/* * x86 FPU, MMX/3DNow!/SSE/SSE2/SSE3/SSSE3/SSE4/PNI helpers * * Copyright (c) 2003 Fabrice Bellard * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include "qemu/osdep.h" #include #include "cpu.h" #include "exec/helper-proto.h" #include "qemu/host-utils.h" #include "exec/cpu_ldst.h" #define FPU_RC_MASK 0xc00 #define FPU_RC_NEAR 0x000 #define FPU_RC_DOWN 0x400 #define FPU_RC_UP 0x800 #define FPU_RC_CHOP 0xc00 #define MAXTAN 9223372036854775808.0 /* the following deal with x86 long double-precision numbers */ #define MAXEXPD 0x7fff #define EXPBIAS 16383 #define EXPD(fp) (fp.l.upper & 0x7fff) #define SIGND(fp) ((fp.l.upper) & 0x8000) #define MANTD(fp) (fp.l.lower) #define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7fff)) | EXPBIAS #define FPUS_IE (1 << 0) #define FPUS_DE (1 << 1) #define FPUS_ZE (1 << 2) #define FPUS_OE (1 << 3) #define FPUS_UE (1 << 4) #define FPUS_PE (1 << 5) #define FPUS_SF (1 << 6) #define FPUS_SE (1 << 7) #define FPUS_B (1 << 15) #define FPUC_EM 0x3f #define floatx80_lg2 make_floatx80(0x3ffd, 0x9a209a84fbcff799LL) #define floatx80_l2e make_floatx80(0x3fff, 0xb8aa3b295c17f0bcLL) #define floatx80_l2t make_floatx80(0x4000, 0xd49a784bcd1b8afeLL) static inline void fpush(CPUX86State *env) { env->fpstt = (env->fpstt - 1) & 7; env->fptags[env->fpstt] = 0; /* validate stack entry */ } static inline void fpop(CPUX86State *env) { env->fptags[env->fpstt] = 1; /* invalidate stack entry */ env->fpstt = (env->fpstt + 1) & 7; } static inline floatx80 helper_fldt(CPUX86State *env, target_ulong ptr, uintptr_t retaddr) { CPU_LDoubleU temp; temp.l.lower = cpu_ldq_data_ra(env, ptr, retaddr); temp.l.upper = cpu_lduw_data_ra(env, ptr + 8, retaddr); return temp.d; } static inline void helper_fstt(CPUX86State *env, floatx80 f, target_ulong ptr, uintptr_t retaddr) { CPU_LDoubleU temp; temp.d = f; cpu_stq_data_ra(env, ptr, temp.l.lower, retaddr); cpu_stw_data_ra(env, ptr + 8, temp.l.upper, retaddr); } /* x87 FPU helpers */ static inline double floatx80_to_double(CPUX86State *env, floatx80 a) { union { float64 f64; double d; } u; u.f64 = floatx80_to_float64(a, &env->fp_status); return u.d; } static inline floatx80 double_to_floatx80(CPUX86State *env, double a) { union { float64 f64; double d; } u; u.d = a; return float64_to_floatx80(u.f64, &env->fp_status); } static void fpu_set_exception(CPUX86State *env, int mask) { env->fpus |= mask; if (env->fpus & (~env->fpuc & FPUC_EM)) { env->fpus |= FPUS_SE | FPUS_B; } } static inline floatx80 helper_fdiv(CPUX86State *env, floatx80 a, floatx80 b) { if (floatx80_is_zero(b)) { fpu_set_exception(env, FPUS_ZE); } return floatx80_div(a, b, &env->fp_status); } static void fpu_raise_exception(CPUX86State *env, uintptr_t retaddr) { if (env->cr[0] & CR0_NE_MASK) { raise_exception_ra(env, EXCP10_COPR, retaddr); } #if !defined(CONFIG_USER_ONLY) else { cpu_set_ferr(env); } #endif } void helper_flds_FT0(CPUX86State *env, uint32_t val) { union { float32 f; uint32_t i; } u; u.i = val; FT0 = float32_to_floatx80(u.f, &env->fp_status); } void helper_fldl_FT0(CPUX86State *env, uint64_t val) { union { float64 f; uint64_t i; } u; u.i = val; FT0 = float64_to_floatx80(u.f, &env->fp_status); } void helper_fildl_FT0(CPUX86State *env, int32_t val) { FT0 = int32_to_floatx80(val, &env->fp_status); } void helper_flds_ST0(CPUX86State *env, uint32_t val) { int new_fpstt; union { float32 f; uint32_t i; } u; new_fpstt = (env->fpstt - 1) & 7; u.i = val; env->fpregs[new_fpstt].d = float32_to_floatx80(u.f, &env->fp_status); env->fpstt = new_fpstt; env->fptags[new_fpstt] = 0; /* validate stack entry */ } void helper_fldl_ST0(CPUX86State *env, uint64_t val) { int new_fpstt; union { float64 f; uint64_t i; } u; new_fpstt = (env->fpstt - 1) & 7; u.i = val; env->fpregs[new_fpstt].d = float64_to_floatx80(u.f, &env->fp_status); env->fpstt = new_fpstt; env->fptags[new_fpstt] = 0; /* validate stack entry */ } void helper_fildl_ST0(CPUX86State *env, int32_t val) { int new_fpstt; new_fpstt = (env->fpstt - 1) & 