/* Unicorn Emulator Engine */ /* By Nguyen Anh Quynh , 2015 */ #include "qemu/osdep.h" #include "cpu.h" #include "hw/boards.h" #include "hw/arm/arm.h" #include "sysemu/cpus.h" #include "unicorn.h" #include "unicorn_common.h" #include "uc_priv.h" const int ARM64_REGS_STORAGE_SIZE = offsetof(CPUARMState, tlb_table); static void arm64_set_pc(struct uc_struct *uc, uint64_t address) { CPUArchState *state = uc->cpu->env_ptr; state->pc = address; } void arm64_release(void* ctx); void arm64_release(void* ctx) { TCGContext *s = (TCGContext *) ctx; struct uc_struct* uc = s->uc; ARMCPU* cpu = ARM_CPU(uc, uc->cpu); g_free(cpu->cpreg_indexes); g_free(cpu->cpreg_values); g_free(cpu->cpreg_vmstate_indexes); g_free(cpu->cpreg_vmstate_values); release_common(ctx); } void arm64_reg_reset(struct uc_struct *uc) { CPUArchState *env = uc->cpu->env_ptr; memset(env->xregs, 0, sizeof(env->xregs)); env->pc = 0; } int arm64_reg_read(struct uc_struct *uc, unsigned int *regs, void **vals, int count) { CPUState *mycpu = uc->cpu; CPUARMState *state = &ARM_CPU(uc, mycpu)->env; int i; for (i = 0; i < count; i++) { unsigned int regid = regs[i]; void *value = vals[i]; // V & Q registers are the same if (regid >= UC_ARM64_REG_V0 && regid <= UC_ARM64_REG_V31) { regid += UC_ARM64_REG_Q0 - UC_ARM64_REG_V0; } if (regid >= UC_ARM64_REG_X0 && regid <= UC_ARM64_REG_X28) { *(int64_t *)value = state->xregs[regid - UC_ARM64_REG_X0]; } else if (regid >= UC_ARM64_REG_W0 && regid <= UC_ARM64_REG_W30) { *(int32_t *)value = READ_DWORD(state->xregs[regid - UC_ARM64_REG_W0]); } else if (regid >= UC_ARM64_REG_Q0 && regid <= UC_ARM64_REG_Q31) { float64 *dst = (float64*) value; const uint32_t reg_index = regid - UC_ARM64_REG_Q0; const float64 *q_reg = aa64_vfp_qreg(state, reg_index); dst[0] = q_reg[0]; dst[1] = q_reg[1]; } else if (regid >= UC_ARM64_REG_D0 && regid <= UC_ARM64_REG_D31) { const float64 *d_reg = aa32_vfp_dreg(state, 2 * (regid - UC_ARM64_REG_D0)); *(float64*)value = *d_reg; } else if (regid >= UC_ARM64_REG_S0 && regid <= UC_ARM64_REG_S31) { const float64 *d_reg = aa32_vfp_dreg(state, 2 * (regid - UC_ARM64_REG_S0)); *(int32_t*)value = READ_DWORD(*d_reg); } else if (regid >= UC_ARM64_REG_H0 && regid <= UC_ARM64_REG_H31) { const float64 *d_reg = aa32_vfp_dreg(state, 2 * (regid - UC_ARM64_REG_H0)); *(int16_t*)value = READ_WORD(*d_reg); } else if (regid >= UC_ARM64_REG_B0 && regid <= UC_ARM64_REG_B31) { const float64 *d_reg = aa32_vfp_dreg(state, 2 * (regid - UC_ARM64_REG_B0)); *(int8_t*)value = READ_BYTE_L(*d_reg); } else { switch(regid) { default: break; case UC_ARM64_REG_CPACR_EL1: *(uint32_t *)value = state->cp15.cpacr_el1; break; case UC_ARM64_REG_ESR: *(uint32_t *)value = state->exception.syndrome; break; case UC_ARM64_REG_TPIDR_EL0: *(int64_t *)value = state->cp15.tpidr_el[0]; break; case UC_ARM64_REG_TPIDRRO_EL0: *(int64_t *)value = state->cp15.tpidrro_el[0]; break; case UC_ARM64_REG_TPIDR_EL1: *(int64_t *)value = state->cp15.tpidr_el[1]; break; case UC_ARM64_REG_X29: *(int64_t *)value = state->xregs[29]; break; case UC_ARM64_REG_X30: *(int64_t *)value = state->xregs[30]; break; case UC_ARM64_REG_PC: *(uint64_t *)value = state->pc; break; case UC_ARM64_REG_SP: *(int64_t *)value = state->xregs[31]; break; case UC_ARM64_REG_NZCV: *(int32_t *)value = cpsr_read(state) & CPSR_NZCV; break; case