/* * QEMU ARM CPU -- internal functions and types * * Copyright (c) 2014 Linaro Ltd * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see * * * This header defines functions, types, etc which need to be shared * between different source files within target/arm/ but which are * private to it and not required by the rest of QEMU. */ #ifndef TARGET_ARM_INTERNALS_H #define TARGET_ARM_INTERNALS_H #include "hw/registerfields.h" /* register banks for CPU modes */ #define BANK_USRSYS 0 #define BANK_SVC 1 #define BANK_ABT 2 #define BANK_UND 3 #define BANK_IRQ 4 #define BANK_FIQ 5 #define BANK_HYP 6 #define BANK_MON 7 static inline bool excp_is_internal(int excp) { /* Return true if this exception number represents a QEMU-internal * exception that will not be passed to the guest. */ return excp == EXCP_INTERRUPT || excp == EXCP_HLT || excp == EXCP_DEBUG || excp == EXCP_HALTED || excp == EXCP_EXCEPTION_EXIT || excp == EXCP_KERNEL_TRAP || excp == EXCP_SEMIHOST; } /* Scale factor for generic timers, ie number of ns per tick. * This gives a 62.5MHz timer. */ #define GTIMER_SCALE 16 /* Bit definitions for the v7M CONTROL register */ FIELD(V7M_CONTROL, NPRIV, 0, 1) FIELD(V7M_CONTROL, SPSEL, 1, 1) FIELD(V7M_CONTROL, FPCA, 2, 1) FIELD(V7M_CONTROL, SFPA, 3, 1) /* Bit definitions for v7M exception return payload */ FIELD(V7M_EXCRET, ES, 0, 1) FIELD(V7M_EXCRET, RES0, 1, 1) FIELD(V7M_EXCRET, SPSEL, 2, 1) FIELD(V7M_EXCRET, MODE, 3, 1) FIELD(V7M_EXCRET, FTYPE, 4, 1) FIELD(V7M_EXCRET, DCRS, 5, 1) FIELD(V7M_EXCRET, S, 6, 1) FIELD(V7M_EXCRET, RES1, 7, 25) /* including the must-be-1 prefix */ /* Minimum value which is a magic number for exception return */ #define EXC_RETURN_MIN_MAGIC 0xff000000 /* Minimum number which is a magic number for function or exception return * when using v8M security extension */ #define FNC_RETURN_MIN_MAGIC 0xfefffffe /* We use a few fake FSR values for internal purposes in M profile. * M profile cores don't have A/R format FSRs, but currently our * get_phys_addr() code assumes A/R profile and reports failures via * an A/R format FSR value. We then translate that into the proper * M profile exception and FSR status bit in arm_v7m_cpu_do_interrupt(). * Mostly the FSR values we use for this are those defined for v7PMSA, * since we share some of that codepath. A few kinds of fault are * only for M profile and have no A/R equivalent, though, so we have * to pick a value from the reserved range (which we never otherwise * generate) to use for these. * These values will never be visible to the guest. */ #define M_FAKE_FSR_NSC_EXEC 0xf /* NS executing in S&NSC memory */ #define M_FAKE_FSR_SFAULT 0xe /* SecureFault INVTRAN, INVEP or AUVIOL */ /** * raise_exception: Raise the specified exception. * Raise a guest exception with the specified value, syndrome register * and target exception level. This should be called from helper functions, * and never returns because we will longjump back up to the CPU main loop. */ void QEMU_NORETURN raise_exception(CPUARMState *env, uint32_t excp, uint32_t syndrome, uint32_t target_el); /* * Similarly, but also use unwinding to restore cpu state. */ void QEMU_NORETURN raise_exception_ra(CPUARMState *env, uint32_t excp, uint32_t syndrome, uint32_t target_el, uintptr_t ra); /* * For AArch64, map a given EL to an index in the banked_spsr array. * Note that this mapping and the AArch32 mapping defined in bank_number() * must agree such that the AArch64<->AArch32 SPSRs have the architecturally * mandated mapping between each other. */ static inline unsigned int aarch64_banked_spsr_index(unsigned int el) { static const unsigned int map[4] = { BANK_USRSYS, BANK_SVC, /* EL1. */ BANK_HYP, /* EL2. */ BANK_MON, /* EL3. */ }; assert(el >= 1 && el <= 3); return map[el]; } /* Map CPU modes onto saved register banks. */ static inline int bank_number(int mode) { switch (mode) { default: case ARM_CPU_MODE_USR: case ARM_CPU_MODE_SYS: return BANK_USRSYS; case ARM_CPU_MODE_SVC: return BANK_SVC; case ARM_CPU_MODE_ABT: return