7; env->fpregs[new_fpstt].d = int32_to_floatx80(val, &env->fp_status); env->fpstt = new_fpstt; env->fptags[new_fpstt] = 0; /* validate stack entry */ } void helper_fildll_ST0(CPUX86State *env, int64_t val) { int new_fpstt; new_fpstt = (env->fpstt - 1) & 7; env->fpregs[new_fpstt].d = int64_to_floatx80(val, &env->fp_status); env->fpstt = new_fpstt; env->fptags[new_fpstt] = 0; /* validate stack entry */ } uint32_t helper_fsts_ST0(CPUX86State *env) { union { float32 f; uint32_t i; } u; u.f = floatx80_to_float32(ST0, &env->fp_status); return u.i; } uint64_t helper_fstl_ST0(CPUX86State *env) { union { float64 f; uint64_t i; } u; u.f = floatx80_to_float64(ST0, &env->fp_status); return u.i; } int32_t helper_fist_ST0(CPUX86State *env) { int32_t val; val = floatx80_to_int64(ST0, &env->fp_status); if (val != (int16_t)val) { val = -32768; } return val; } int32_t helper_fistl_ST0(CPUX86State *env) { int32_t val; signed char old_exp_flags; old_exp_flags = get_float_exception_flags(&env->fp_status); set_float_exception_flags(0, &env->fp_status); val = floatx80_to_int32(ST0, &env->fp_status); if (get_float_exception_flags(&env->fp_status) & float_flag_invalid) { val = 0x80000000; } set_float_exception_flags(get_float_exception_flags(&env->fp_status) | old_exp_flags, &env->fp_status); return val; } int64_t helper_fistll_ST0(CPUX86State *env) { int64_t val; signed char old_exp_flags; old_exp_flags = get_float_exception_flags(&env->fp_status); set_float_exception_flags(0, &env->fp_status); val = floatx80_to_int32(ST0, &env->fp_status); if (get_float_exception_flags(&env->fp_status) & float_flag_invalid) { val = 0x8000000000000000ULL; } set_float_exception_flags(get_float_exception_flags(&env->fp_status) | old_exp_flags, &env->fp_status); return val; } int32_t helper_fistt_ST0(CPUX86State *env) { int32_t val; val = floatx80_to_int32_round_to_zero(ST0, &env->fp_status); if (val != (int16_t)val) { val = -32768; } return val; } int32_t helper_fisttl_ST0(CPUX86State *env) { int32_t val; val = floatx80_to_int32_round_to_zero(ST0, &env->fp_status); return val; } int64_t helper_fisttll_ST0(CPUX86State *env) { int64_t val; val = floatx80_to_int64_round_to_zero(ST0, &env->fp_status); return val; } void helper_fldt_ST0(CPUX86State *env, target_ulong ptr) { int new_fpstt; new_fpstt = (env->fpstt - 1) & 7; env->fpregs[new_fpstt].d = helper_fldt(env, ptr, GETPC()); env->fpstt = new_fpstt; env->fptags[new_fpstt] = 0; /* validate stack entry */ } void helper_fstt_ST0(CPUX86State *env, target_ulong ptr) { helper_fstt(env, ST0, ptr, GETPC()); } void helper_fpush(CPUX86State *env) { fpush(env); } void helper_fpop(CPUX86State *env) { fpop(env); } void helper_fdecstp(CPUX86State *env) { env->fpstt = (env->fpstt - 1) & 7; env->fpus &= ~0x4700; } void helper_fincstp(CPUX86State *env) { env->fpstt = (env->fpstt + 1) & 7; env->fpus &= ~0x4700; } /* FPU move */ void helper_ffree_STN(CPUX86State *env, int st_index) { env->fptags[(env->fpstt + st_index) & 7] = 1; } void helper_fmov_ST0_FT0(CPUX86State *env) { ST0 = FT0; } void helper_fmov_FT0_STN(CPUX86State *env, int st_index) { FT0 = ST(st_index); } void helper_fmov_ST0_STN(CPUX86State *env, int st_index) { ST0 = ST(st_index); } void helper_fmov_STN_ST0(CPUX86State *env, int st_index) { ST(st_index) = ST0; } void helper_fxchg_ST0_STN(CPUX86State *env, int st_index) { floatx80 tmp; tmp = ST(st_index); ST(st_index) = ST0; ST0 = tmp; } /* FPU operations */ static const int fcom_ccval[4] = {0x0100, 0x4000, 0x0000, 0x4500}; void helper_fcom_ST0_FT0(CPUX86State *env) { int ret; ret = floatx80_compare(ST0, FT0, &env->fp_status); env->fpus = (env->fpus & ~0x4500) | fcom_ccval[ret + 1]; } void helper_fucom_ST0_FT0(CPUX86State *env) { int ret; ret = floatx80_compare_quiet(ST0, FT0, &env->fp_status); env->fpus = (env->fpus & ~0x4500) | fcom_ccval[ret + 1]; } static const int fcomi_ccval[4] = {CC_C, CC_Z, 0, CC_Z | CC_P | CC_C}; void helper_fcomi_ST0_FT0(CPUX86State *env) { int eflags; int ret; ret = floatx80_compare(ST0, FT0, &env->fp_status); eflags = cpu_cc_compute_all(env, CC_OP); eflags = (eflags & ~(CC_Z | CC_P | CC_C)) | fcomi_ccval[ret + 1]; CC_SRC = eflags; } void helper_fucomi_ST0_FT0(CPUX86State *env) { int eflags; int ret; ret = floatx80_compare_quiet(ST0, FT0, &env->fp_status); eflags = cpu_cc_compute_all(env, CC_OP); eflags = (eflags & ~(CC_Z | CC_P | CC_C)) | fcomi_ccval[ret + 1]; CC_SRC = eflags; } void helper_fadd_ST0_FT0(CPUX86State *env) { ST0 = floatx80_add(ST0, FT0, &env->fp_status); } void helper_fmul_ST0_FT0(CPUX86State *env) { ST0 = floatx80_mul(ST0, FT0, &env->fp_status); } void helper_fsub_ST0_FT0(CPUX86State *env) { ST0 = floatx80_sub(ST0, FT0, &env->fp_status); } void helper_fsubr_ST0_FT0(CPUX86State *env) { ST0 = floatx80_sub(FT0, ST0, &env->fp_status); } void helper_fdiv_ST0_FT0(CPUX86State *env) { ST0 = helper_fdiv(env, ST0, FT0); } void helper_fdivr_ST0_FT0(CPUX86State *env) { ST0 = helper_fdiv(env, FT0, ST0); } /* fp operations between STN and ST0 */ void helper_fadd_STN_ST0(CPUX86State *env, int st_index) { ST(st_index) = floatx80_add(ST(st_index), ST0, &env->fp_status); } void helper_fmul_STN_ST0(CPUX86State *env, int st_index) { ST(st_index) = floatx80_mul(ST(st_index), ST0, &env->fp_status); } void helper_fsub_STN_ST0(CPUX86State *env, int st_index) { ST(st_index) = floatx80_sub(ST(st_index), ST0, &env->fp_status); } void helper_fsubr_STN_ST0(CPUX86State *env, int st_index) { ST(st_index) = floatx80_sub(ST0, ST(st_index), &env->fp_status); } void helper_fdiv_STN_ST0(CPUX86State *env, int st_index) { floatx80 *p; p = &ST(st_index); *p = helper_fdiv(env, *p, ST0); } void helper_fdivr_STN_ST0(CPUX86State *env, int st_index) { floatx80 *p; p = &ST(st_index); *p = helper_fdiv(env, ST0, *p); } /* misc FPU operations */ void helper_fchs_ST0(CPUX86State *env) { ST0 = floatx80_chs(ST0); } void helper_fabs_ST0(CPUX86State *env) { ST0 = floatx80_abs(ST0); } void helper_fld1_ST0(CPUX86State *env) { //ST0 = floatx80_one; floatx80 one = { 0x8000000000000000LL, 0x3fff }; ST0 = one; } void helper_fldl2t_ST0(CPUX86State *env) { //ST0 = floatx80_l2t; floatx80 l2t = { 0xd49a784bcd1b8afeLL, 0x4000 }; ST0 = l2t; } void helper_fldl2e_ST0(CPUX86State *env) { //ST0 = floatx80_l2e; floatx80 l2e = { 0xb8aa3b295c17f0bcLL, 0x3fff }; ST0 = l2e; } void helper_fldpi_ST0(CPUX86State *env) { //ST0 = floatx80_pi; floatx80 pi = { 0xc90fdaa22168c235LL, 0x4000 }; ST0 = pi; } void helper_fldlg2_ST0(CPUX86State *env) { //ST0 = floatx80_lg2; floatx80 lg2 = { 0x9a209a84fbcff799LL, 0x3ffd }; ST0 = lg2; } void helper_fldln2_ST0(CPUX86State *env) { //ST0 = floatx80_ln2; floatx80 ln2 = { 0xb17217f7d1cf79acLL, 0x3ffe }; ST0 = ln2; } void helper_fldz_ST0(CPUX86State *env) { //ST0 = floatx80_zero; floatx80 zero = { 0x0000000000000000LL, 0x0000 }; ST0 = zero; } void helper_fldz_FT0(CPUX86State *env) { //FT0 = floatx80_zero; floatx80 zero = { 0x0000000000000000LL, 0x0000 }; ST0 = zero; } uint32_t helper_fnstsw(CPUX86State *env) { return (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11; } uint32_t helper_fnstcw(CPUX86State *env) { return env->fpuc; } void update_fp_status(CPUX86State *env) { int rnd_type; /* set rounding mode */ switch (env->fpuc & FPU_RC_MASK) { default: case FPU_RC_NEAR: rnd_type = float_round_nearest_even; break; case FPU_RC_DOWN: rnd_type = float_round_down; break; case FPU_RC_UP: rnd_type = float_round_up; break; case FPU_RC_CHOP: rnd_type = float_round_to_zero; break; } set_float_rounding_mode(rnd_type, &env->fp_status); switch ((env->fpuc >> 8) & 3) { case 0: rnd_type = 32; break; case 2: rnd_type = 64; break; case 3: default: rnd_type = 80; break; } set_floatx80_rounding_precision(rnd_type, &env->fp_status); } void helper_fldcw(CPUX86State *env, uint32_t val) { cpu_set_fpuc(env, val); } void helper_fclex(CPUX86State *env) { env->fpus &= 0x7f00; } void helper_fwait(CPUX86State *env) { if (env->fpus & FPUS_SE) { fpu_raise_exception(env, GETPC()); } } void helper_fninit(CPUX86State *env) { env->fpus = 