UC_ARM64_REG_PSTATE: *(uint32_t *)value = pstate_read(state); break; case UC_ARM64_REG_FPCR: *(uint32_t *)value = vfp_get_fpcr(state); break; case UC_ARM64_REG_FPSR: *(uint32_t *)value = vfp_get_fpsr(state); break; } } } return 0; } int arm64_reg_write(struct uc_struct *uc, unsigned int *regs, void* const* vals, int count) { CPUState *mycpu = uc->cpu; CPUARMState *state = &ARM_CPU(uc, mycpu)->env; int i; for (i = 0; i < count; i++) { unsigned int regid = regs[i]; const void *value = vals[i]; if (regid >= UC_ARM64_REG_V0 && regid <= UC_ARM64_REG_V31) { regid += UC_ARM64_REG_Q0 - UC_ARM64_REG_V0; } if (regid >= UC_ARM64_REG_X0 && regid <= UC_ARM64_REG_X28) { state->xregs[regid - UC_ARM64_REG_X0] = *(uint64_t *)value; } else if (regid >= UC_ARM64_REG_W0 && regid <= UC_ARM64_REG_W30) { WRITE_DWORD(state->xregs[regid - UC_ARM64_REG_W0], *(uint32_t *)value); } else if (regid >= UC_ARM64_REG_Q0 && regid <= UC_ARM64_REG_Q31) { const float64 *src = (const float64*) value; const uint32_t reg_index = regid - UC_ARM64_REG_Q0; float64 *q_reg = aa64_vfp_qreg(state, reg_index); q_reg[0] = src[0]; q_reg[1] = src[1]; } else if (regid >= UC_ARM64_REG_D0 && regid <= UC_ARM64_REG_D31) { float64 *d_reg = aa32_vfp_dreg(state, 2 * (regid - UC_ARM64_REG_D0)); *d_reg = *(float64*) value; } else if (regid >= UC_ARM64_REG_S0 && regid <= UC_ARM64_REG_S31) { float64 *d_reg = aa32_vfp_dreg(state, 2 * (regid - UC_ARM64_REG_S0)); WRITE_DWORD(*d_reg, *(int32_t*) value); } else if (regid >= UC_ARM64_REG_H0 && regid <= UC_ARM64_REG_H31) { float64 *d_reg = aa32_vfp_dreg(state, 2 * (regid - UC_ARM64_REG_H0)); WRITE_WORD(*d_reg, *(int16_t*) value); } else if (regid >= UC_ARM64_REG_B0 && regid <= UC_ARM64_REG_B31) { float64 *d_reg = aa32_vfp_dreg(state, 2 * (regid - UC_ARM64_REG_B0)); WRITE_BYTE_L(*d_reg, *(int8_t*) value); } else { switch(regid) { default: break; case UC_ARM64_REG_CPACR_EL1: state->cp15.cpacr_el1 = *(uint32_t *)value; break; case UC_ARM64_REG_TPIDR_EL0: state->cp15.tpidr_el[0] = *(uint64_t *)value; break; case UC_ARM64_REG_TPIDRRO_EL0: state->cp15.tpidrro_el[0] = *(uint64_t *)value; break; case UC_ARM64_REG_TPIDR_EL1: state->cp15.tpidr_el[1] = *(uint64_t *)value; break; case UC_ARM64_REG_X29: state->xregs[29] = *(uint64_t *)value; break; case UC_ARM64_REG_X30: state->xregs[30] = *(uint64_t *)value; break; case UC_ARM64_REG_PC: state->pc = *(uint64_t *)value; // force to quit execution and flush TB uc->quit_request = true; uc_emu_stop(uc); break; case UC_ARM64_REG_SP: state->xregs[31] = *(uint64_t *)value; break; case UC_ARM64_REG_NZCV: cpsr_write(state, *(uint32_t *) value, CPSR_NZCV, CPSRWriteRaw); break; case UC_ARM64_REG_PSTATE: pstate_write(state, *(uint32_t *)value); break; case UC_ARM64_REG_FPCR: vfp_set_fpcr(state, *(uint32_t *)value); break; case UC_ARM64_REG_FPSR: vfp_set_fpsr(state, *(uint32_t *)value); break; } } } return 0; } DEFAULT_VISIBILITY #ifdef TARGET_WORDS_BIGENDIAN void arm64eb_uc_init(struct uc_struct* uc) #else void arm64_uc_init(struct uc_struct* uc) #endif { register_accel_types(uc); arm_cpu_register_types(uc); aarch64_cpu_register_types(uc); machvirt_machine_init(uc); uc->reg_read = arm64_reg_read; uc->reg_write = arm64_reg_write; uc->reg_reset = arm64_reg_reset; uc->set_pc = arm64_set_pc; uc->release = arm64_release; uc_common_init(uc); }