/*
* i386 CPUID helper functions
*
* Copyright (c) 2003 Fabrice Bellard
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see .
*/
#include "qemu/osdep.h"
#include "qemu/cutils.h"
#include "unicorn/platform.h"
#include "uc_priv.h"
#include "cpu.h"
#include "exec/exec-all.h"
#include "sysemu/cpus.h"
#include "qapi/error.h"
#include "qapi/qmp/qdict.h"
#include "qapi/qmp/qerror.h"
#include "qapi/qapi-visit.h"
#include "qapi/visitor.h"
#include "hw/hw.h"
#include "sysemu/sysemu.h"
#include "topology.h"
#include "hw/cpu/icc_bus.h"
#ifndef CONFIG_USER_ONLY
#include "exec/address-spaces.h"
#include "hw/i386/apic_internal.h"
#endif
/* Helpers for building CPUID[2] descriptors: */
struct CPUID2CacheDescriptorInfo {
enum CacheType type;
int level;
int size;
int line_size;
int associativity;
};
#define KiB 1024
#define MiB (1024 * 1024)
/*
* Known CPUID 2 cache descriptors.
* From Intel SDM Volume 2A, CPUID instruction
*/
struct CPUID2CacheDescriptorInfo cpuid2_cache_descriptors[] = {
[0x06] = { .level = 1, .type = ICACHE, .size = 8 * KiB,
.associativity = 4, .line_size = 32, },
[0x08] = { .level = 1, .type = ICACHE, .size = 16 * KiB,
.associativity = 4, .line_size = 32, },
[0x09] = { .level = 1, .type = ICACHE, .size = 32 * KiB,
.associativity = 4, .line_size = 64, },
[0x0A] = { .level = 1, .type = DCACHE, .size = 8 * KiB,
.associativity = 2, .line_size = 32, },
[0x0C] = { .level = 1, .type = DCACHE, .size = 16 * KiB,
.associativity = 4, .line_size = 32, },
[0x0D] = { .level = 1, .type = DCACHE, .size = 16 * KiB,
.associativity = 4, .line_size = 64, },
[0x0E] = { .level = 1, .type = DCACHE, .size = 24 * KiB,
.associativity = 6, .line_size = 64, },
[0x1D] = { .level = 2, .type = UNIFIED_CACHE, .size = 128 * KiB,
.associativity = 2, .line_size = 64, },
[0x21] = { .level = 2, .type = UNIFIED_CACHE, .size = 256 * KiB,
.associativity = 8, .line_size = 64, },
/* lines per sector is not supported cpuid2_cache_descriptor(),
* so descriptors 0x22, 0x23 are not included
*/
[0x24] = { .level = 2, .type = UNIFIED_CACHE, .size = 1 * MiB,
.associativity = 16, .line_size = 64, },
/* lines per sector is not supported cpuid2_cache_descriptor(),
* so descriptors 0x25, 0x20 are not included
*/
[0x2C] = { .level = 1, .type = DCACHE, .size = 32 * KiB,
.associativity = 8, .line_size = 64, },
[0x30] = { .level = 1, .type = ICACHE, .size = 32 * KiB,
.associativity = 8, .line_size = 64, },
[0x41] = { .level = 2, .type = UNIFIED_CACHE, .size = 128 * KiB,
.associativity = 4, .line_size = 32, },
[0x42] = { .level = 2, .type = UNIFIED_CACHE, .size = 256 * KiB,
.associativity = 4, .line_size = 32, },
[0x43] = { .level = 2, .type = UNIFIED_CACHE, .size = 512 * KiB,
.associativity = 4, .line_size = 32, },
[0x44] = { .level = 2, .type = UNIFIED_CACHE, .size = 1 * MiB,
.associativity = 4, .line_size = 32, },
[0x45] = { .level = 2, .type = UNIFIED_CACHE, .size = 2 * MiB,
.associativity = 4, .line_size = 32, },
[0x46] = { .level = 3, .type = UNIFIED_CACHE, .size = 4 * MiB,
.associativity = 4, .line_size = 64, },
[0x47] = { .level = 3, .type = UNIFIED_CACHE, .size = 8 * MiB,
.associativity = 8, .line_size = 64, },
[0x48] = { .level = 2, .type = UNIFIED_CACHE, .size = 3 * MiB,
.associativity = 12, .line_size = 64, },
/* Descriptor 0x49 depends on CPU family/model, so it is not included */
[0x4A] = { .level = 3, .type = UNIFIED_CACHE, .size = 6 * MiB,
.associativity = 12, .line_size = 64, },
[0x4B] = { .level = 3, .type = UNIFIED_CACHE, .size = 8 * MiB,
.associativity = 16, .line_size = 64, },
[0x4C] = { .level = 3, .type = UNIFIED_CACHE, .size = 12 * MiB,
