/* Unicorn Emulator Engine */ /* By Nguyen Anh Quynh , 2015 */ #if defined (WIN32) || defined (WIN64) || defined (_WIN32) || defined (_WIN64) #pragma warning(disable:4996) #endif #if defined(UNICORN_HAS_OSXKERNEL) #include #else #include #include #include #endif #include // nanosleep #include #ifndef _WIN32 #include #endif #include "uc_priv.h" #include "hook.h" // target specific headers #include "qemu/target-m68k/unicorn.h" #include "qemu/target-i386/unicorn.h" #include "qemu/target-arm/unicorn.h" #include "qemu/target-mips/unicorn.h" #include "qemu/target-sparc/unicorn.h" #include "qemu/include/hw/boards.h" UNICORN_EXPORT unsigned int uc_version(unsigned int *major, unsigned int *minor) { if (major != NULL && minor != NULL) { *major = UC_API_MAJOR; *minor = UC_API_MINOR; } return (UC_API_MAJOR << 8) + UC_API_MINOR; } UNICORN_EXPORT uc_err uc_errno(uch handle) { struct uc_struct *uc; if (!handle) return UC_ERR_UCH; uc = (struct uc_struct *)(uintptr_t)handle; return uc->errnum; } UNICORN_EXPORT const char *uc_strerror(uc_err code) { switch(code) { default: return "Unknown error code"; case UC_ERR_OK: return "OK (UC_ERR_OK)"; case UC_ERR_OOM: return "Out of memory (UC_ERR_OOM)"; case UC_ERR_ARCH: return "Invalid/unsupported architecture(UC_ERR_ARCH)"; case UC_ERR_HANDLE: return "Invalid handle (UC_ERR_HANDLE)"; case UC_ERR_UCH: return "Invalid uch (UC_ERR_UCH)"; case UC_ERR_MODE: return "Invalid mode (UC_ERR_MODE)"; case UC_ERR_VERSION: return "Different API version between core & binding (UC_ERR_VERSION)"; case UC_ERR_MEM_READ: return "Invalid memory read (UC_ERR_MEM_READ)"; case UC_ERR_MEM_WRITE: return "Invalid memory write (UC_ERR_MEM_WRITE)"; case UC_ERR_CODE_INVALID: return "Invalid code address (UC_ERR_CODE_INVALID)"; case UC_ERR_INSN_INVALID: return "Invalid instruction (UC_ERR_INSN_INVALID)"; case UC_ERR_HOOK: return "Invalid hook type (UC_ERR_HOOK)"; case UC_ERR_MAP: return "Invalid memory mapping (UC_ERR_MAP)"; case UC_ERR_MEM_WRITE_NW: return "Write to non-writable (UC_ERR_MEM_WRITE_NW)"; case UC_ERR_MEM_READ_NR: return "Read from non-readable (UC_ERR_MEM_READ_NR)"; } } UNICORN_EXPORT bool uc_arch_supported(uc_arch arch) { switch (arch) { #ifdef UNICORN_HAS_ARM case UC_ARCH_ARM: return true; #endif #ifdef UNICORN_HAS_ARM64 case UC_ARCH_ARM64: return true; #endif #ifdef UNICORN_HAS_M68K case UC_ARCH_M68K: return true; #endif #ifdef UNICORN_HAS_MIPS case UC_ARCH_MIPS: return true; #endif #ifdef UNICORN_HAS_PPC case UC_ARCH_PPC: return true; #endif #ifdef UNICORN_HAS_SPARC case UC_ARCH_SPARC: return true; #endif #ifdef UNICORN_HAS_X86 case UC_ARCH_X86: return true; #endif /* Invalid or disabled arch */ default: return false; } } UNICORN_EXPORT uc_err uc_open(uc_arch arch, uc_mode mode, uch *handle) { struct uc_struct *uc; if (arch < UC_ARCH_MAX) { uc = calloc(1, sizeof(*uc)); if (!uc) { // memory insufficient return UC_ERR_OOM; } uc->errnum = UC_ERR_OK; uc->arch = arch; uc->mode = mode; // uc->cpus = QTAILQ_HEAD_INITIALIZER(uc->cpus); uc->cpus.tqh_first = NULL; uc->cpus.tqh_last = &(uc->cpus.tqh_first); // uc->ram_list = { .blocks = QTAILQ_HEAD_INITIALIZER(ram_list.blocks) }; uc->ram_list.blocks.tqh_first = NULL; uc->ram_list.blocks.tqh_last = &(uc->ram_list.blocks.tqh_first); uc->x86_global_cpu_lock = SPIN_LOCK_UNLOCKED; uc->memory_listeners.tqh_first = NULL; uc->memory_listeners.tqh_last = &uc->memory_listeners.tqh_first; uc->address_spaces.tqh_first = NULL; uc->address_spaces.tqh_last = &uc->address_spaces.tqh_first; switch(arch) { default: break; #ifdef UNICORN_HAS_M68K case UC_ARCH_M68K: uc->init_arch = m68k_uc_init; break; #endif #ifdef UNICORN_HAS_X86 case UC_ARCH_X86: uc->init_arch = x86_uc_init; break; #endif #ifdef UNICORN_HAS_ARM case UC_ARCH_ARM: uc->init_arch = arm_uc_init; // verify mode if (mode != UC_MODE_ARM && mode != UC_MODE_THUMB) { *handle = 0; free(uc); return UC_ERR_MODE; } if (mode == UC_MODE_THUMB) uc->thumb = 1; break; #endif #ifdef UNICORN_HAS_ARM64 case UC_ARCH_ARM64: uc->init_arch = arm64_uc_init; break; #endif #if defined(UNICORN_HAS_MIPS) || defined(UNICORN_HAS_MIPSEL) || defined(UNICORN_HAS_MIPS64) || defined(UNICORN_HAS_MIPS64EL) case UC_ARCH_MIPS: if (mode & UC_MODE_BIG_ENDIAN) { #ifdef UNICORN_HAS_MIPS if (mode & UC_MODE_MIPS32) uc->init_arch = mips_uc_init; #endif #ifdef UNICORN_HAS_MIPS64 if (mode & UC_MODE_MIPS64) uc->init_arch = mips64_uc_init; #endif } else { // little endian #ifdef UNICORN_HAS_MIPSEL if (mode & UC_MODE_MIPS32) uc->init_arch = mipsel_uc_init; #endif #ifdef UNICORN_HAS_MIPS64EL if (mode & UC_MODE_MIPS64) uc->init_arch = mips64el_uc_init; #endif } break; #endif #ifdef UNICORN_HAS_SPARC case UC_ARCH_SPARC: if (mode & UC_MODE_64) uc->init_arch = sparc64_uc_init; else uc->init_arch = sparc_uc_init; break; #endif } if (uc->init_arch == NULL) { *handle = 0; return UC_ERR_ARCH; } machine_initialize(uc); *handle = (uintptr_t)uc; if (uc->reg_reset) uc->reg_reset(*handle); uc->hook_size = HOOK_SIZE; uc->hook_callbacks = calloc(1, sizeof(uc->hook_callbacks[0]) * HOOK_SIZE); return UC_ERR_OK; } else { *handle = 0; return UC_ERR_ARCH; } } UNICORN_EXPORT uc_err uc_close(uch *handle) { struct uc_struct *uc; // invalid handle ? if (*handle == 0) return UC_ERR_UCH; uc = (struct uc_struct *)(*handle); if (uc->release) uc->release(uc->tcg_ctx); #ifndef _WIN32 free(uc->l1_map); #endif if (uc->bounce.buffer) { free(uc->bounce.buffer); } g_free(uc->tcg_ctx); free((void*) uc->system_memory->name); g_free(uc->system_memory); g_hash_table_destroy(uc->type_table); int i; for (i = 0; i < DIRTY_MEMORY_NUM; i++) { free(uc->ram_list.dirty_memory[i]); } // TODO: remove uc->root (created with object_new()) uc->root->free(uc->root); free(uc->hook_callbacks); free(uc->mapped_blocks); // finally, free uc itself. memset(uc, 0, sizeof(*uc)); free(uc); // invalidate this handle by ZERO out its value. // this is to make sure it is unusable after uc_close() *handle = 0; return UC_ERR_OK; } UNICORN_EXPORT uc_err uc_reg_read(uch handle, int regid, void *value) { struct uc_struct *uc; if (handle == 0) // invalid handle return UC_ERR_UCH; uc = (struct uc_struct *)handle; if (uc->reg_read) uc->reg_read(handle, regid, value); else return -1; // FIXME: need a proper uc_err return UC_ERR_OK; } UNICORN_EXPORT uc_err uc_reg_write(uch handle, int regid, const void *value) { struct uc_struct *uc; if (handle == 0) // invalid handle return UC_ERR_UCH; uc = (struct uc_struct *)handle; if (uc->reg_write) uc->reg_write(handle, regid, value); else return -1; // FIXME: need a proper uc_err return UC_ERR_OK; } // check if a memory area is mapped // this is complicated because an area can overlap adjacent blocks static bool check_mem_area(struct uc_struct *uc, uint64_t address, size_t size) { size_t count = 0, len; while(count < size) { MemoryRegion *mr = memory_mapping(uc, address); if (mr) { len = MIN(size - count, mr->end - address); count += len; address += len; } else // this address is not mapped in yet break; } return (count == size); } UNICORN_EXPORT uc_err uc_mem_read(uch handle, uint64_t address, uint8_t *bytes, size_t size) { struct uc_struct *uc = (struct uc_struct *)(uintptr_t)handle; if (handle == 0) // invalid handle return UC_ERR_UCH; if (!check_mem_area(uc, address, size)) return UC_ERR_MEM_READ; size_t count = 0, len; // memory area can overlap adjacent memory blocks while(count < size) { MemoryRegion *mr = memory_mapping(uc, address); if (mr) { len = MIN(size - count, mr->end - address); if (uc->read_mem(&uc->as, address, bytes, len) == false) break; count += len; address += len; bytes += len; } else // this address is not mapped in yet break; } if (count == size) return UC_ERR_OK; else return UC_ERR_MEM_READ; } UNICORN_EXPORT uc_err uc_mem_write(uch handle, uint64_t address, const uint8_t *bytes, size_t size) { struct uc_struct *uc = (struct uc_struct *)(uintptr_t)handle; if (handle == 0) // invalid handle return UC_ERR_UCH; if (!check_mem_area(uc, address, size)) return UC_ERR_MEM_WRITE; size_t count = 0, len; // memory area can overlap adjacent memory blocks while(count < size) { MemoryRegion *mr = memory_mapping(uc, address); if (mr) { uint32_t operms = mr->perms; if (!(operms & UC_PROT_WRITE)) // write protected // but this is not the program accessing memory, so temporarily mark writable uc->readonly_mem(mr, false); len = MIN(size - count, mr->end - address); if (uc->write_mem(&uc->as, address, bytes, len) == false) break; if (!(operms & UC_PROT_WRITE)) // write protected // now write protect it again uc->readonly_mem(mr, true); count += len; address += len; bytes += len; } else // this address is not mapped in yet break; } if (count == size) return UC_ERR_OK; else return UC_ERR_MEM_WRITE; } #define TIMEOUT_STEP 2 // microseconds static void *_timeout_fn(void *arg) { struct uc_struct *uc = (struct uc_struct *)arg; int64_t current_time = get_clock(); do { usleep(TIMEOUT_STEP); // perhaps emulation is even done before timeout? if (uc->emulation_done) break; } while(get_clock() - current_time < uc->timeout); // timeout before emulation is done? if (!uc->emulation_done) { // force emulation to stop uc_emu_stop((uch)uc); } return NULL; } static void enable_emu_timer(uch handle, uint64_t timeout) { struct uc_struct *uc = (struct uc_struct *)handle; uc->timeout = timeout; qemu_thread_create(&uc->timer, "timeout", _timeout_fn, uc, QEMU_THREAD_JOINABLE); } UNICORN_EXPORT uc_err uc_emu_start(uch handle, uint64_t begin, uint64_t until, uint64_t timeout, size_t count) { struct uc_struct* uc = (struct uc_struct *)handle; if (handle == 0) // invalid handle return UC_ERR_UCH; // reset the counter uc->emu_counter = 0; uc->stop_request = false; uc->invalid_error = UC_ERR_OK; uc->block_full = false; uc->emulation_done = false; switch(uc->arch) { default: break; case UC_ARCH_M68K: uc_reg_write(handle, UC_M68K_REG_PC, &begin); break; case UC_ARCH_X86: switch(uc->mode) { default: break; case UC_MODE_16: uc_reg_write(handle, UC_X86_REG_IP, &begin); break; case UC_MODE_32: uc_reg_write(handle, UC_X86_REG_EIP, &begin); break; case