0; env->fpstt = 0; cpu_set_fpuc(env, 0x37f); env->fptags[0] = 1; env->fptags[1] = 1; env->fptags[2] = 1; env->fptags[3] = 1; env->fptags[4] = 1; env->fptags[5] = 1; env->fptags[6] = 1; env->fptags[7] = 1; } /* BCD ops */ void helper_fbld_ST0(CPUX86State *env, target_ulong ptr) { floatx80 tmp; uint64_t val; unsigned int v; int i; val = 0; for (i = 8; i >= 0; i--) { v = cpu_ldub_data_ra(env, ptr + i, GETPC()); val = (val * 100) + ((v >> 4) * 10) + (v & 0xf); } tmp = int64_to_floatx80(val, &env->fp_status); if (cpu_ldub_data_ra(env, ptr + 9, GETPC()) & 0x80) { tmp = floatx80_chs(tmp); } fpush(env); ST0 = tmp; } void helper_fbst_ST0(CPUX86State *env, target_ulong ptr) { int v; target_ulong mem_ref, mem_end; int64_t val; val = floatx80_to_int64(ST0, &env->fp_status); mem_ref = ptr; mem_end = mem_ref + 9; if (val < 0) { cpu_stb_data_ra(env, mem_end, 0x80, GETPC()); val = -val; } else { cpu_stb_data_ra(env, mem_end, 0x00, GETPC()); } while (mem_ref < mem_end) { if (val == 0) { break; } v = val % 100; val = val / 100; v = ((v / 10) << 4) | (v % 10); cpu_stb_data_ra(env, mem_ref++, v, GETPC()); } while (mem_ref < mem_end) { cpu_stb_data_ra(env, mem_ref++, 0, GETPC()); } } void helper_f2xm1(CPUX86State *env) { double val = floatx80_to_double(env, ST0); val = pow(2.0, val) - 1.0; ST0 = double_to_floatx80(env, val); } void helper_fyl2x(CPUX86State *env) { double fptemp = floatx80_to_double(env, ST0); if (fptemp > 0.0) { fptemp = log(fptemp) / log(2.0); /* log2(ST) */ fptemp *= floatx80_to_double(env, ST1); ST1 = double_to_floatx80(env, fptemp); fpop(env); } else { env->fpus &= ~0x4700; env->fpus |= 0x400; } } void helper_fptan(CPUX86State *env) { double fptemp = floatx80_to_double(env, ST0); if ((fptemp > MAXTAN) || (fptemp < -MAXTAN)) { env->fpus |= 0x400; } else { floatx80 one = { 0x8000000000000000LL, 0x3fff }; fptemp = tan(fptemp); ST0 = double_to_floatx80(env, fptemp); fpush(env); ST0 = one; env->fpus &= ~0x400; /* C2 <-- 0 */ /* the above code is for |arg| < 2**52 only */ } } void helper_fpatan(CPUX86State *env) { double fptemp, fpsrcop; fpsrcop = floatx80_to_double(env, ST1); fptemp = floatx80_to_double(env, ST0); ST1 = double_to_floatx80(env, atan2(fpsrcop, fptemp)); fpop(env); } void helper_fxtract(CPUX86State *env) { CPU_LDoubleU temp; temp.d = ST0; if (floatx80_is_zero(ST0)) { /* Easy way to generate -inf and raising division by 0 exception */ floatx80 zero = { 0x0000000000000000LL, 0x0000 }; floatx80 one = { 0x8000000000000000LL, 0x3fff }; ST0 = floatx80_div(floatx80_chs(one), zero, &env->fp_status); fpush(env); ST0 = temp.d; } else { int expdif; expdif = EXPD(temp) - EXPBIAS; /* DP exponent bias */ ST0 = int32_to_floatx80(expdif, &env->fp_status); fpush(env); BIASEXPONENT(temp); ST0 = temp.d; } } void helper_fprem1(CPUX86State *env) { double st0, st1, dblq, fpsrcop, fptemp; CPU_LDoubleU fpsrcop1, fptemp1; int expdif; signed long long int q; st0 = floatx80_to_double(env, ST0); st1 = floatx80_to_double(env, ST1); if (isinf(st0) || isnan(st0) || isnan(st1) || (st1 == 0.0)) { ST0 = double_to_floatx80(env, NAN); /* NaN */ env->fpus &= ~0x4700; /* (C3,C2,C1,C0) <-- 0000 */ return; } fpsrcop = st0; fptemp = st1; fpsrcop1.d = ST0; fptemp1.d = ST1; expdif = EXPD(fpsrcop1) - EXPD(fptemp1); if (expdif < 0) { /* optimisation? taken from the AMD docs */ env->fpus &= ~0x4700; /* (C3,C2,C1,C0) <-- 0000 */ /* ST0 is unchanged */ return; } if (expdif < 53) { dblq = fpsrcop / fptemp; /* round dblq towards nearest integer */ dblq = rint(dblq); st0 = fpsrcop - fptemp * dblq; /* convert dblq to q by truncating towards zero */ if (dblq < 0.0) { q = (signed long long int)(-dblq); } else { q = (signed long long int)dblq; } env->fpus &= ~0x4700; /* (C3,C2,C1,C0) <-- 0000 */ /* (C0,C3,C1) <-- (q2,q1,q0) */ env->fpus |= (q & 0x4) << (8 - 2); /* (C0) <-- q2 */ env->fpus |= (q & 0x2) << (14 - 1); /* (C3) <-- q1 */ env->fpus |= (q & 0x1) << (9 - 0); /* (C1) <-- q0 */ } else { env->fpus |= 0x400; /* C2 <-- 1 */ fptemp = pow(2.0, expdif - 