.associativity = 12, .line_size = 64, },
[0x4D] = { .level = 3, .type = UNIFIED_CACHE, .size = 16 * MiB,
.associativity = 16, .line_size = 64, },
[0x4E] = { .level = 2, .type = UNIFIED_CACHE, .size = 6 * MiB,
.associativity = 24, .line_size = 64, },
[0x60] = { .level = 1, .type = DCACHE, .size = 16 * KiB,
.associativity = 8, .line_size = 64, },
[0x66] = { .level = 1, .type = DCACHE, .size = 8 * KiB,
.associativity = 4, .line_size = 64, },
[0x67] = { .level = 1, .type = DCACHE, .size = 16 * KiB,
.associativity = 4, .line_size = 64, },
[0x68] = { .level = 1, .type = DCACHE, .size = 32 * KiB,
.associativity = 4, .line_size = 64, },
[0x78] = { .level = 2, .type = UNIFIED_CACHE, .size = 1 * MiB,
.associativity = 4, .line_size = 64, },
/* lines per sector is not supported cpuid2_cache_descriptor(),
* so descriptors 0x79, 0x7A, 0x7B, 0x7C are not included.
*/
[0x7D] = { .level = 2, .type = UNIFIED_CACHE, .size = 2 * MiB,
.associativity = 8, .line_size = 64, },
[0x7F] = { .level = 2, .type = UNIFIED_CACHE, .size = 512 * KiB,
.associativity = 2, .line_size = 64, },
[0x80] = { .level = 2, .type = UNIFIED_CACHE, .size = 512 * KiB,
.associativity = 8, .line_size = 64, },
[0x82] = { .level = 2, .type = UNIFIED_CACHE, .size = 256 * KiB,
.associativity = 8, .line_size = 32, },
[0x83] = { .level = 2, .type = UNIFIED_CACHE, .size = 512 * KiB,
.associativity = 8, .line_size = 32, },
[0x84] = { .level = 2, .type = UNIFIED_CACHE, .size = 1 * MiB,
.associativity = 8, .line_size = 32, },
[0x85] = { .level = 2, .type = UNIFIED_CACHE, .size = 2 * MiB,
.associativity = 8, .line_size = 32, },
[0x86] = { .level = 2, .type = UNIFIED_CACHE, .size = 512 * KiB,
.associativity = 4, .line_size = 64, },
[0x87] = { .level = 2, .type = UNIFIED_CACHE, .size = 1 * MiB,
.associativity = 8, .line_size = 64, },
[0xD0] = { .level = 3, .type = UNIFIED_CACHE, .size = 512 * KiB,
.associativity = 4, .line_size = 64, },
[0xD1] = { .level = 3, .type = UNIFIED_CACHE, .size = 1 * MiB,
.associativity = 4, .line_size = 64, },
[0xD2] = { .level = 3, .type = UNIFIED_CACHE, .size = 2 * MiB,
.associativity = 4, .line_size = 64, },
[0xD6] = { .level = 3, .type = UNIFIED_CACHE, .size = 1 * MiB,
.associativity = 8, .line_size = 64, },
[0xD7] = { .level = 3, .type = UNIFIED_CACHE, .size = 2 * MiB,
.associativity = 8, .line_size = 64, },
[0xD8] = { .level = 3, .type = UNIFIED_CACHE, .size = 4 * MiB,
.associativity = 8, .line_size = 64, },
[0xDC] = { .level = 3, .type = UNIFIED_CACHE, .size = 1.5 * MiB,
.associativity = 12, .line_size = 64, },
[0xDD] = { .level = 3, .type = UNIFIED_CACHE, .size = 3 * MiB,
.associativity = 12, .line_size = 64, },
[0xDE] = { .level = 3, .type = UNIFIED_CACHE, .size = 6 * MiB,
.associativity = 12, .line_size = 64, },
[0xE2] = { .level = 3, .type = UNIFIED_CACHE, .size = 2 * MiB,
.associativity = 16, .line_size = 64, },
[0xE3] = { .level = 3, .type = UNIFIED_CACHE, .size = 4 * MiB,
.associativity = 16, .line_size = 64, },
[0xE4] = { .level = 3, .type = UNIFIED_CACHE, .size = 8 * MiB,
.associativity = 16, .line_size = 64, },
[0xEA] = { .level = 3, .type = UNIFIED_CACHE, .size = 12 * MiB,
.associativity = 24, .line_size = 64, },
[0xEB] = { .level = 3, .type = UNIFIED_CACHE, .size = 18 * MiB,
.associativity = 24, .line_size = 64, },
[0xEC] = { .level = 3, .type = UNIFIED_CACHE, .size = 24 * MiB,
.associativity = 24, .line_size = 64, },
};
/*
* "CPUID leaf 2 does not report cache descriptor information,
* use CPUID leaf 4 to query cache parameters"
*/
#define CACHE_DESCRIPTOR_UNAVAILABLE 0xFF
/*
* Return a CPUID 2 cache descriptor for a given cache.