BANK_ABT; case ARM_CPU_MODE_UND: return BANK_UND; case ARM_CPU_MODE_IRQ: return BANK_IRQ; case ARM_CPU_MODE_FIQ: return BANK_FIQ; case ARM_CPU_MODE_HYP: return BANK_HYP; case ARM_CPU_MODE_MON: return BANK_MON; } g_assert_not_reached(); } /** * r14_bank_number: Map CPU mode onto register bank for r14 * * Given an AArch32 CPU mode, return the index into the saved register * banks to use for the R14 (LR) in that mode. This is the same as * bank_number(), except for the special case of Hyp mode, where * R14 is shared with USR and SYS, unlike its R13 and SPSR. * This should be used as the index into env->banked_r14[], and * bank_number() used for the index into env->banked_r13[] and * env->banked_spsr[]. */ static inline int r14_bank_number(int mode) { return (mode == ARM_CPU_MODE_HYP) ? BANK_USRSYS : bank_number(mode); } void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu); void arm_translate_init(struct uc_struct *uc); enum arm_fprounding { FPROUNDING_TIEEVEN, FPROUNDING_POSINF, FPROUNDING_NEGINF, FPROUNDING_ZERO, FPROUNDING_TIEAWAY, FPROUNDING_ODD }; int arm_rmode_to_sf(int rmode); static inline void aarch64_save_sp(CPUARMState *env, int el) { if (env->pstate & PSTATE_SP) { env->sp_el[el] = env->xregs[31]; } else { env->sp_el[0] = env->xregs[31]; } } static inline void aarch64_restore_sp(CPUARMState *env, int el) { if (env->pstate & PSTATE_SP) { env->xregs[31] = env->sp_el[el]; } else { env->xregs[31] = env->sp_el[0]; } } static inline void update_spsel(CPUARMState *env, uint32_t imm) { unsigned int cur_el = arm_current_el(env); /* Update PSTATE SPSel bit; this requires us to update the * working stack pointer in xregs[31]. */ if (!((imm ^ env->pstate) & PSTATE_SP)) { return; } aarch64_save_sp(env, cur_el); env->pstate = deposit32(env->pstate, 0, 1, imm); /* We rely on illegal updates to SPsel from EL0 to get trapped * at translation time. */ assert(cur_el >= 1 && cur_el <= 3); aarch64_restore_sp(env, cur_el); } /* * arm_pamax * @cpu: ARMCPU * * Returns the implementation defined bit-width of physical addresses. * The ARMv8 reference manuals refer to this as PAMax(). */ static inline unsigned int arm_pamax(ARMCPU *cpu) { static const unsigned int pamax_map[] = { 32, 36, 40, 42, 44, 48, }; unsigned int parange = FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE); /* id_aa64mmfr0 is a read-only register so values outside of the * supported mappings can be considered an implementation error. */ assert(parange < ARRAY_SIZE(pamax_map)); return pamax_map[parange]; } /* Return true if extended addresses are enabled. * This is always the case if our translation regime is 64 bit, * but depends on TTBCR.EAE for 32 bit. */ static inline bool extended_addresses_enabled(CPUARMState *env) { TCR *tcr = &env->cp15.tcr_el[arm_is_secure(env) ? 3 : 1]; return arm_el_is_aa64(env, 1) || (arm_feature(env, ARM_FEATURE_LPAE) && (tcr->raw_tcr & TTBCR_EAE)); } /* Valid Syndrome Register EC field values */ enum arm_exception_class { EC_UNCATEGORIZED = 0x00, EC_WFX_TRAP = 0x01, EC_CP15RTTRAP = 0x03, EC_CP15RRTTRAP = 0x04, EC_CP14RTTRAP = 0x05, EC_CP14DTTRAP = 0x06, EC_ADVSIMDFPACCESSTRAP = 0x07, EC_FPIDTRAP = 0x08, EC_PACTRAP = 0x09, EC_CP14RRTTRAP = 0x0c, EC_BTITRAP = 0x0d, EC_ILLEGALSTATE = 0x0e, EC_AA32_SVC = 0x11, EC_AA32_HVC = 0x12, EC_AA32_SMC = 0x13, EC_AA64_SVC = 0x15, EC_AA64_HVC = 0x16, EC_AA64_SMC = 0x17, EC_SYSTEMREGISTERTRAP = 0x18, EC_SVEACCESSTRAP = 0x19, EC_INSNABORT = 0x20, EC_INSNABORT_SAME_EL = 0x21, EC_PCALIGNMENT = 0x22, EC_DATAABORT = 0x24, EC_DATAABORT_SAME_EL = 0x25, EC_SPALIGNMENT = 0x26, EC_AA32_FPTRAP = 0x28, EC_AA64_FPTRAP = 0x2c, EC_SERROR = 0x2f, EC_BREAKPOINT = 0x30, EC_BREAKPOINT_SAME_EL = 0x31, EC_SOFTWARESTEP = 0x32, EC_SOFTWARESTEP_SAME_EL = 0x33, EC_WATCHPOINT = 0x34, EC_WATCHPOINT_SAME_EL = 0x35, EC_AA32_BKPT = 0x38, EC_VECTORCATCH = 0x3a, EC_AA64_BKPT = 0x3c, }; #define ARM_EL_EC_SHIFT 26 #define ARM_EL_IL_SHIFT 25 #define ARM_EL_ISV_SHIFT 24 #define ARM_EL_IL (1 << ARM_EL_IL_SHIFT) #define ARM_EL_ISV (1 << ARM_EL_ISV_SHIFT) static inline uint32_t syn_get_ec(uint32_t syn) { return syn >> ARM_EL_EC_SHIFT; } /* Utility functions for constructing various kinds of syndrome value. * Note that in general we follow the AArch64 syndrome values; in a * few cases the value in HSR for exceptions taken to AArch32 Hyp * mode differs slightly, and we fix this up when populating HSR in * arm_cpu_do_interrupt_aarch32_hyp(). * The exception is FP/SIMD access traps -- these report extra information * when taking an exception to AArch32. For those we include the extra coproc * and TA fields, and mask them out when taking the exception to AArch64. */ static inline uint32_t syn_uncategorized(void) { return (EC_UNCATEGORIZED << ARM_EL_EC_SHIFT) | ARM_EL_IL; } static inline uint32_t syn_aa64_svc(uint32_t imm16) { return (EC_AA64_SVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff); } static inline uint32_t syn_aa64_hvc(uint32_t imm16) { return (EC_AA64_HVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff); } static inline uint32_t syn_aa64_smc(uint32_t imm16) { return (EC_AA64_SMC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff); } static inline uint32_t syn_aa32_svc(uint32_t imm16, bool is_16bit) { return (EC_AA32_SVC << ARM_EL_EC_SHIFT) | (imm16 & 0xffff) | (is_16bit ? 0 : ARM_EL_IL); } static inline uint32_t syn_aa32_hvc(uint32_t imm16) { return (EC_AA32_HVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff); } static inline uint32_t syn_aa32_smc(void) { return (EC_AA32_SMC << ARM_EL_EC_SHIFT) | ARM_EL_IL; } static inline uint32_t syn_aa64_bkpt(uint32_t imm16) { return (EC_AA64_BKPT << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff); } static inline uint32_t syn_aa32_bkpt(uint32_t imm16, bool is_16bit) { return (EC_AA32_BKPT << ARM_EL_EC_SHIFT) | (imm16 & 0xffff) | (is_16bit ? 0 : ARM_EL_IL); } static inline uint32_t syn_aa64_sysregtrap(int op0, int op1, int op2, int crn, int crm, int rt, int isread) { return (EC_SYSTEMREGISTERTRAP << ARM_EL_EC_SHIFT) | ARM_EL_IL | (op0 << 20) | (op2 << 17) | (op1 << 14) | (crn << 10) | (rt << 5) | (crm << 1) | isread; } static inline uint32_t syn_cp14_rt_trap(int cv, int cond, int opc1, int opc2, int crn, int crm, int rt, int isread, bool is_16bit) { return (EC_CP14RTTRAP << ARM_EL_EC_SHIFT) | (is_16bit ? 0 : ARM_EL_IL) | (cv << 24) | (cond << 20) | (opc2 << 17) | (opc1 << 14) | (crn << 10) | (rt << 5) | (crm << 1) | isread; } static inline uint32_t syn_cp15_rt_trap(int cv, int cond, int opc1, int opc2, int crn, int crm, int rt, int isread, bool is_16bit) { return (EC_CP15RTTRAP << ARM_EL_EC_SHIFT) | (is_16bit ? 0 : ARM_EL_IL) | (cv << 24) | (cond << 20) | (opc2 << 17) | (opc1 << 14) | (crn << 10) | (rt << 5) | (crm << 1) | isread; } static inline uint32_t syn_cp14_rrt_trap(int cv, int cond, int opc1, int crm, int rt, int rt2, int isread, bool is_16bit) { return (EC_CP14RRTTRAP << ARM_EL_EC_SHIFT) | (is_16bit ? 0 : ARM_EL_IL) | (cv << 24) | (cond << 20) | (opc1 << 16) | (rt2 << 10) | (rt << 5) | (crm << 1) | isread; } static inline uint32_t syn_cp15_rrt_trap(int cv, int cond, int opc1, int crm, int rt, int rt2, int isread, bool is_16bit) { return (EC_CP15RRTTRAP << ARM_EL_EC_SHIFT) | (is_16bit ? 0 : ARM_EL_IL) | (cv << 24) | (cond << 20) | (opc1 << 16) | (rt2 << 10) | (rt << 5) | (crm << 1) | isread; } static inline uint32_t syn_fp_access_trap(int cv, int cond, bool is_16bit) { /* AArch32 FP trap or any AArch64 FP/SIMD trap: TA == 0 coproc == 0xa */ return (EC_ADVSIMDFPACCESSTRAP << ARM_EL_EC_SHIFT) | (is_16bit ? 0 : ARM_EL_IL) | (cv << 24) | (cond << 20) | 0xa; } static inline uint32_t syn_simd_access_trap(int cv, int cond, bool is_16bit) { /* AArch32 SIMD trap: TA == 1 coproc == 0 */ return (EC_ADVSIMDFPACCESSTRAP << ARM_EL_EC_SHIFT) | (is_16bit ? 