50); fpsrcop = (st0 / st1) / fptemp; /* fpsrcop = integer obtained by chopping */ fpsrcop = (fpsrcop < 0.0) ? -(floor(fabs(fpsrcop))) : floor(fpsrcop); st0 -= (st1 * fpsrcop * fptemp); } ST0 = double_to_floatx80(env, st0); } void helper_fprem(CPUX86State *env) { double st0, st1, dblq, fpsrcop, fptemp; CPU_LDoubleU fpsrcop1, fptemp1; int expdif; signed long long int q; st0 = floatx80_to_double(env, ST0); st1 = floatx80_to_double(env, ST1); if (isinf(st0) || isnan(st0) || isnan(st1) || (st1 == 0.0)) { ST0 = double_to_floatx80(env, NAN); /* NaN */ env->fpus &= ~0x4700; /* (C3,C2,C1,C0) <-- 0000 */ return; } fpsrcop = st0; fptemp = st1; fpsrcop1.d = ST0; fptemp1.d = ST1; expdif = EXPD(fpsrcop1) - EXPD(fptemp1); if (expdif < 0) { /* optimisation? taken from the AMD docs */ env->fpus &= ~0x4700; /* (C3,C2,C1,C0) <-- 0000 */ /* ST0 is unchanged */ return; } if (expdif < 53) { dblq = fpsrcop / fptemp; /* ST0 / ST1 */ /* round dblq towards zero */ dblq = (dblq < 0.0) ? ceil(dblq) : floor(dblq); st0 = fpsrcop - fptemp * dblq; /* fpsrcop is ST0 */ /* convert dblq to q by truncating towards zero */ if (dblq < 0.0) { q = (signed long long int)(-dblq); } else { q = (signed long long int)dblq; } env->fpus &= ~0x4700; /* (C3,C2,C1,C0) <-- 0000 */ /* (C0,C3,C1) <-- (q2,q1,q0) */ env->fpus |= (q & 0x4) << (8 - 2); /* (C0) <-- q2 */ env->fpus |= (q & 0x2) << (14 - 1); /* (C3) <-- q1 */ env->fpus |= (q & 0x1) << (9 - 0); /* (C1) <-- q0 */ } else { int N = 32 + (expdif % 32); /* as per AMD docs */ env->fpus |= 0x400; /* C2 <-- 1 */ fptemp = pow(2.0, (double)(expdif - N)); fpsrcop = (st0 / st1) / fptemp; /* fpsrcop = integer obtained by chopping */ fpsrcop = (fpsrcop < 0.0) ? -(floor(fabs(fpsrcop))) : floor(fpsrcop); st0 -= (st1 * fpsrcop * fptemp); } ST0 = double_to_floatx80(env, st0); } void helper_fyl2xp1(CPUX86State *env) { double fptemp = floatx80_to_double(env, ST0); if ((fptemp + 1.0) > 0.0) { fptemp = log(fptemp + 1.0) / log(2.0); /* log2(ST + 1.0) */ fptemp *= floatx80_to_double(env, ST1); ST1 = double_to_floatx80(env, fptemp); fpop(env); } else { env->fpus &= ~0x4700; env->fpus |= 0x400; } } void helper_fsqrt(CPUX86State *env) { if (floatx80_is_neg(ST0)) { env->fpus &= ~0x4700; /* (C3,C2,C1,C0) <-- 0000 */ env->fpus |= 0x400; } ST0 = floatx80_sqrt(ST0, &env->fp_status); } void helper_fsincos(CPUX86State *env) { double fptemp = floatx80_to_double(env, ST0); if ((fptemp > MAXTAN) || (fptemp < -MAXTAN)) { env->fpus |= 0x400; } else { ST0 = double_to_floatx80(env, sin(fptemp)); fpush(env); ST0 = double_to_floatx80(env, cos(fptemp)); env->fpus &= ~0x400; /* C2 <-- 0 */ /* the above code is for |arg| < 2**63 only */ } } void helper_frndint(CPUX86State *env) { ST0 = floatx80_round_to_int(ST0, &env->fp_status); } void helper_fscale(CPUX86State *env) { if (floatx80_is_any_nan(ST1)) { ST0 = ST1; } else { int n = floatx80_to_int32_round_to_zero(ST1, &env->fp_status); ST0 = floatx80_scalbn(ST0, n, &env->fp_status); } } void helper_fsin(CPUX86State *env) { double fptemp = floatx80_to_double(env, ST0); if ((fptemp > MAXTAN) || (fptemp < -MAXTAN)) { env->fpus |= 0x400; } else { ST0 = double_to_floatx80(env, sin(fptemp)); env->fpus &= ~0x400; /* C2 <-- 0 */ /* the above code is for |arg| < 2**53 only */ } } void helper_fcos(CPUX86State *env) { double fptemp = floatx80_to_double(env, ST0); if ((fptemp > MAXTAN) || (fptemp < -MAXTAN)) { env->fpus |= 0x400; } else { ST0 = double_to_floatx80(env, cos(fptemp)); env->fpus &= ~0x400; /* C2 <-- 0 */ /* the above code is for |arg| < 2**63 only */ } } void helper_fxam_ST0(CPUX86State *env) { CPU_LDoubleU temp; int expdif; temp.d = ST0; env->fpus &= ~0x4700; /* (C3,C2,C1,C0) <-- 0000 */ if (SIGND(temp)) { env->fpus |= 0x200; /* C1 <-- 1 */ } /* XXX: test fptags too */ expdif = EXPD(temp); if (expdif == MAXEXPD) { if (MANTD(temp) == 0x8000000000000000ULL) { env->fpus |= 0x500; /* Infinity */ } else { env->fpus |= 0x100; /* NaN */ } } else if (expdif == 0) { if (MANTD(temp) == 0) { env->fpus |= 0x4000; /* Zero */ } else { env->fpus |= 0x4400; /* Denormal */ } } else { env->fpus |= 0x400; } } static void do_fstenv(CPUX86State *env, target_ulong ptr, int data32, uintptr_t retaddr) { int fpus, fptag, exp, i; uint64_t mant; CPU_LDoubleU tmp; fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11; fptag = 0; for (i = 7; i >= 0; i--) { fptag <<= 2; if (env->fptags[i]) { fptag |= 3; } else { tmp.d = env->fpregs[i].d; exp = EXPD(tmp); mant = MANTD(tmp); if (exp == 0 && mant == 0) { /* zero */ fptag |= 1; } else if (exp == 0 || exp == MAXEXPD || (mant & (1LL << 63)) == 0) { /* NaNs, infinity, denormal */ fptag |= 2; } } } // DFLAG enum: tcg.h, case here to int if (env->hflags & HF_CS64_MASK) { cpu_stl_data(env, ptr, env->fpuc); cpu_stl_data(env, ptr + 4, fpus); cpu_stl_data(env, ptr + 8, fptag); cpu_stl_data(env, ptr + 12, (uint32_t)env->fpip); /* fpip */ cpu_stl_data(env, ptr + 20, 0); /* fpcs */ cpu_stl_data(env, ptr + 24, 0); /* fpoo */ cpu_stl_data(env, ptr + 28, 0); /* fpos */ } else if (data32) { /* 32 bit */ cpu_stl_data_ra(env, ptr, env->fpuc, retaddr); cpu_stl_data_ra(env, ptr + 4, fpus, retaddr); cpu_stl_data_ra(env, ptr + 8, fptag, retaddr); cpu_stl_data_ra(env, ptr + 12, 0, retaddr); /* fpip */ cpu_stl_data_ra(env, ptr + 16, 0, retaddr); /* fpcs */ cpu_stl_data_ra(env, ptr + 20, 0, retaddr); /* fpoo */ cpu_stl_data_ra(env, ptr + 24, 0, retaddr); /* fpos */ } else { /* 16 bit */ cpu_stw_data_ra(env, ptr, env->fpuc, retaddr); cpu_stw_data_ra(env, ptr + 2, fpus, retaddr); cpu_stw_data_ra(env, ptr + 4, fptag, retaddr); cpu_stw_data_ra(env, ptr + 6, 0, retaddr); cpu_stw_data_ra(env, ptr + 8, 0, retaddr); cpu_stw_data_ra(env, ptr + 10, 0, retaddr); cpu_stw_data_ra(env, ptr + 12, 0, retaddr); } } void helper_fstenv(CPUX86State *env, target_ulong ptr, int data32) { do_fstenv(env, ptr, data32, GETPC()); } static void do_fldenv(CPUX86State *env, target_ulong ptr, int data32, uintptr_t retaddr) { int i, fpus, fptag; if (data32) { cpu_set_fpuc(env, cpu_lduw_data_ra(env, ptr, retaddr)); fpus = cpu_lduw_data_ra(env, ptr + 4, retaddr); fptag = cpu_lduw_data_ra(env, ptr + 8, retaddr); } else { cpu_set_fpuc(env, cpu_lduw_data_ra(env, ptr, retaddr)); fpus = cpu_lduw_data_ra(env, ptr + 2, retaddr); fptag = cpu_lduw_data_ra(env, ptr + 4, retaddr); } env->fpstt = (fpus >> 11) & 7; env->fpus = fpus & ~0x3800; for (i = 0; i < 8; i++) { env->fptags[i] = ((fptag & 3) == 3); fptag >>= 2; } } void helper_fldenv(CPUX86State *env, target_ulong ptr, int data32) { do_fldenv(env, ptr, data32, GETPC()); } void helper_fsave(CPUX86State *env, target_ulong ptr, int data32) { floatx80 tmp; int i; do_fstenv(env, ptr, data32, GETPC()); ptr += (14 << data32); for (i = 0; i < 8; i++) { tmp = ST(i); helper_fstt(env, tmp, ptr, GETPC()); ptr += 10; } /* fninit */ env->fpus = 0; env->fpstt = 0; cpu_set_fpuc(env, 0x37f); env->fptags[0] = 1; env->fptags[1] = 1; env->fptags[2] = 1; env->fptags[3] = 1; env->fptags[4] = 1; env->fptags[5] = 1; env->fptags[6] = 1; env->fptags[7] = 1; } void helper_frstor(CPUX86State *env, target_ulong ptr, int data32) { floatx80 tmp; int i; do_fldenv(env, ptr, data32, GETPC()); ptr += (14 << data32); for (i = 0; i < 8; i++) { tmp = helper_fldt(env, ptr, GETPC()); ST(i) = tmp; ptr += 10; } } #if defined(CONFIG_USER_ONLY) void cpu_x86_fsave(CPUX86State *env, target_ulong ptr, int data32) { helper_fsave(env, ptr, data32); } void cpu_x86_frstor(CPUX86State *env, target_ulong ptr, int data32) { helper_frstor(env, ptr, data32); } #endif static void do_xsave_fpu(CPUX86State *env, target_ulong ptr, uintptr_t ra) { int fpus, fptag, i; target_ulong addr; fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11; fptag = 0; for (i = 0; i < 8; i++) { fptag |= (env->fptags[i] << i); } cpu_stw_data_ra(env, ptr, env->fpuc, ra); cpu_stw_data_ra(env, ptr + 2, fpus, ra); cpu_stw_data_ra(env, ptr + 4, fptag ^ 0xff, ra); /* In 32-bit mode this is eip, sel, dp, sel. In 64-bit mode this is rip, rdp. But in either case we don't write actual data, just