/* Unicorn Emulator Engine */ /* By Nguyen Anh Quynh , 2015 */ #include "hw/boards.h" #include "hw/arm/arm.h" #include "sysemu/cpus.h" #include "unicorn.h" #include "cpu.h" #include "unicorn_common.h" #include "uc_priv.h" const int ARM_REGS_STORAGE_SIZE = offsetof(CPUARMState, tlb_table); static void arm_set_pc(struct uc_struct *uc, uint64_t address) { ((CPUARMState *)uc->current_cpu->env_ptr)->pc = address; ((CPUARMState *)uc->current_cpu->env_ptr)->regs[15] = address; } void arm_release(void* ctx); void arm_release(void* ctx) { TCGContext *s = (TCGContext *) ctx; g_free(s->tb_ctx.tbs); struct uc_struct* uc = s->uc; ARMCPU* cpu = (ARMCPU*) uc->cpu; g_free(cpu->cpreg_indexes); g_free(cpu->cpreg_values); g_free(cpu->cpreg_vmstate_indexes); g_free(cpu->cpreg_vmstate_values); release_common(ctx); } void arm_reg_reset(struct uc_struct *uc) { (void)uc; CPUArchState *env; env = uc->cpu->env_ptr; memset(env->regs, 0, sizeof(env->regs)); env->pc = 0; } int arm_reg_read(struct uc_struct *uc, unsigned int *regs, void **vals, int count) { CPUState *mycpu; int i; mycpu = uc->cpu; for (i = 0; i < count; i++) { unsigned int regid = regs[i]; void *value = vals[i]; if (regid >= UC_ARM_REG_R0 && regid <= UC_ARM_REG_R12) *(int32_t *)value = ARM_CPU(uc, mycpu)->env.regs[regid - UC_ARM_REG_R0]; else if (regid >= UC_ARM_REG_D0 && regid <= UC_ARM_REG_D31) *(float64 *)value = ARM_CPU(uc, mycpu)->env.vfp.regs[regid - UC_ARM_REG_D0]; else { switch(regid) { case UC_ARM_REG_CPSR: *(int32_t *)value = cpsr_read(&ARM_CPU(uc, mycpu)->env); break; //case UC_ARM_REG_SP: case UC_ARM_REG_R13: *(int32_t *)value = ARM_CPU(uc, mycpu)->env.regs[13]; break; //case UC_ARM_REG_LR: case UC_ARM_REG_R14: *(int32_t *)value = ARM_CPU(uc, mycpu)->env.regs[14]; break; //case UC_ARM_REG_PC: case UC_ARM_REG_R15: *(int32_t *)value = ARM_CPU(uc, mycpu)->env.regs[15]; break; } } } return 0; } int arm_reg_write(struct uc_struct *uc, unsigned int *regs, void* const* vals, int count) { CPUState *mycpu = uc->cpu; int i; for (i = 0; i < count; i++) { unsigned int regid = regs[i]; const void *value = vals[i]; if (regid >= UC_ARM_REG_R0 && regid <= UC_ARM_REG_R12) ARM_CPU(uc, mycpu)->env.regs[regid - UC_ARM_REG_R0] = *(uint32_t *)value; else if (regid >= UC_ARM_REG_D0 && regid <= UC_ARM_REG_D31) ARM_CPU(uc, mycpu)->env.vfp.regs[regid - UC_ARM_REG_D0] = *(float64 *)value; else { switch(regid) { //case UC_ARM_REG_SP: case UC_ARM_REG_R13: ARM_CPU(uc, mycpu)->env.regs[13] = *(uint32_t *)value; break; //case UC_ARM_REG_LR: case UC_ARM_REG_R14: ARM_CPU(uc, mycpu)->env.regs[14] = *(uint32_t *)value; break; //case UC_ARM_REG_PC: case UC_ARM_REG_R15: ARM_CPU(uc, mycpu)->env.pc = (*(uint32_t *)value & ~1); ARM_CPU(uc, mycpu)->env.thumb = (*(uint32_t *)value & 1); ARM_CPU(uc, mycpu)->env.uc->thumb = (*(uint32_t *)value & 1); ARM_CPU(uc, mycpu)->env.regs[15] = (*(uint32_t *)value & ~1); // force to quit execution and flush TB uc->quit_request = true; uc_emu_stop(uc); break; } } } return 0; } static bool arm_stop_interrupt(int intno) { switch(intno) { default: return false; case EXCP_UDEF: case EXCP_YIELD: return true; } } static uc_err arm_query(struct uc_struct *uc, uc_query_type type, size_t *result) { CPUState *mycpu = uc->cpu; uint32_t mode; switch(type) { case UC_QUERY_MODE: // zero out ARM/THUMB mode mode = uc->mode & ~(UC_MODE_ARM | UC_MODE_THUMB); // THUMB mode or ARM MOde mode += ((ARM_CPU(uc, mycpu)->env.thumb != 0)? UC_MODE_THUMB : UC_MODE_ARM); *result = mode; return UC_ERR_OK; default: return UC_ERR_ARG; } } void arm_uc_init(struct uc_struct* uc) { register_accel_types(uc); arm_cpu_register_types(uc); tosa_machine_init(uc); uc->reg_read = arm_reg_read; uc->reg_write = arm_reg_write; uc->reg_reset = arm_reg_reset; uc->set_pc = arm_set_pc; uc->stop_interrupt = arm_stop_interrupt; uc->release = arm_release; uc->query = arm_query; uc_common_init(uc); }