0 : ARM_EL_IL) | (cv << 24) | (cond << 20) | (1 << 5); } static inline uint32_t syn_sve_access_trap(void) { return EC_SVEACCESSTRAP << ARM_EL_EC_SHIFT; } static inline uint32_t syn_pactrap(void) { return EC_PACTRAP << ARM_EL_EC_SHIFT; } static inline uint32_t syn_btitrap(int btype) { return (EC_BTITRAP << ARM_EL_EC_SHIFT) | btype; } static inline uint32_t syn_insn_abort(int same_el, int ea, int s1ptw, int fsc) { return (EC_INSNABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT) | ARM_EL_IL | (ea << 9) | (s1ptw << 7) | fsc; } static inline uint32_t syn_data_abort_no_iss(int same_el, int ea, int cm, int s1ptw, int wnr, int fsc) { return (EC_DATAABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT) | ARM_EL_IL | (ea << 9) | (cm << 8) | (s1ptw << 7) | (wnr << 6) | fsc; } static inline uint32_t syn_data_abort_with_iss(int same_el, int sas, int sse, int srt, int sf, int ar, int ea, int cm, int s1ptw, int wnr, int fsc, bool is_16bit) { return (EC_DATAABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT) | (is_16bit ? 0 : ARM_EL_IL) | ARM_EL_ISV | (sas << 22) | (sse << 21) | (srt << 16) | (sf << 15) | (ar << 14) | (ea << 9) | (cm << 8) | (s1ptw << 7) | (wnr << 6) | fsc; } static inline uint32_t syn_swstep(int same_el, int isv, int ex) { return (EC_SOFTWARESTEP << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT) | ARM_EL_IL | (isv << 24) | (ex << 6) | 0x22; } static inline uint32_t syn_watchpoint(int same_el, int cm, int wnr) { return (EC_WATCHPOINT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT) | ARM_EL_IL | (cm << 8) | (wnr << 6) | 0x22; } static inline uint32_t syn_breakpoint(int same_el) { return (EC_BREAKPOINT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT) | ARM_EL_IL | 0x22; } static inline uint32_t syn_wfx(int cv, int cond, int ti, bool is_16bit) { return (EC_WFX_TRAP << ARM_EL_EC_SHIFT) | (is_16bit ? 0 : (1 << ARM_EL_IL_SHIFT)) | (cv << 24) | (cond << 20) | ti; } /* Update a QEMU watchpoint based on the information the guest has set in the * DBGWCR_EL1 and DBGWVR_EL1 registers. */ void hw_watchpoint_update(ARMCPU *cpu, int n); /* Update the QEMU watchpoints for every guest watchpoint. This does a * complete delete-and-reinstate of the QEMU watchpoint list and so is * suitable for use after migration or on reset. */ void hw_watchpoint_update_all(ARMCPU *cpu); /* Update a QEMU breakpoint based on the information the guest has set in the * DBGBCR_EL1 and DBGBVR_EL1 registers. */ void hw_breakpoint_update(ARMCPU *cpu, int n); /* Update the QEMU breakpoints for every guest breakpoint. This does a * complete delete-and-reinstate of the QEMU breakpoint list and so is * suitable for use after migration or on reset. */ void hw_breakpoint_update_all(ARMCPU *cpu); /* Callback function for checking if a watchpoint should trigger. */ bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp); /* Adjust addresses (in BE32 mode) before testing against watchpoint * addresses. */ vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len); /* Callback function for when a watchpoint or breakpoint triggers. */ void arm_debug_excp_handler(CPUState *cs); #if defined(CONFIG_USER_ONLY) || !defined(CONFIG_TCG) static inline bool arm_is_psci_call(ARMCPU *cpu, int excp_type) { return false; } static inline void arm_handle_psci_call(ARMCPU *cpu) { g_assert_not_reached(); } #else /* Return true if the r0/x0 value indicates that this SMC/HVC is a PSCI call. */ bool arm_is_psci_call(ARMCPU *cpu, int excp_type); /* Actually handle a PSCI call */ void arm_handle_psci_call(ARMCPU *cpu); #endif /** * arm_clear_exclusive: clear the exclusive monitor * @env: CPU env * Clear the CPU's exclusive monitor, like the guest CLREX instruction. */ static inline void arm_clear_exclusive(CPUARMState *env) { env->exclusive_addr = -1; } /** * ARMFaultType: type of an ARM MMU fault * This corresponds to the v8A pseudocode's Fault enumeration, * with extensions for QEMU internal conditions. */ typedef enum ARMFaultType { ARMFault_None, ARMFault_AccessFlag, ARMFault_Alignment, ARMFault_Background, ARMFault_Domain, ARMFault_Permission, ARMFault_Translation, ARMFault_AddressSize, ARMFault_SyncExternal, ARMFault_SyncExternalOnWalk, ARMFault_SyncParity, ARMFault_SyncParityOnWalk, ARMFault_AsyncParity, ARMFault_AsyncExternal, ARMFault_Debug, ARMFault_TLBConflict, ARMFault_Lockdown, ARMFault_Exclusive, ARMFault_ICacheMaint, ARMFault_QEMU_NSCExec, /* v8M: NS executing in S&NSC memory */ ARMFault_QEMU_SFault, /* v8M: SecureFault INVTRAN, INVEP or AUVIOL */ } ARMFaultType; /** * ARMMMUFaultInfo: Information describing an ARM MMU Fault * @type: Type of fault * @level: Table walk level (for translation, access flag and permission faults) * @domain: Domain of the fault address (for non-LPAE CPUs only) * @s2addr: Address that caused a fault at stage 2 * @stage2: True if we faulted at stage 2 * @s1ptw: True if we faulted at stage 2 while doing a stage 1 page-table walk * @ea: True if we should set the EA (external abort type) bit in syndrome */ typedef struct ARMMMUFaultInfo ARMMMUFaultInfo; struct ARMMMUFaultInfo { ARMFaultType type; target_ulong s2addr; int level; int domain; bool stage2; bool s1ptw; bool ea; }; /** * arm_fi_to_sfsc: Convert fault info struct to short-format FSC * Compare pseudocode EncodeSDFSC(), though unlike that function * we set up a whole FSR-format code including domain field and * putting the high bit of the FSC into bit 10. */ static inline uint32_t arm_fi_to_sfsc(ARMMMUFaultInfo *fi) { uint32_t fsc; switch (fi->type) { case ARMFault_None: return 0; case ARMFault_AccessFlag: fsc = fi->level == 1 ? 0x3 : 0x6; break; case ARMFault_Alignment: fsc = 0x1; break; case ARMFault_Permission: fsc = fi->level == 1 ? 0xd : 0xf; break; case ARMFault_Domain: fsc = fi->level == 1 ? 0x9 : 0xb; break; case ARMFault_Translation: fsc = fi->level == 1 ? 0x5 : 0x7; break; case ARMFault_SyncExternal: fsc = 0x8 | (fi->ea << 12); break; case ARMFault_SyncExternalOnWalk: fsc = fi->level == 1 ? 0xc : 0xe; fsc |= (fi->ea << 12); break; case ARMFault_SyncParity: fsc = 0x409; break; case ARMFault_SyncParityOnWalk: fsc = fi->level == 1 ? 0x40c : 0x40e; break; case ARMFault_AsyncParity: fsc = 0x408; break; case ARMFault_AsyncExternal: fsc = 0x406 | (fi->ea << 12); break; case ARMFault_Debug: fsc = 0x2; break; case ARMFault_TLBConflict: fsc = 0x400; break; case ARMFault_Lockdown: fsc = 0x404; break; case ARMFault_Exclusive: fsc = 0x405; break; case ARMFault_ICacheMaint: fsc = 0x4; break; case ARMFault_Background: fsc = 0x0; break; case ARMFault_QEMU_NSCExec: fsc = M_FAKE_FSR_NSC_EXEC; break; case ARMFault_QEMU_SFault: fsc = M_FAKE_FSR_SFAULT; break; default: /* Other faults can't occur in a context that requires a * short-format status code. */ g_assert_not_reached(); } fsc |= (fi->domain << 4); return fsc; } /** * arm_fi_to_lfsc: Convert fault info struct to long-format FSC * Compare pseudocode EncodeLDFSC(), though unlike that function * we fill in also the LPAE bit 9 of a DFSR format. */ static inline uint32_t arm_fi_to_lfsc(ARMMMUFaultInfo *fi) { uint32_t fsc; switch (fi->type) { case ARMFault_None: return 0; case ARMFault_AddressSize: fsc = fi->level & 3; break; case ARMFault_AccessFlag: fsc = (fi->level & 3) | (0x2 << 2); break; case ARMFault_Permission: fsc = (fi->level & 3) | (0x3 << 2); break; case ARMFault_Translation: fsc = (fi->level & 3) | (0x1 << 2); break; case ARMFault_SyncExternal: fsc = 0x10 | (fi->ea << 12); break; case ARMFault_SyncExternalOnWalk: fsc = (fi->level & 3) | (0x5 << 2) | (fi->ea << 12); break; case ARMFault_SyncParity: fsc = 0x18; break; case ARMFault_SyncParityOnWalk: fsc = (fi->level & 3) | (0x7 << 2); break; case ARMFault_AsyncParity: fsc = 0x19; break; case ARMFault_AsyncExternal: fsc = 0x11 | (fi->ea << 12); break; case ARMFault_Alignment: fsc = 0x21; break; case ARMFault_Debug: fsc = 0x22; break; case ARMFault_TLBConflict: fsc = 0x30; break; case ARMFault_Lockdown: fsc = 0x34; break; case ARMFault_Exclusive: fsc = 0x35; break; default: /* Other faults can't occur in a context that requires a * long-format status code. */ g_assert_not_reached(); } fsc |= 1 << 9; return fsc; } static inline bool arm_extabort_type(MemTxResult result) { /* The EA bit in syndromes and fault status registers is an * IMPDEF classification of external