* If no known descriptor is found, return CACHE_DESCRIPTOR_UNAVAILABLE
*/
static uint8_t cpuid2_cache_descriptor(CPUCacheInfo *cache)
{
int i;
assert(cache->size > 0);
assert(cache->level > 0);
assert(cache->line_size > 0);
assert(cache->associativity > 0);
for (i = 0; i < ARRAY_SIZE(cpuid2_cache_descriptors); i++) {
struct CPUID2CacheDescriptorInfo *d = &cpuid2_cache_descriptors[i];
if (d->level == cache->level && d->type == cache->type &&
d->size == cache->size && d->line_size == cache->line_size &&
d->associativity == cache->associativity) {
return i;
}
}
return CACHE_DESCRIPTOR_UNAVAILABLE;
}
/* CPUID Leaf 4 constants: */
/* EAX: */
#define CACHE_TYPE_D 1
#define CACHE_TYPE_I 2
#define CACHE_TYPE_UNIFIED 3
#define CACHE_LEVEL(l) (l << 5)
#define CACHE_SELF_INIT_LEVEL (1 << 8)
/* EDX: */
#define CACHE_NO_INVD_SHARING (1 << 0)
#define CACHE_INCLUSIVE (1 << 1)
#define CACHE_COMPLEX_IDX (1 << 2)
/* Encode CacheType for CPUID[4].EAX */
#define CACHE_TYPE(t) (((t) == DCACHE) ? CACHE_TYPE_D : \
((t) == ICACHE) ? CACHE_TYPE_I : \
((t) == UNIFIED_CACHE) ? CACHE_TYPE_UNIFIED : \
0 /* Invalid value */)
/* Encode cache info for CPUID[4] */
static void encode_cache_cpuid4(CPUCacheInfo *cache,
int num_apic_ids, int num_cores,
uint32_t *eax, uint32_t *ebx,
uint32_t *ecx, uint32_t *edx)
{
assert(cache->size == cache->line_size * cache->associativity *
cache->partitions * cache->sets);
assert(num_apic_ids > 0);
*eax = CACHE_TYPE(cache->type) |
CACHE_LEVEL(cache->level) |
(cache->self_init ? CACHE_SELF_INIT_LEVEL : 0) |
((num_cores - 1) << 26) |
((num_apic_ids - 1) << 14);
assert(cache->line_size > 0);
assert(cache->partitions > 0);
assert(cache->associativity > 0);
/* We don't implement fully-associative caches */
assert(cache->associativity < cache->sets);
*ebx = (cache->line_size - 1) |
((cache->partitions - 1) << 12) |
((cache->associativity - 1) << 22);
assert(cache->sets > 0);
*ecx = cache->sets - 1;
*edx = (cache->no_invd_sharing ? CACHE_NO_INVD_SHARING : 0) |
(cache->inclusive ? CACHE_INCLUSIVE : 0) |
(cache->complex_indexing ? CACHE_COMPLEX_IDX : 0);
}
/* Encode cache info for CPUID[0x80000005].ECX or CPUID[0x80000005].EDX */
static uint32_t encode_cache_cpuid80000005(CPUCacheInfo *cache)
{
assert(cache->size % 1024 == 0);
assert(cache->lines_per_tag > 0);
assert(cache->associativity > 0);
assert(cache->line_size > 0);
return ((cache->size / 1024) << 24) | (cache->associativity << 16) |
(cache->lines_per_tag << 8) | (cache->line_size);
}
#define ASSOC_FULL 0xFF
/* AMD associativity encoding used on CPUID Leaf 0x80000006: */
#define AMD_ENC_ASSOC(a) (a <= 1 ? a : \
a == 2 ? 0x2 : \
a == 4 ? 0x4 : \
a == 8 ? 0x6 : \
a == 16 ? 0x8 : \
a == 32 ? 0xA : \
a == 48 ? 0xB : \
a == 64 ? 0xC : \
a == 96 ? 0xD : \
a == 128 ? 0xE : \
a == ASSOC_FULL ? 0xF : \
0 /* invalid value */)
/*
* Encode cache info for CPUID[0x80000006].ECX and CPUID[0x80000006].EDX
* @l3 can be NULL.
