/* * QEMU AArch64 CPU * * Copyright (c) 2013 Linaro Ltd * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see * */ #include "qemu/osdep.h" #include "qapi/error.h" #include "cpu.h" #include "qemu-common.h" #include "hw/arm/arm.h" #include "sysemu/sysemu.h" static inline void set_feature(CPUARMState *env, int feature) { env->features |= 1ULL << feature; } static inline QEMU_UNUSED_FUNC void unset_feature(CPUARMState *env, int feature) { env->features &= ~(1ULL << feature); } #ifndef CONFIG_USER_ONLY static uint64_t a57_a53_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri) { /* Number of processors is in [25:24]; otherwise we RAZ */ return (smp_cpus - 1) << 24; } #endif static const ARMCPRegInfo cortex_a57_a53_cp_reginfo[] = { #ifndef CONFIG_USER_ONLY { "L2CTLR_EL1", 0,11,0, 3,1,2, ARM_CP_STATE_AA64, 0, PL1_RW, 0, NULL, 0, 0, {0, 0}, NULL, a57_a53_l2ctlr_read, arm_cp_write_ignore, }, { "L2CTLR", 15,9,0, 0,1,2, 0, 0, PL1_RW, 0, NULL, 0, 0, {0, 0}, NULL, a57_a53_l2ctlr_read, arm_cp_write_ignore, }, #endif { "L2ECTLR_EL1", 0,11,0, 3,1,3, ARM_CP_STATE_AA64, ARM_CP_CONST, PL1_RW, 0, NULL, 0, }, { "L2ECTLR", 15,9,0, 0,1,3, 0, ARM_CP_CONST, PL1_RW, 0, NULL, 0, }, { "L2ACTLR", 0,15,0, 3,1,0, ARM_CP_STATE_BOTH, ARM_CP_CONST, PL1_RW, 0, NULL, 0 }, { "CPUACTLR_EL1", 0,15,2, 3,1,0, ARM_CP_STATE_AA64, ARM_CP_CONST, PL1_RW, 0, NULL, 0 }, { "CPUACTLR", 15,0,15, 0,0,0, 0, ARM_CP_CONST | ARM_CP_64BIT, PL1_RW, 0, NULL, 0, }, { "CPUECTLR_EL1", 0,15,2, 3,1,1, ARM_CP_STATE_AA64, ARM_CP_CONST, PL1_RW, 0, NULL, 0, }, { "CPUECTLR", 15,0,15, 0,1,0, 0, ARM_CP_CONST | ARM_CP_64BIT, PL1_RW, 0, NULL, 0, }, { "CPUMERRSR_EL1", 0,15,2, 3,1,2, ARM_CP_STATE_AA64, ARM_CP_CONST, PL1_RW, 0, NULL, 0 }, { "CPUMERRSR", 15,0,15, 0,2,0, 0, ARM_CP_CONST | ARM_CP_64BIT, PL1_RW, 0, NULL, 0 }, { "L2MERRSR_EL1", 0,15,2, 3,1,3, ARM_CP_STATE_AA64, ARM_CP_CONST, PL1_RW, 0, NULL, 0 }, { "L2MERRSR", 15,0,15, 0,3,0, 0, ARM_CP_CONST | ARM_CP_64BIT, PL1_RW, 0, NULL, 0 }, REGINFO_SENTINEL }; static void aarch64_a57_initfn(struct uc_struct *uc, Object *obj, void *opaque) { ARMCPU *cpu = ARM_CPU(uc, obj); set_feature(&cpu->env, ARM_FEATURE_V8); set_feature(&cpu->env, ARM_FEATURE_VFP4); set_feature(&cpu->env, ARM_FEATURE_NEON); set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER); set_feature(&cpu->env, ARM_FEATURE_AARCH64); set_feature(&cpu->env, ARM_FEATURE_CBAR_RO); set_feature(&cpu->env, ARM_FEATURE_V8_AES); set_feature(&cpu->env, ARM_FEATURE_V8_SHA1); set_feature(&cpu->env, ARM_FEATURE_V8_SHA256); set_feature(&cpu->env, ARM_FEATURE_V8_PMULL); set_feature(&cpu->env, ARM_FEATURE_CRC); set_feature(&cpu->env, ARM_FEATURE_EL2); set_feature(&cpu->env, ARM_FEATURE_EL3); set_feature(&cpu->env, ARM_FEATURE_PMU); cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A57; cpu->midr = 0x411fd070; cpu->revidr = 0x00000000; cpu->reset_fpsid = 0x41034070; cpu->mvfr0 = 0x10110222; cpu->mvfr1 = 0x12111111; cpu->mvfr2 = 0x00000043; cpu->ctr = 0x8444c004; cpu->reset_sctlr = 0x00c50838; cpu->id_pfr0 = 0x00000131; cpu->id_pfr1 = 0x00011011; cpu->id_dfr0 = 0x03010066; cpu->id_afr0 = 0x00000000; cpu->id_mmfr0 = 0x10101105; cpu->id_mmfr1 = 0x40000000; cpu->id_mmfr2 = 0x01260000; cpu->id_mmfr3 = 0x02102211; cpu->id_isar0 = 0x02101110; cpu->id_isar1 = 0x13112111; cpu->id_isar2 = 0x21232042; cpu->id_isar3 = 0x01112131; cpu->id_isar4 = 0x00011142; cpu->id_isar5 = 0x00011121; cpu->id_aa64pfr0 = 0x00002222; cpu->id_aa64dfr0 = 0x10305106; cpu->pmceid0 = 0x00000000; cpu->pmceid1 = 0x00000000; cpu->id_aa64isar0 = 0x00011120; cpu->id_aa64mmfr0 = 0x00001124; cpu->dbgdidr = 0x3516d000; cpu->clidr = 0x0a200023; cpu->ccsidr[0] = 0x701fe00a; /* 32KB L1 dcache */ cpu->ccsidr[1] = 0x201fe012; /* 48KB L1 icache */ cpu->ccsidr[2] = 0x70ffe07a; /* 2048KB L2 cache */ cpu->dcz_blocksize = 4; /* 64 bytes */ define_arm_cp_regs(cpu, cortex_a57_a53_cp_reginfo); } static void aarch64_a53_initfn(struct uc_struct *uc, Object *obj, void *opaque) { ARMCPU *cpu = ARM_CPU(uc, obj); cpu->dtb_compatible = "arm,cortex-a53"; set_feature(&cpu->env, ARM_FEATURE_V8); set_feature(&cpu->env, ARM_FEATURE_VFP4); set_feature(&cpu->env, ARM_FEATURE_NEON); set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER); set_feature(&cpu->env, ARM_FEATURE_AARCH64); set_feature(&cpu->env, ARM_FEATURE_CBAR_RO); set_feature(&cpu->env, ARM_FEATURE_V8_AES); set_feature(&cpu->env, ARM_FEATURE_V8_SHA1); set_feature(&cpu->env, ARM_FEATURE_V8_SHA256); set_feature(&cpu->env, ARM_FEATURE_V8_PMULL); set_feature(&cpu->env, ARM_FEATURE_CRC); set_feature(&cpu->env, ARM_FEATURE_EL2); set_feature(&cpu->env, ARM_FEATURE_EL3); set_feature(&cpu->env, ARM_FEATURE_PMU); cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A53; cpu->midr = 0x410fd034; cpu->revidr = 0x00000000; cpu->reset_fpsid = 0x41034070; cpu->mvfr0 = 0x10110222; cpu->mvfr1 = 0x12111111; cpu->mvfr2 = 0x00000043; cpu->ctr = 0x84448004; /* L1Ip = VIPT */ cpu->reset_sctlr = 0x00c50838; cpu->id_pfr0 = 0x00000131; cpu->id_pfr1 = 0x00011011; cpu->id_dfr0 = 0x03010066; cpu->id_afr0 = 0x00000000; cpu->id_mmfr0 = 0x10101105; cpu->id_mmfr1 = 0x40000000; cpu->id_mmfr2 = 0x01260000; cpu->id_mmfr3 = 0x02102211; cpu->id_isar0 = 0x02101110; cpu->id_isar1 = 0x13112111; cpu->id_isar2 = 0x21232042; cpu->id_isar3 = 0x01112131; cpu->id_isar4 = 0x00011142; cpu->id_isar5 = 0x00011121; cpu->id_aa64pfr0 = 0x00002222; cpu->id_aa64dfr0 = 0x10305106; cpu->id_aa64isar0 = 0x00011120; cpu->id_aa64mmfr0 = 0x00001122; /* 40 bit physical addr */ cpu->dbgdidr = 0x3516d000; cpu->clidr = 0x0a200023; cpu->ccsidr[0] = 0x700fe01a; /* 32KB L1 dcache */ cpu->ccsidr[1] = 0x201fe00a; /* 32KB L1 icache */ cpu->ccsidr[2] = 0x707fe07a; /* 1024KB L2 cache */ cpu->dcz_blocksize = 4; /* 64 bytes */ define_arm_cp_regs(cpu, cortex_a57_a53_cp_reginfo); } #ifdef CONFIG_USER_ONLY static void aarch64_any_initfn(struct uc_struct *uc, Object *obj, void *opaque) { ARMCPU *cpu = ARM_CPU(uc, obj); set_feature(&cpu->env, ARM_FEATURE_V8); set_feature(&cpu->env, ARM_FEATURE_VFP4); set_feature(&cpu->env, ARM_FEATURE_NEON); set_feature(&cpu->env, ARM_FEATURE_AARCH64); set_feature(&cpu->env, ARM_FEATURE_V8_AES); set_feature(&cpu->env, ARM_FEATURE_V8_SHA1); set_feature(&cpu->env, ARM_FEATURE_V8_SHA256); set_feature(&cpu->env, ARM_FEATURE_V8_SHA512); set_feature(&cpu->env, ARM_FEATURE_V8_SHA3); set_feature(&cpu->env, ARM_FEATURE_V8_SM3); set_feature(&cpu->env, ARM_FEATURE_V8_SM4); set_feature(&cpu->env, ARM_FEATURE_V8_PMULL); set_feature(&cpu->env, ARM_FEATURE_CRC); set_feature(&cpu->env, ARM_FEATURE_V8_FP16); cpu->ctr = 0x80038003; /* 32 byte I and D cacheline size, VIPT icache */ cpu->dcz_blocksize = 7; /* 512 bytes */ } #endif typedef struct ARMCPUInfo { const char *name; void (*initfn)(struct uc_struct *uc, Object *obj, void *opaque); void (*class_init)(struct uc_struct *uc, ObjectClass *oc, void *data); } ARMCPUInfo; static const ARMCPUInfo aarch64_cpus[] = { { "cortex-a57", aarch64_a57_initfn }, { "cortex-a53", aarch64_a53_initfn }, #ifdef CONFIG_USER_ONLY { "any", aarch64_any_initfn }, #endif { NULL } }; static QEMU_UNUSED_FUNC bool aarch64_cpu_get_aarch64(Object *obj, Error **errp) { ARMCPU *cpu = ARM_CPU(NULL, obj); return arm_feature(&cpu->env, ARM_FEATURE_AARCH64); } static void aarch64_cpu_initfn(struct uc_struct *uc, Object *obj, void *opaque) { } static void aarch64_cpu_finalizefn(struct uc_struct *uc, Object *obj, void *opaque) { } static void aarch64_cpu_set_pc(CPUState *cs, vaddr value) { ARMCPU *cpu = ARM_CPU(cs->uc, cs); /* It's OK to look at env for the current mode here, because it's * never possible for an AArch64 TB to chain to an AArch32 TB. * (Otherwise we would need to use synchronize_from_tb instead.) */ if (is_a64(&cpu->env)) { cpu->env.pc = value; } else { cpu->env.regs[15] = value; } } static void aarch64_cpu_class_init(struct uc_struct *uc, ObjectClass *oc, void *data) { CPUClass *cc = CPU_CLASS(uc, oc); cc->cpu_exec_interrupt = arm_cpu_exec_interrupt; cc->set_pc = aarch64_cpu_set_pc; } static void aarch64_cpu_register(struct uc_struct *uc, const ARMCPUInfo *info) { TypeInfo type_info = { 0 }; type_info.parent = TYPE_AARCH64_CPU; type_info.instance_size = sizeof(ARMCPU); type_info.instance_init = info->initfn; type_info.class_size = sizeof(ARMCPUClass); type_info.class_init = info->class_init; type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name); type_register(uc, &type_info); g_free((void *)type_info.name); } void aarch64_cpu_register_types(void *opaque) { const ARMCPUInfo *info = aarch64_cpus; static TypeInfo aarch64_cpu_type_info = { 0 }; aarch64_cpu_type_info.name = TYPE_AARCH64_CPU; aarch64_cpu_type_info.parent = TYPE_ARM_CPU; aarch64_cpu_type_info.instance_size = sizeof(ARMCPU); aarch64_cpu_type_info.instance_init = aarch64_cpu_initfn; aarch64_cpu_type_info.instance_finalize = aarch64_cpu_finalizefn; aarch64_cpu_type_info.abstract = true; aarch64_cpu_type_info.class_size = sizeof(AArch64CPUClass); aarch64_cpu_type_info.class_init = aarch64_cpu_class_init; type_register_static(opaque, &aarch64_cpu_type_info); while (info->name) { aarch64_cpu_register(opaque, info); info++; } }