aborts. ARM implementations * usually use this to indicate AXI bus Decode error (0) or * Slave error (1); in QEMU we follow that. */ return result != MEMTX_DECODE_ERROR; } bool arm_cpu_tlb_fill(CPUState *cs, vaddr address, int size, MMUAccessType access_type, int mmu_idx, bool probe, uintptr_t retaddr); static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx) { return mmu_idx & ARM_MMU_IDX_COREIDX_MASK; } static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx) { if (arm_feature(env, ARM_FEATURE_M)) { return mmu_idx | ARM_MMU_IDX_M; } else { return mmu_idx | ARM_MMU_IDX_A; } } int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx); /* * Return the MMU index for a v7M CPU with all relevant information * manually specified. */ ARMMMUIdx arm_v7m_mmu_idx_all(CPUARMState *env, bool secstate, bool priv, bool negpri); /* * Return the MMU index for a v7M CPU in the specified security and * privilege state. */ ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env, bool secstate, bool priv); /* Return the MMU index for a v7M CPU in the specified security state */ ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate); /* Return true if the stage 1 translation regime is using LPAE format page * tables */ bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx); /* Raise a data fault alignment exception for the specified virtual address */ void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr, MMUAccessType access_type, int mmu_idx, uintptr_t retaddr); /* arm_cpu_do_transaction_failed: handle a memory system error response * (eg "no device/memory present at address") by raising an external abort * exception */ void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr, vaddr addr, unsigned size, MMUAccessType access_type, int mmu_idx, MemTxAttrs attrs, MemTxResult response, uintptr_t retaddr); /* Call any registered EL change hooks */ static inline void arm_call_pre_el_change_hook(ARMCPU *cpu) { ARMELChangeHook *hook, *next; QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) { hook->hook(cpu, hook->opaque); } } static inline void arm_call_el_change_hook(ARMCPU *cpu) { ARMELChangeHook *hook, *next; QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) { hook->hook(cpu, hook->opaque); } } /* Return true if this address translation regime has two ranges. */ static inline bool regime_has_2_ranges(ARMMMUIdx mmu_idx) { switch (mmu_idx) { case ARMMMUIdx_Stage1_E0: case ARMMMUIdx_Stage1_E1: case ARMMMUIdx_Stage1_E1_PAN: case ARMMMUIdx_E10_0: case ARMMMUIdx_E10_1: case ARMMMUIdx_E10_1_PAN: case ARMMMUIdx_E20_0: case ARMMMUIdx_E20_2: case ARMMMUIdx_E20_2_PAN: case ARMMMUIdx_SE10_0: case ARMMMUIdx_SE10_1: case ARMMMUIdx_SE10_1_PAN: return true; default: return false; } } /* Return true if this address translation regime is secure */ static inline bool regime_is_secure(CPUARMState *env, ARMMMUIdx mmu_idx) { switch (mmu_idx) { case ARMMMUIdx_E10_0: case ARMMMUIdx_E10_1: case ARMMMUIdx_E10_1_PAN: case ARMMMUIdx_E20_0: case ARMMMUIdx_E20_2: case ARMMMUIdx_E20_2_PAN: case ARMMMUIdx_Stage1_E0: case ARMMMUIdx_Stage1_E1: case ARMMMUIdx_Stage1_E1_PAN: case ARMMMUIdx_E2: case ARMMMUIdx_Stage2: case ARMMMUIdx_MPrivNegPri: case ARMMMUIdx_MUserNegPri: case ARMMMUIdx_MPriv: case ARMMMUIdx_MUser: return false; case ARMMMUIdx_SE3: case ARMMMUIdx_SE10_0: case ARMMMUIdx_SE10_1: case ARMMMUIdx_SE10_1_PAN: case ARMMMUIdx_MSPrivNegPri: case ARMMMUIdx_MSUserNegPri: case ARMMMUIdx_MSPriv: case ARMMMUIdx_MSUser: return true; default: g_assert_not_reached(); } } static inline bool regime_is_pan(CPUARMState *env, ARMMMUIdx mmu_idx) { switch (mmu_idx) { case ARMMMUIdx_Stage1_E1_PAN: case ARMMMUIdx_E10_1_PAN: case ARMMMUIdx_E20_2_PAN: case ARMMMUIdx_SE10_1_PAN: return true; default: return false; } } /* Return the FSR value for a debug exception (watchpoint, hardware * breakpoint or BKPT insn) targeting the specified exception level. */ static inline uint32_t arm_debug_exception_fsr(CPUARMState *env) { ARMMMUFaultInfo fi = { ARMFault_Debug }; int target_el = arm_debug_target_el(env); bool using_lpae = false; if (target_el == 2 || arm_el_is_aa64(env, target_el)) { using_lpae = true; } else { if (arm_feature(env, ARM_FEATURE_LPAE) && (env->cp15.tcr_el[target_el].raw_tcr & TTBCR_EAE)) { using_lpae = true; } } if (using_lpae) { return arm_fi_to_lfsc(&fi); } else { return arm_fi_to_sfsc(&fi); } } /** * arm_num_brps: Return number of implemented breakpoints. * Note that the ID register BRPS field is "number of bps - 1", * and we return the actual number of breakpoints. */ static inline int arm_num_brps(ARMCPU *cpu) { if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, BRPS) + 1; } else { return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, BRPS) + 1; } } /** * arm_num_wrps: Return number of implemented watchpoints. * Note that the ID register WRPS field is "number of wps - 1", * and we return the actual number of watchpoints. */ static inline int arm_num_wrps(ARMCPU *cpu) { if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, WRPS) + 1; } else { return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, WRPS) + 1; } } /** * arm_num_ctx_cmps: Return number of implemented context comparators. * Note that the ID register CTX_CMPS field is "number of cmps - 1", * and we return the actual number of comparators. */ static inline int arm_num_ctx_cmps(ARMCPU *cpu) { if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, CTX_CMPS) + 1; } else { return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, CTX_CMPS) + 1; } } /* Note make_memop_idx reserves 4 bits for mmu_idx, and MO_BSWAP is bit 3. * Thus a TCGMemOpIdx, without any MO_ALIGN bits, fits in 8 bits. */ #define MEMOPIDX_SHIFT 8 /** * v7m_using_psp: Return true if using process stack pointer * Return true if the CPU is currently using the process stack * pointer, or false if it is using the main stack pointer. */ static inline bool v7m_using_psp(CPUARMState *env) { /* Handler mode always uses the main stack; for thread mode * the CONTROL.SPSEL bit determines the answer. * Note that in v7M it is not possible to be in Handler mode with * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both. */ return !arm_v7m_is_handler_mode(env) && env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK; } /** * v7m_sp_limit: Return SP limit for current CPU state * Return the SP limit value for the current CPU security state * and stack pointer. */ static inline uint32_t v7m_sp_limit(CPUARMState *env) { if (v7m_using_psp(env)) { return env->v7m.psplim[env->v7m.secure]; } else { return env->v7m.msplim[env->v7m.secure]; } } /** * v7m_cpacr_pass: * Return true if the v7M CPACR permits access to the FPU for the specified * security state and privilege level. */ static inline bool v7m_cpacr_pass(CPUARMState *env, bool is_secure, bool is_priv) { switch (extract32(env->v7m.cpacr[is_secure], 20, 2)) { case 0: case 2: /* UNPREDICTABLE: we treat like 0 */ return false; case 1: return is_priv; case 3: return true; default: g_assert_not_reached(); } } /** * aarch32_mode_name(): Return name of the AArch32 CPU mode * @psr: Program Status Register indicating CPU mode * * Returns, for debug logging purposes, a printable representation * of the AArch32 CPU mode ("svc", "usr", etc) as indicated by * the low bits of the specified PSR. */ static inline const char *aarch32_mode_name(uint32_t psr) { static const char cpu_mode_names[16][4] = { "usr", "fiq", "irq", "svc", "???", "???", "mon", "abt", "???", "???", "hyp", "und", "???", "???", "???", "sys" }; return cpu_mode_names[psr & 0xf]; } /** * arm_cpu_update_virq: Update CPU_INTERRUPT_VIRQ bit in cs->interrupt_request * * Update the CPU_INTERRUPT_VIRQ bit in cs->interrupt_request, following * a change to either the input VIRQ line from the GIC or the HCR_EL2.VI bit. * Must be called with the iothread lock held. */ void arm_cpu_update_virq(ARMCPU *cpu); /** * arm_cpu_update_vfiq: Update CPU_INTERRUPT_VFIQ bit in cs->interrupt_request * * Update the CPU_INTERRUPT_VFIQ bit in cs->interrupt_request, following * a change to either the input VFIQ line from the GIC or the HCR_EL2.VF bit. * Must be called with the iothread lock held. */ void arm_cpu_update_vfiq(ARMCPU *cpu); /** * arm_mmu_idx_el: * @env: The cpu environment * @el: The EL to use. * * Return the full ARMMMUIdx for the translation regime for EL. */ ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el); /** * arm_mmu_idx: * @env: The cpu environment * * Return the full ARMMMUIdx for the current translation regime. */ ARMMMUIdx arm_mmu_idx(CPUARMState *env); /** * arm_stage1_mmu_idx: * @env: The cpu environment * * Return the ARMMMUIdx for the stage1 traversal for the current regime. */ #ifdef CONFIG_USER_ONLY static inline ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env) { return ARMMMUIdx_Stage1_E0; } #else ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env); #endif /** * arm_mmu_idx_is_stage1_of_2: * @mmu_idx: The ARMMMUIdx to test * * Return true if @mmu_idx is a NOTLB mmu_idx that is the * first stage of a two stage regime. */ static inline bool arm_mmu_idx_is_stage1_of_2(ARMMMUIdx mmu_idx) { switch (mmu_idx) { case ARMMMUIdx_Stage1_E0: case ARMMMUIdx_Stage1_E1: case ARMMMUIdx_Stage1_E1_PAN: return true; default: return false; } } static inline uint32_t aarch32_cpsr_valid_mask(uint64_t features, const ARMISARegisters *id) { uint32_t valid = CPSR_M | CPSR_AIF | CPSR_IL | CPSR_NZCV; if ((features >> ARM_FEATURE_V4T) & 1) { valid |= CPSR_T; } if ((features >> ARM_FEATURE_V5) & 1) { valid |= CPSR_Q; /* V5TE in reality*/ } if ((features >> ARM_FEATURE_V6) & 1) { valid |= CPSR_E | CPSR_GE; } if ((features >> ARM_FEATURE_THUMB2) & 1) { valid |= CPSR_IT; } if (isar_feature_aa32_jazelle(id)) { valid |= CPSR_J; } if (isar_feature_aa32_pan(id)) { valid |= CPSR_PAN; } return valid; } static inline uint32_t aarch64_pstate_valid_mask(const ARMISARegisters *id) { uint32_t valid; valid = PSTATE_M | PSTATE_DAIF | PSTATE_IL | PSTATE_SS | PSTATE_NZCV; if (isar_feature_aa64_bti(id)) { valid |= PSTATE_BTYPE; } if (isar_feature_aa64_pan(id)) { valid |= PSTATE_PAN; } if (isar_feature_aa64_uao(id)) { valid |= PSTATE_UAO; } return valid; } /* * Parameters of a given virtual address, as extracted from the * translation control register (TCR) for a given regime. */ typedef struct ARMVAParameters { unsigned tsz : 8; unsigned select : 1; bool tbi : 1; bool epd : 1; bool hpd : 1; bool using16k : 1; bool using64k : 1; } ARMVAParameters; ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va, ARMMMUIdx mmu_idx, bool data); static inline int exception_target_el(CPUARMState *env) { int target_el = MAX(1, arm_current_el(env)); /* * No such thing as secure EL1 if EL3 is aarch32, * so update the target EL to EL3 in this case. */ if (arm_is_secure(env) && !arm_el_is_aa64(env, 3) && target_el == 1) { target_el = 3; } return target_el; } #ifndef CONFIG_USER_ONLY /* Security attributes for an address, as returned by v8m_security_lookup. */ typedef struct V8M_SAttributes { bool subpage; /* true if these attrs don't cover the whole TARGET_PAGE */ bool ns; bool nsc; uint8_t sregion; bool srvalid; uint8_t iregion; bool irvalid; } V8M_SAttributes; void v8m_security_lookup(CPUARMState *env, uint32_t address, MMUAccessType access_type, ARMMMUIdx mmu_idx, V8M_SAttributes *sattrs); bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address, MMUAccessType access_type, ARMMMUIdx mmu_idx, hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, bool *is_subpage, ARMMMUFaultInfo *fi, uint32_t *mregion); /* Cacheability and shareability attributes for a memory access */ typedef struct ARMCacheAttrs { unsigned int attrs:8; /* as in the MAIR register encoding */ unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */ } ARMCacheAttrs; bool get_phys_addr(CPUARMState *env, target_ulong address, MMUAccessType access_type, ARMMMUIdx mmu_idx, hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, target_ulong *page_size, ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs); #endif /* !CONFIG_USER_ONLY */ #endif