*/
static void encode_cache_cpuid80000006(CPUCacheInfo *l2,
CPUCacheInfo *l3,
uint32_t *ecx, uint32_t *edx)
{
assert(l2->size % 1024 == 0);
assert(l2->associativity > 0);
assert(l2->lines_per_tag > 0);
assert(l2->line_size > 0);
*ecx = ((l2->size / 1024) << 16) |
(AMD_ENC_ASSOC(l2->associativity) << 12) |
(l2->lines_per_tag << 8) | (l2->line_size);
if (l3) {
assert(l3->size % (512 * 1024) == 0);
assert(l3->associativity > 0);
assert(l3->lines_per_tag > 0);
assert(l3->line_size > 0);
*edx = ((l3->size / (512 * 1024)) << 18) |
(AMD_ENC_ASSOC(l3->associativity) << 12) |
(l3->lines_per_tag << 8) | (l3->line_size);
} else {
*edx = 0;
}
}
/*
* Definitions of the hardcoded cache entries we expose:
* These are legacy cache values. If there is a need to change any
* of these values please use builtin_x86_defs
*/
/* L1 data cache: */
static CPUCacheInfo legacy_l1d_cache = {
DCACHE,
1,
32 * KiB,
64,
8,
1,
64,
0,
1,
true,
};
/*FIXME: CPUID leaf 0x80000005 is inconsistent with leaves 2 & 4 */
static CPUCacheInfo legacy_l1d_cache_amd = {
DCACHE,
1,
64 * KiB,
64,
2,
1,
512,
1,
1,
true,
};
/* L1 instruction cache: */
static CPUCacheInfo legacy_l1i_cache = {
ICACHE,
1,
32 * KiB,
64,
8,
1,
64,
true,
};
/*FIXME: CPUID leaf 0x80000005 is inconsistent with leaves 2 & 4 */
static CPUCacheInfo legacy_l1i_cache_amd = {
ICACHE,
1,
64 * KiB,
64,
2,
1,
512,
1,
1,
true,
};
/* Level 2 unified cache: */
static CPUCacheInfo legacy_l2_cache = {
UNIFIED_CACHE,
2,
4 * MiB,
64,
16,
1,
4096,
0,
1,
true,
};
/*FIXME: CPUID leaf 2 descriptor is inconsistent with CPUID leaf 4 */
static CPUCacheInfo legacy_l2_cache_cpuid2 = {
UNIFIED_CACHE,
2,
2 * MiB,
64,
8,
};
/*FIXME: CPUID leaf 0x80000006 is inconsistent with leaves 2 & 4 */
static CPUCacheInfo legacy_l2_cache_amd = {
UNIFIED_CACHE,
2,
512 * KiB,
64,
16,
1,
512,
1,
};
/* Level 3 unified cache: */
static CPUCacheInfo legacy_l3_cache = {
UNIFIED_CACHE,
3,
16 * MiB,
64,
16,
1,
16384,
1,
true,
false,
true,
true,
};
/* TLB definitions: */
#define L1_DTLB_2M_ASSOC 1
#define L1_DTLB_2M_ENTRIES 255
#define L1_DTLB_4K_ASSOC 1
#define L1_DTLB_4K_ENTRIES 255
#define L1_ITLB_2M_ASSOC 1
#define L1_ITLB_2M_ENTRIES 255
#define L1_ITLB_4K_ASSOC 1
#define L1_ITLB_4K_ENTRIES 255
#define L2_DTLB_2M_ASSOC 0 /* disabled */
#define L2_DTLB_2M_ENTRIES 0 /* disabled */
#define L2_DTLB_4K_ASSOC 4
#define L2_DTLB_4K_ENTRIES 512
#define L2_ITLB_2M_ASSOC 0 /* disabled */