UC_MODE_64: uc_reg_write(handle, UC_X86_REG_RIP, &begin); break; } break; case UC_ARCH_ARM: switch(uc->mode) { default: break; case UC_MODE_THUMB: case UC_MODE_ARM: uc_reg_write(handle, UC_ARM_REG_R15, &begin); break; } break; case UC_ARCH_ARM64: uc_reg_write(handle, UC_ARM64_REG_PC, &begin); break; case UC_ARCH_MIPS: // TODO: MIPS32/MIPS64/BIGENDIAN etc uc_reg_write(handle, UC_MIPS_REG_PC, &begin); break; case UC_ARCH_SPARC: // TODO: Sparc/Sparc64 uc_reg_write(handle, UC_SPARC_REG_PC, &begin); break; } uc->emu_count = count; if (count > 0) { uc->hook_insn = true; } uc->addr_end = until; uc->vm_start(uc); if (timeout) enable_emu_timer(handle, timeout * 1000); // microseconds -> nanoseconds uc->pause_all_vcpus(uc); // emulation is done uc->emulation_done = true; if (timeout) { // wait for the timer to finish qemu_thread_join(&uc->timer); } return uc->invalid_error; } UNICORN_EXPORT uc_err uc_emu_stop(uch handle) { struct uc_struct* uc = (struct uc_struct *)handle; if (handle == 0) // invalid handle return UC_ERR_UCH; if (uc->emulation_done) return UC_ERR_OK; uc->stop_request = true; // exit the current TB cpu_exit(uc->current_cpu); return UC_ERR_OK; } static int _hook_code(uch handle, int type, uint64_t begin, uint64_t end, void *callback, void *user_data, uch *h2) { int i; i = hook_add(handle, type, begin, end, callback, user_data); if (i == 0) return UC_ERR_OOM; // FIXME *h2 = i; return UC_ERR_OK; } static uc_err _hook_mem_access(uch handle, uc_mem_type type, uint64_t begin, uint64_t end, void *callback, void *user_data, uch *h2) { int i; i = hook_add(handle, type, begin, end, callback, user_data); if (i == 0) return UC_ERR_OOM; // FIXME *h2 = i; return UC_ERR_OK; } UNICORN_EXPORT uc_err uc_mem_map(uch handle, uint64_t address, size_t size, uint32_t perms) { MemoryRegion **regions; struct uc_struct* uc = (struct uc_struct *)handle; if (handle == 0) // invalid handle return UC_ERR_UCH; if (size == 0) // invalid memory mapping return UC_ERR_MAP; // address must be aligned to 4KB if ((address & (4*1024 - 1)) != 0) return UC_ERR_MAP; // size must be multiple of 4KB if ((size & (4*1024 - 1)) != 0) return UC_ERR_MAP; // check for only valid permissions if ((perms & ~(UC_PROT_READ | UC_PROT_WRITE | UC_PROT_EXEC)) != 0) return UC_ERR_MAP; if ((uc->mapped_block_count & (MEM_BLOCK_INCR - 1)) == 0) { //time to grow regions = (MemoryRegion**)realloc(uc->mapped_blocks, sizeof(MemoryRegion*) * (uc->mapped_block_count + MEM_BLOCK_INCR)); if (regions == NULL) { return UC_ERR_OOM; } uc->mapped_blocks = regions; } uc->mapped_blocks[uc->mapped_block_count] = uc->memory_map(uc, address, size, perms); uc->mapped_block_count++; return UC_ERR_OK; } UNICORN_EXPORT uc_err uc_mem_protect(uch handle, uint64_t address, size_t size, uint32_t perms) { struct uc_struct* uc = (struct uc_struct *)handle; MemoryRegion *mr; if (handle == 0) // invalid handle return UC_ERR_UCH; if (size == 0) // invalid memory mapping return UC_ERR_MAP; // address must be aligned to 4KB if ((address & (4*1024 - 1)) != 0) return UC_ERR_MAP; // size must be multiple of 4KB if ((size & (4*1024 - 1)) != 0) return UC_ERR_MAP; // check for only valid permissions if ((perms & ~(UC_PROT_READ | UC_PROT_WRITE | UC_PROT_EXEC)) != 0) return UC_ERR_MAP; //check that user's entire requested block is mapped if (!check_mem_area(uc, address, size)) return