: The value to modify. */ static inline uint16_t revbit16(uint16_t x) { /* Assign the correct byte position. */ x = bswap16(x); /* Assign the correct nibble position. */ x = ((x & 0xf0f0) >> 4) | ((x & 0x0f0f) << 4); /* Assign the correct bit position. */ x = ((x & 0x8888) >> 3) | ((x & 0x4444) >> 1) | ((x & 0x2222) << 1) | ((x & 0x1111) << 3); return x; } /** * revbit32 - reverse the bits in a 32-bit value. * @x: The value to modify. */ static inline uint32_t revbit32(uint32_t x) { /* Assign the correct byte position. */ x = bswap32(x); /* Assign the correct nibble position. */ x = ((x & 0xf0f0f0f0u) >> 4) | ((x & 0x0f0f0f0fu) << 4); /* Assign the correct bit position. */ x = ((x & 0x88888888u) >> 3) | ((x & 0x44444444u) >> 1) | ((x & 0x22222222u) << 1) | ((x & 0x11111111u) << 3); return x; } /** * revbit64 - reverse the bits in a 64-bit value. * @x: The value to modify. */ static inline uint64_t revbit64(uint64_t x) { /* Assign the correct byte position. */ x = bswap64(x); /* Assign the correct nibble position. */ x = ((x & 0xf0f0f0f0f0f0f0f0ull) >> 4) | ((x & 0x0f0f0f0f0f0f0f0full) << 4); /* Assign the correct bit position. */ x = ((x & 0x8888888888888888ull) >> 3) | ((x & 0x4444444444444444ull) >> 1) | ((x & 0x2222222222222222ull) << 1) | ((x & 0x1111111111111111ull) << 3); return x; } /* Host type specific sizes of these routines. */ #if ULONG_MAX == UINT32_MAX # define clzl clz32 # define ctzl ctz32 # define clol clo32 # define ctol cto32 # define ctpopl ctpop32 # define revbitl revbit32 #elif ULONG_MAX == UINT64_MAX # define clzl clz64 # define ctzl ctz64 # define clol clo64 # define ctol cto64 # define ctpopl ctpop64 # define revbitl revbit64 #else # error Unknown sizeof long #endif static inline bool is_power_of_2(uint64_t value) { if (!value) { return false; } return !(value & (value - 1)); } /** * Return @value rounded down to the nearest power of two or zero. */ static inline uint64_t pow2floor(uint64_t value) { if (!value) { /* Avoid undefined shift by 64 */ return 0; } return 0x8000000000000000ull >> clz64(value); } /* * Return @value rounded up to the nearest power of two modulo 2^64. * This is *zero* for @value > 2^63, so be careful. */ static inline uint64_t pow2ceil(uint64_t value) { int n = clz64(value - 1); if (!n) { /* * @value - 1 has no leading zeroes, thus @value - 1 >= 2^63 * Therefore, either @value == 0 or @value > 2^63. * If it's 0, return 1, else return 0. */ return !value; } return 0x8000000000000000ull >> (n - 1); } static inline uint32_t pow2roundup32(uint32_t x) { x |= (x >> 1); x |= (x >> 2); x |= (x >> 4); x |= (x >> 8); x |= (x >> 16); return x + 1; } #endif