#define L2_ITLB_2M_ENTRIES 0 /* disabled */
#define L2_ITLB_4K_ASSOC 4
#define L2_ITLB_4K_ENTRIES 512
/* CPUID Leaf 0x14 constants: */
#define INTEL_PT_MAX_SUBLEAF 0x1
/*
* bit[00]: IA32_RTIT_CTL.CR3 filter can be set to 1 and IA32_RTIT_CR3_MATCH
* MSR can be accessed;
* bit[01]: Support Configurable PSB and Cycle-Accurate Mode;
* bit[02]: Support IP Filtering, TraceStop filtering, and preservation
* of Intel PT MSRs across warm reset;
* bit[03]: Support MTC timing packet and suppression of COFI-based packets;
*/
#define INTEL_PT_MINIMAL_EBX 0xf
/*
* bit[00]: Tracing can be enabled with IA32_RTIT_CTL.ToPA = 1 and
* IA32_RTIT_OUTPUT_BASE and IA32_RTIT_OUTPUT_MASK_PTRS MSRs can be
* accessed;
* bit[01]: ToPA tables can hold any number of output entries, up to the
* maximum allowed by the MaskOrTableOffset field of
* IA32_RTIT_OUTPUT_MASK_PTRS;
* bit[02]: Support Single-Range Output scheme;
*/
#define INTEL_PT_MINIMAL_ECX 0x7
/* generated packets which contain IP payloads have LIP values */
#define INTEL_PT_IP_LIP (1 << 31)
#define INTEL_PT_ADDR_RANGES_NUM 0x2 /* Number of configurable address ranges */
#define INTEL_PT_ADDR_RANGES_NUM_MASK 0x3
#define INTEL_PT_MTC_BITMAP (0x0249 << 16) /* Support ART(0,3,6,9) */
#define INTEL_PT_CYCLE_BITMAP 0x1fff /* Support 0,2^(0~11) */
#define INTEL_PT_PSB_BITMAP (0x003f << 16) /* Support 2K,4K,8K,16K,32K,64K */
void x86_cpu_register_types(void *);
static void x86_cpu_vendor_words2str(char *dst, uint32_t vendor1,
uint32_t vendor2, uint32_t vendor3)
{
int i;
for (i = 0; i < 4; i++) {
dst[i] = vendor1 >> (8 * i);
dst[i + 4] = vendor2 >> (8 * i);
dst[i + 8] = vendor3 >> (8 * i);
}
dst[CPUID_VENDOR_SZ] = '\0';
}
#define I486_FEATURES (CPUID_FP87 | CPUID_VME | CPUID_PSE)
#define PENTIUM_FEATURES (I486_FEATURES | CPUID_DE | CPUID_TSC | \
CPUID_MSR | CPUID_MCE | CPUID_CX8 | CPUID_MMX | CPUID_APIC)
#define PENTIUM2_FEATURES (PENTIUM_FEATURES | CPUID_PAE | CPUID_SEP | \
CPUID_MTRR | CPUID_PGE | CPUID_MCA | CPUID_CMOV | CPUID_PAT | \
CPUID_PSE36 | CPUID_FXSR)
#define PENTIUM3_FEATURES (PENTIUM2_FEATURES | CPUID_SSE)
#define PPRO_FEATURES (CPUID_FP87 | CPUID_DE | CPUID_PSE | CPUID_TSC | \
CPUID_MSR | CPUID_MCE | CPUID_CX8 | CPUID_PGE | CPUID_CMOV | \
CPUID_PAT | CPUID_FXSR | CPUID_MMX | CPUID_SSE | CPUID_SSE2 | \
CPUID_PAE | CPUID_SEP | CPUID_APIC)
#define TCG_FEATURES (CPUID_FP87 | CPUID_PSE | CPUID_TSC | CPUID_MSR | \