zeros. */ cpu_stq_data_ra(env, ptr + 0x08, 0, ra); /* eip+sel; rip */ cpu_stq_data_ra(env, ptr + 0x10, 0, ra); /* edp+sel; rdp */ addr = ptr + 0x20; for (i = 0; i < 8; i++) { floatx80 tmp = ST(i); helper_fstt(env, tmp, addr, ra); addr += 16; } } static void do_xsave_mxcsr(CPUX86State *env, target_ulong ptr, uintptr_t ra) { cpu_stl_data_ra(env, ptr + 0x18, env->mxcsr, ra); /* mxcsr */ cpu_stl_data_ra(env, ptr + 0x1c, 0x0000ffff, ra); /* mxcsr_mask */ } static void do_xsave_sse(CPUX86State *env, target_ulong ptr, uintptr_t ra) { int i, nb_xmm_regs; target_ulong addr; if (env->hflags & HF_CS64_MASK) { nb_xmm_regs = 16; } else { nb_xmm_regs = 8; } addr = ptr + 0xa0; for (i = 0; i < nb_xmm_regs; i++) { cpu_stq_data_ra(env, addr, env->xmm_regs[i].ZMM_Q(0), ra); cpu_stq_data_ra(env, addr + 8, env->xmm_regs[i].ZMM_Q(1), ra); addr += 16; } } void helper_fxsave(CPUX86State *env, target_ulong ptr) { uintptr_t ra = GETPC(); /* The operand must be 16 byte aligned */ if (ptr & 0xf) { raise_exception_ra(env, EXCP0D_GPF, ra); } do_xsave_fpu(env, ptr, ra); if (env->cr[4] & CR4_OSFXSR_MASK) { do_xsave_mxcsr(env, ptr, ra); /* Fast FXSAVE leaves out the XMM registers */ if (!(env->efer & MSR_EFER_FFXSR) || (env->hflags & HF_CPL_MASK) || !(env->hflags & HF_LMA_MASK)) { do_xsave_sse(env, ptr, ra); } } } static uint64_t get_xinuse(CPUX86State *env) { /* We don't track XINUSE. We could calculate it here, but it's probably less work to simply indicate all components in use. */ return -1; } void helper_xsave(CPUX86State *env, target_ulong ptr, uint64_t rfbm) { uintptr_t ra = GETPC(); uint64_t old_bv, new_bv; /* The OS must have enabled XSAVE. */ if (!(env->cr[4] & CR4_OSXSAVE_MASK)) { raise_exception_ra(env, EXCP06_ILLOP, ra); } /* The operand must be 64 byte aligned. */ if (ptr & 63) { raise_exception_ra(env, EXCP0D_GPF, ra); } /* Never save anything not enabled by XCR0. */ rfbm &= env->xcr0; if (rfbm & XSTATE_FP) { do_xsave_fpu(env, ptr, ra); } if (rfbm & XSTATE_SSE) { do_xsave_mxcsr(env, ptr, ra); do_xsave_sse(env, ptr, ra); } /* Update the XSTATE_BV field. */ old_bv = cpu_ldq_data_ra(env, ptr + 512, ra); new_bv = (old_bv & ~rfbm) | (get_xinuse(env) & rfbm); cpu_stq_data_ra(env, ptr + 512, new_bv, ra); } static void do_xrstor_fpu(CPUX86State *env, target_ulong ptr, uintptr_t ra) { int i, fpus, fptag; target_ulong addr; cpu_set_fpuc(env, cpu_lduw_data_ra(env, ptr, ra)); fpus = cpu_lduw_data_ra(env, ptr + 2, ra); fptag = cpu_lduw_data_ra(env, ptr + 4, ra); env->fpstt = (fpus >> 11) & 7; env->fpus = fpus & ~0x3800; fptag ^= 0xff; for (i = 0; i < 8; i++) { env->fptags[i] = ((fptag >> i) & 1); } addr = ptr + 0x20; for (i = 0; i < 8; i++) { floatx80 tmp = helper_fldt(env, addr, ra); ST(i) = tmp; addr += 16; } } static void do_xrstor_mxcsr(CPUX86State *env, target_ulong ptr, uintptr_t ra) { cpu_set_mxcsr(env, cpu_ldl_data_ra(env, ptr + 0x18, ra)); } static void do_xrstor_sse(CPUX86State *env, target_ulong ptr, uintptr_t ra) { int i, nb_xmm_regs; target_ulong addr; if (env->hflags & HF_CS64_MASK) { nb_xmm_regs = 16; } else { nb_xmm_regs = 8; } addr = ptr + 0xa0; for (i = 0; i < nb_xmm_regs; i++) { env->xmm_regs[i].ZMM_Q(0) = cpu_ldq_data_ra(env, addr, ra); env->xmm_regs[i].ZMM_Q(1) = cpu_ldq_data_ra(env, addr + 8, ra); addr += 16; } } void helper_fxrstor(CPUX86State *env, target_ulong ptr) { uintptr_t ra = GETPC(); /* The operand must be 16 byte aligned */ if (ptr & 0xf) { raise_exception_ra(env, EXCP0D_GPF, ra); } do_xrstor_fpu(env, ptr, ra); if (env->cr[4] & CR4_OSFXSR_MASK) { do_xrstor_mxcsr(env, ptr, ra); /* Fast FXRSTOR leaves out the XMM registers */ if (!(env->efer & MSR_EFER_FFXSR) || (env->hflags & HF_CPL_MASK) || !(env->hflags & HF_LMA_MASK)) { do_xrstor_sse(env, ptr, ra); } } } void helper_xrstor(CPUX86State *env, target_ulong ptr, uint64_t rfbm) { uintptr_t ra = GETPC(); uint64_t xstate_bv, xcomp_bv0, xcomp_bv1; rfbm &= env->xcr0; /* The OS must have enabled XSAVE. */ if (!