UC_ERR_MAP; //Now we know entire region is mapped, so change permissions //check trivial case first mr = memory_mapping(uc, address); if (address == mr->addr && size == int128_get64(mr->size)) { //regions exactly matches an existing region just change perms mr->perms = perms; uc->readonly_mem(mr, (perms & UC_PROT_WRITE) == 0); } else { //ouch, we are going to need to subdivide blocks /* address = start; size = block_size; while (size > 0) { MemoryRegion *mr = memory_mapping(uc, address); uint64_t region_size = int128_get64(mr->size); if (address > mr->addr) { //in case start address is not aligned with start of region region_size -= address - mr->addr; //TODO Learn how to split regions //In this case some proper subset of the region is having it's permissions changed //need to split region and add new portions into uc->mapped_blocks list //In this case, there is a portion of the region with original perms: mr->addr..start //and a portion getting new perms: start..start+block_size //split the block and stay in the loop } if (size < int128_get64(mr->size)) { //TODO Learn how to split regions //In this case some proper subset of the region is having it's permissions changed //need to split region and add new portions into uc->mapped_blocks list //In this case, there is a portion of the region with new perms: start..start+block_size //and a portion getting new perms: mr->addr+size..mr->addr+mr->size //split the block and break break; } size -= int128_get64(mr->size); address += int128_get64(mr->size); mr->perms = perms; uc->readonly_mem(mr, (perms & UC_PROT_WRITE) == 0); } */ } return UC_ERR_OK; } UNICORN_EXPORT uc_err uc_mem_unmap(uch handle, uint64_t address, size_t size) { MemoryRegion *mr; unsigned int i; struct uc_struct* uc = (struct uc_struct *)handle; if (handle == 0) // invalid handle return UC_ERR_UCH; if (size == 0) // nothing to unmap return UC_ERR_OK; // address must be aligned to 4KB if ((address & (4*1024 - 1)) != 0) return UC_ERR_MAP; // size must be multiple of 4KB if ((size & (4*1024 - 1)) != 0) return UC_ERR_MAP; //check that user's entire requested block is mapped if (!check_mem_area(uc, address, size)) return UC_ERR_MAP; //Now we know entire region is mapped, so change permissions //check trivial case first mr = memory_mapping(uc, address); if (address == mr->addr && size == int128_get64(mr->size)) { //regions exactly matches an existing region just unmap it uc->memory_unmap(uc, mr); for (i = 0; i < uc->mapped_block_count; i++) { if (uc->mapped_blocks[i] == mr) { uc->mapped_block_count--; //shift remainder of array down over deleted pointer memcpy(&uc->mapped_blocks[i], &uc->mapped_blocks[i + 1], sizeof(MemoryRegion*) * (uc->mapped_block_count - i)); break; } } return UC_ERR_OK; } else { //ouch, we are going to need to subdivide blocks } return UC_ERR_MAP; } MemoryRegion *memory_mapping(struct uc_struct* uc, uint64_t address) { unsigned int i; for(i = 0; i < uc->mapped_block_count; i++) { if (address >= uc->mapped_blocks[i]->addr && address < uc->mapped_blocks[i]->end) return uc->mapped_blocks[i]; } // not found return NULL; } static uc_err _hook_mem_invalid(struct uc_struct* uc, uc_cb_eventmem_t callback, void *user_data, uch *evh) { size_t i; // FIXME: only one event handler at the same time i = hook_find_new(uc); if (i) { uc->hook_callbacks[i].callback = callback; uc->hook_callbacks[i].user_data = user_data; *evh = i; uc->hook_mem_idx = i; return UC_ERR_OK; } else return UC_ERR_OOM; } static uc_err _hook_intr(struct uc_struct* uc, void *callback, void *user_data, uch *evh) { size_t i; // FIXME: only one event handler at the same time i = hook_find_new(uc); if (i) { uc->hook_callbacks[i].callback = callback; uc->hook_callbacks[i].user_data = user_data; *evh = i; uc->hook_intr_idx = i; return UC_ERR_OK; } else return UC_ERR_OOM; } static uc_err _hook_insn(struct uc_struct *uc, unsigned int insn_id, void *callback, void *user_data, uch *evh) { size_t i; switch(uc->arch) { default: break; case UC_ARCH_X86: switch(insn_id) { default: break; case UC_X86_INS_OUT: // FIXME: only one event handler at the same time i = hook_find_new(uc); if (i) { uc->hook_callbacks[i].callback = callback; uc->hook_callbacks[i].user_data = user_data; *evh = i; uc->hook_out_idx = i; return UC_ERR_OK; } else return UC_ERR_OOM; case UC_X86_INS_IN: // FIXME: only one event handler at the same time i = hook_find_new(uc); if (i) { uc->hook_callbacks[i].callback = callback; uc->hook_callbacks[i].user_data = user_data; *evh = i; uc->hook_in_idx = i; return UC_ERR_OK; } else return UC_ERR_OOM; case UC_X86_INS_SYSCALL: case UC_X86_INS_SYSENTER: // FIXME: only one event handler at the same time i = hook_find_new(uc); if (i) { uc->hook_callbacks[i].callback = callback; uc->hook_callbacks[i].user_data = user_data; *evh = i; uc->hook_syscall_idx = i; return UC_ERR_OK; } else return UC_ERR_OOM; } break; } return UC_ERR_OK; } UNICORN_EXPORT uc_err uc_hook_add(uch handle, uch *h2, uc_hook_t type, void *callback, void *user_data, ...) { struct uc_struct* uc = (struct uc_struct *)handle; va_list valist; int ret = UC_ERR_OK; int id; uint64_t begin, end; if (handle == 0) // invalid handle return UC_ERR_UCH; va_start(valist, user_data); switch(type) { default: ret = UC_ERR_HOOK; break; case UC_HOOK_INTR: ret = _hook_intr(uc, callback, user_data, h2); break; case UC_HOOK_INSN: id = va_arg(valist, int); ret = _hook_insn(uc, id, callback, user_data, h2); break; case UC_HOOK_CODE: begin = va_arg(valist, uint64_t); end = va_arg(valist, uint64_t); ret = _hook_code(handle, UC_HOOK_CODE, begin, end, callback, user_data, h2); break; case UC_HOOK_BLOCK: begin = va_arg(valist, uint64_t); end = va_arg(valist, uint64_t); ret = _hook_code(handle, UC_HOOK_BLOCK, begin, end, callback, user_data, h2); break; case UC_HOOK_MEM_INVALID: ret = _hook_mem_invalid(uc, callback, user_data, h2); break; case UC_HOOK_MEM_READ: begin = va_arg(valist, uint64_t); end = va_arg(valist, uint64_t); ret = _hook_mem_access(handle, UC_MEM_READ, begin, end, callback, user_data, h2); break; case UC_HOOK_MEM_WRITE: begin = va_arg(valist, uint64_t); end = va_arg(valist, uint64_t); ret = _hook_mem_access(handle, UC_MEM_WRITE, begin, end, callback, user_data, h2); case UC_HOOK_MEM_READ_WRITE: begin = va_arg(valist, uint64_t); end = va_arg(valist, uint64_t); ret = _hook_mem_access(handle, UC_MEM_READ_WRITE, begin, end, callback, user_data, h2); break; } va_end(valist); return ret; } UNICORN_EXPORT uc_err uc_hook_del(uch handle, uch *h2) { //struct uc_struct* uc = (struct uc_struct *)handle; if (handle == 0) // invalid handle return UC_ERR_UCH; if (*h2 == 0) // invalid handle return UC_ERR_HANDLE; return hook_del(handle, h2); }