CPUID_PAE | CPUID_MCE | CPUID_CX8 | CPUID_APIC | CPUID_SEP | \
CPUID_MTRR | CPUID_PGE | CPUID_MCA | CPUID_CMOV | CPUID_PAT | \
CPUID_PSE36 | CPUID_CLFLUSH | CPUID_ACPI | CPUID_MMX | \
CPUID_FXSR | CPUID_SSE | CPUID_SSE2 | CPUID_SS | CPUID_DE)
/* partly implemented:
CPUID_MTRR, CPUID_MCA, CPUID_CLFLUSH (needed for Win64) */
/* missing:
CPUID_VME, CPUID_DTS, CPUID_SS, CPUID_HT, CPUID_TM, CPUID_PBE */
#define TCG_EXT_FEATURES (CPUID_EXT_SSE3 | CPUID_EXT_PCLMULQDQ | \
CPUID_EXT_MONITOR | CPUID_EXT_SSSE3 | CPUID_EXT_CX16 | \
CPUID_EXT_SSE41 | CPUID_EXT_SSE42 | CPUID_EXT_POPCNT | \
CPUID_EXT_XSAVE | /* CPUID_EXT_OSXSAVE is dynamic */ \
CPUID_EXT_MOVBE | CPUID_EXT_AES | CPUID_EXT_HYPERVISOR)
/* missing:
CPUID_EXT_DTES64, CPUID_EXT_DSCPL, CPUID_EXT_VMX, CPUID_EXT_SMX,
CPUID_EXT_EST, CPUID_EXT_TM2, CPUID_EXT_CID, CPUID_EXT_FMA,
CPUID_EXT_XTPR, CPUID_EXT_PDCM, CPUID_EXT_PCID, CPUID_EXT_DCA,
CPUID_EXT_X2APIC, CPUID_EXT_TSC_DEADLINE_TIMER, CPUID_EXT_AVX,
CPUID_EXT_F16C, CPUID_EXT_RDRAND */
#ifdef TARGET_X86_64
#define TCG_EXT2_X86_64_FEATURES (CPUID_EXT2_SYSCALL | CPUID_EXT2_LM)
#else
#define TCG_EXT2_X86_64_FEATURES 0
#endif
#define TCG_EXT2_FEATURES ((TCG_FEATURES & CPUID_EXT2_AMD_ALIASES) | \
CPUID_EXT2_NX | CPUID_EXT2_MMXEXT | CPUID_EXT2_RDTSCP | \
CPUID_EXT2_3DNOW | CPUID_EXT2_3DNOWEXT | CPUID_EXT2_PDPE1GB | \
TCG_EXT2_X86_64_FEATURES)
#define TCG_EXT3_FEATURES (CPUID_EXT3_LAHF_LM | CPUID_EXT3_SVM | \
CPUID_EXT3_CR8LEG | CPUID_EXT3_ABM | CPUID_EXT3_SSE4A)
#define TCG_EXT4_FEATURES 0
#define TCG_SVM_FEATURES 0
#define TCG_KVM_FEATURES 0
#define TCG_7_0_EBX_FEATURES (CPUID_7_0_EBX_SMEP | CPUID_7_0_EBX_SMAP | \
CPUID_7_0_EBX_BMI1 | CPUID_7_0_EBX_BMI2 | CPUID_7_0_EBX_ADX | \
CPUID_7_0_EBX_PCOMMIT | CPUID_7_0_EBX_CLFLUSHOPT | \
CPUID_7_0_EBX_CLWB | CPUID_7_0_EBX_MPX | CPUID_7_0_EBX_FSGSBASE | \
CPUID_7_0_EBX_ERMS)
/* missing:
CPUID_7_0_EBX_HLE, CPUID_7_0_EBX_AVX2,
CPUID_7_0_EBX_INVPCID, CPUID_7_0_EBX_RTM,
CPUID_7_0_EBX_RDSEED */
#define TCG_7_0_ECX_FEATURES (CPUID_7_0_ECX_PKU | CPUID_7_0_ECX_OSPKE | \
CPUID_7_0_ECX_LA57)
#define TCG_7_0_EDX_FEATURES 0
#define TCG_APM_FEATURES 0
#define TCG_6_EAX_FEATURES CPUID_6_EAX_ARAT
#define TCG_XSAVE_FEATURES (CPUID_XSAVE_XSAVEOPT | CPUID_XSAVE_XGETBV1)
/* missing:
CPUID_XSAVE_XSAVEC, CPUID_XSAVE_XSAVES */
typedef struct FeatureWordInfo {
/* feature flags names are taken from "Intel Processor Identification and
* the CPUID Instruction" and AMD's "CPUID Specification".