(env->cr[4] & CR4_OSXSAVE_MASK)) { raise_exception_ra(env, EXCP06_ILLOP, ra); } /* The operand must be 64 byte aligned. */ if (ptr & 63) { raise_exception_ra(env, EXCP0D_GPF, ra); } xstate_bv = cpu_ldq_data_ra(env, ptr + 512, ra); if ((int64_t)xstate_bv < 0) { /* FIXME: Compact form. */ raise_exception_ra(env, EXCP0D_GPF, ra); } /* Standard form. */ /* The XSTATE field must not set bits not present in XCR0. */ if (xstate_bv & ~env->xcr0) { raise_exception_ra(env, EXCP0D_GPF, ra); } /* The XCOMP field must be zero. */ xcomp_bv0 = cpu_ldq_data_ra(env, ptr + 520, ra); xcomp_bv1 = cpu_ldq_data_ra(env, ptr + 528, ra); if (xcomp_bv0 || xcomp_bv1) { raise_exception_ra(env, EXCP0D_GPF, ra); } if (rfbm & XSTATE_FP) { if (xstate_bv & XSTATE_FP) { do_xrstor_fpu(env, ptr, ra); } else { helper_fninit(env); memset(env->fpregs, 0, sizeof(env->fpregs)); } } if (rfbm & XSTATE_SSE) { /* Note that the standard form of XRSTOR loads MXCSR from memory whether or not the XSTATE_BV bit is set. */ do_xrstor_mxcsr(env, ptr, ra); if (xstate_bv & XSTATE_SSE) { do_xrstor_sse(env, ptr, ra); } else { /* ??? When AVX is implemented, we may have to be more selective in the clearing. */ memset(env->xmm_regs, 0, sizeof(env->xmm_regs)); } } } uint64_t helper_xgetbv(CPUX86State *env, uint32_t ecx) { /* The OS must have enabled XSAVE. */ if (!(env->cr[4] & CR4_OSXSAVE_MASK)) { raise_exception_ra(env, EXCP06_ILLOP, GETPC()); } switch (ecx) { case 0: return env->xcr0; case 1: /* FIXME: #GP if !CPUID.(EAX=0DH,ECX=1):EAX.XG1[bit 2]. */ return env->xcr0 & get_xinuse(env); } raise_exception_ra(env, EXCP0D_GPF, GETPC()); } void helper_xsetbv(CPUX86State *env, uint32_t ecx, uint64_t mask) { uint32_t dummy, ena_lo, ena_hi; uint64_t ena; /* The OS must have enabled XSAVE. */ if (!(env->cr[4] & CR4_OSXSAVE_MASK)) { raise_exception_ra(env, EXCP06_ILLOP, GETPC()); } /* Only XCR0 is defined at present; the FPU may not be disabled. */ if (ecx != 0 || (mask & XSTATE_FP) == 0) { goto do_gpf; } /* Disallow enabling unimplemented features. */ cpu_x86_cpuid(env, 0x0d, 0, &ena_lo, &dummy, &dummy, &ena_hi); ena = ((uint64_t)ena_hi << 32) | ena_lo; if (mask & ~ena) { goto do_gpf; } env->xcr0 = mask; return; do_gpf: raise_exception_ra(env, EXCP0D_GPF, GETPC()); } void cpu_get_fp80(uint64_t *pmant, uint16_t *pexp, floatx80 f) { CPU_LDoubleU temp; temp.d = f; *pmant = temp.l.lower; *pexp = temp.l.upper; } floatx80 cpu_set_fp80(uint64_t mant, uint16_t upper) { CPU_LDoubleU temp; temp.l.upper = upper; temp.l.lower = mant; return temp.d; } /* MMX/SSE */ /* XXX: optimize by storing fptt and fptags in the static cpu state */ #define SSE_DAZ 0x0040 #define SSE_RC_MASK 0x6000 #define SSE_RC_NEAR 0x0000 #define SSE_RC_DOWN 0x2000 #define SSE_RC_UP 0x4000 #define SSE_RC_CHOP 0x6000 #define SSE_FZ 0x8000 void cpu_set_mxcsr(CPUX86State *env, uint32_t mxcsr) { int rnd_type; env->mxcsr = mxcsr; /* set rounding mode */ switch (mxcsr & SSE_RC_MASK) { default: case SSE_RC_NEAR: rnd_type = float_round_nearest_even; break; case SSE_RC_DOWN: rnd_type = float_round_down; break; case SSE_RC_UP: rnd_type = float_round_up; break; case SSE_RC_CHOP: rnd_type = float_round_to_zero; break; } set_float_rounding_mode(rnd_type, &env->sse_status); /* set denormals are zero */ set_flush_inputs_to_zero((mxcsr & SSE_DAZ) ? 1 : 0, &env->sse_status); /* set flush to zero */ set_flush_to_zero((mxcsr & SSE_FZ) ? 1 : 0, &env->fp_status); } void cpu_set_fpuc(CPUX86State *env, uint16_t val) { env->fpuc = val; update_fp_status(env); } void helper_ldmxcsr(CPUX86State *env, uint32_t val) { cpu_set_mxcsr(env, val); } void helper_enter_mmx(CPUX86State *env) { env->fpstt = 0; *(uint32_t *)(env->fptags) = 0; *(uint32_t *)(env->fptags + 4) = 0; } void helper_emms(CPUX86State *env) { /* set to empty state */ *(uint32_t *)(env->fptags) = 0x01010101; *(uint32_t *)(env->fptags + 4) = 0x01010101; } /* XXX: suppress */ void helper_movq(CPUX86State *env, void *d, void *s) { *(uint64_t *)d = *(uint64_t *)s; } #define SHIFT 0 #include "ops_sse.h" #define SHIFT 1 #include "ops_sse.h"