* In cases of disagreement between feature naming conventions,
* aliases may be added.
*/
const char *feat_names[32];
uint32_t cpuid_eax; /* Input EAX for CPUID */
bool cpuid_needs_ecx; /* CPUID instruction uses ECX as input */
uint32_t cpuid_ecx; /* Input ECX value for CPUID */
int cpuid_reg; /* output register (R_* constant) */
uint32_t tcg_features; /* Feature flags supported by TCG */
uint32_t unmigratable_flags; /* Feature flags known to be unmigratable */
uint32_t migratable_flags; /* Feature flags known to be migratable */
} FeatureWordInfo;
static FeatureWordInfo feature_word_info[FEATURE_WORDS] = {
// FEAT_1_EDX
{
{
"fpu", "vme", "de", "pse",
"tsc", "msr", "pae", "mce",
"cx8", "apic", NULL, "sep",
"mtrr", "pge", "mca", "cmov",
"pat", "pse36", "pn" /* Intel psn */, "clflush" /* Intel clfsh */,
NULL, "ds" /* Intel dts */, "acpi", "mmx",
"fxsr", "sse", "sse2", "ss",
"ht" /* Intel htt */, "tm", "ia64", "pbe",
},
1,
false,0,
R_EDX,
TCG_FEATURES,
},
// FEAT_1_ECX
{
{
"pni" /* Intel,AMD sse3 */, "pclmulqdq", "dtes64", "monitor",
"ds-cpl", "vmx", "smx", "est",
"tm2", "ssse3", "cid", NULL,
"fma", "cx16", "xtpr", "pdcm",
NULL, "pcid", "dca", "sse4.1",
"sse4.2", "x2apic", "movbe", "popcnt",
"tsc-deadline", "aes", "xsave", "osxsave",
"avx", "f16c", "rdrand", "hypervisor",
},
1,
false,0,
R_ECX,
TCG_EXT_FEATURES,
},
// FEAT_7_0_EBX
{
{
"fsgsbase", "tsc-adjust", NULL, "bmi1",
"hle", "avx2", NULL, "smep",
"bmi2", "erms", "invpcid", "rtm",
NULL, NULL, "mpx", NULL,
"avx512f", "avx512dq", "rdseed", "adx",
"smap", "avx512ifma", "pcommit", "clflushopt",
"clwb", "intel-pt", "avx512pf", "avx512er",
"avx512cd", "sha-ni", "avx512bw", "avx512vl",
},
7,
true, 0,
R_EBX,
TCG_7_0_EBX_FEATURES,
},
// FEAT_7_0_ECX
{
{
NULL, "avx512vbmi", "umip", "pku",
"ospke", NULL, "avx512vbmi2", NULL,
"gfni", "vaes", "vpclmulqdq", "avx512vnni",
"avx512bitalg", NULL, "avx512-vpopcntdq", NULL,
"la57", NULL, NULL, NULL,
NULL, NULL, "rdpid", NULL,
NULL, "cldemote", NULL, NULL,
NULL, NULL, NULL, NULL,
},
7,
true, 0,
R_ECX,
TCG_7_0_ECX_FEATURES,
},
// FEAT_7_0_EDX
{
{
NULL, NULL, "avx512-4vnniw", "avx512-4fmaps",
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, "spec-ctrl", NULL,
NULL, NULL, NULL, "ssbd",
},
7,
true, 0,
R_EDX,
TCG_7_0_EDX_FEATURES,
},
/* Feature names that are already defined on feature_name[] but
* are set on CPUID[8000_0001].EDX on AMD CPUs don't have their
* names on feat_names below. They are copied automatically
* to features[FEAT_8000_0001_EDX] if and only if CPU vendor is AMD.
*/
// FEAT_8000_0001_EDX
{
{
NULL /* fpu */, NULL /* vme */, NULL /* de */, NULL /* pse */,
NULL /* tsc */, NULL /* msr */, NULL /* pae */, NULL /* mce */,
NULL /* cx8 */, NULL /* apic */, NULL, "syscall",
NULL /* mtrr */, NULL /* pge */, NULL /* mca */, NULL /* cmov */,
NULL /* pat */, NULL /* pse36 */, NULL, NULL /* Linux mp */,
"nx", NULL, "mmxext", NULL /* mmx */,
NULL /* fxsr */, "fxsr-opt", "pdpe1gb", "rdtscp",
NULL, "lm", "3dnowext", "3dnow",
},
0x80000001,
false,0,
R_EDX,
TCG_EXT2_FEATURES,
},
// FEAT_8000_0001_ECX
{
{
"lahf-lm", "cmp_legacy", "svm", "extapic",
"cr8legacy", "abm", "sse4a", "misalignsse",
"3dnowprefetch", "osvw", "ibs", "xop",
"skinit", "wdt", NULL, "lwp",
"fma4", "tce", NULL, "nodeid-msr",
NULL, "tbm", "topoext", "perfctr-core",
"perfctr_nb", NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
},
0x80000001,
false,0,
R_ECX,
TCG_EXT3_FEATURES,
},
// FEAT_8000_0007_EDX
{
{
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
"invtsc", NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
},
0x80000007,
false,0,
R_EDX,
TCG_APM_FEATURES,
CPUID_APM_INVTSC,
},
// FEAT_8000_0008_EBX
{
{
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
"ibpb", NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, "virt-ssbd", NULL, NULL,
NULL, NULL, NULL, NULL,
},
0x80000008,
false,0,
R_EBX,
0,
0,
},
// FEAT_C000_0001_EDX
{
{
NULL, NULL, "xstore", "xstore-en",
NULL, NULL, "xcrypt", "xcrypt-en",
"ace2", "ace2-en", "phe", "phe-en",
"pmm", "pmm-en", NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
},
0xC0000001,
false,0,
R_EDX,
TCG_EXT4_FEATURES,
},
// FEAT_KVM
{
{NULL},
/* Unicorn: commented out
{
"kvmclock", "kvm-nopiodelay", "kvm-mmu", "kvmclock",
"kvm-asyncpf", "kvm-steal-time", "kvm-pv-eoi", "kvm-pv-unhalt",
NULL, "kvm-pv-tlb-flush", NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
"kvmclock-stable-bit", NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
},
KVM_CPUID_FEATURES,
false, 0,
R_EAX,
TCG_KVM_FEATURES,*/
},
// FEAT_KVM_HINTS
{
{NULL},
/* Unicorn: commented out
{
"kvm-hint-dedicated", NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
},
KVM_CPUID_FEATURES,
false, 0,
R_EDX,
TCG_KVM_FEATURES,*/
},
// FEAT_HYPERV_EAX
{
{
NULL /* hv_msr_vp_runtime_access */, NULL /* hv_msr_time_refcount_access */,
NULL /* hv_msr_synic_access */, NULL /* hv_msr_stimer_access */,
NULL /* hv_msr_apic_access */, NULL /* hv_msr_hypercall_access */,
NULL /* hv_vpindex_access */, NULL /* hv_msr_reset_access */,
NULL /* hv_msr_stats_access */, NULL /* hv_reftsc_access */,
NULL /* hv_msr_idle_access */, NULL /* hv_msr_frequency_access */,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
},
0x40000003,
false, 0,
R_EAX,
},
// FEAT_HYPERV_EBX
{
{
NULL /* hv_create_partitions */, NULL /* hv_access_partition_id */,
NULL /* hv_access_memory_pool */, NULL /* hv_adjust_message_buffers */,
NULL /* hv_post_messages */, NULL /* hv_signal_events */,
NULL /* hv_create_port */, NULL /* hv_connect_port */,
NULL /* hv_access_stats */, NULL, NULL, NULL /* hv_debugging */,
NULL /* hv_cpu_power_management */, NULL /* hv_configure_profiler */,
NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
},
0x40000003,
false, 0,
R_EBX,
},
// FEAT_HYPERV_EDX
{
{
NULL /* hv_mwait */, NULL /* hv_guest_debugging */,
NULL /* hv_perf_monitor */, NULL /* hv_cpu_dynamic_part */,
NULL /* hv_hypercall_params_xmm */, NULL /* hv_guest_idle_state */,
NULL, NULL,
NULL, NULL, NULL /* hv_guest_crash_msr */, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
},
0x40000003,
false, 0,
R_EDX,
},
// FEAT_SVM
{
{
"npt", "lbrv", "svm-lock", "nrip-save",
"tsc-scale", "vmcb-clean", "flushbyasid", "decodeassists",
NULL, NULL, "pause-filter", NULL,
"pfthreshold", NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
},
0x8000000A,
false, 0,
R_EDX,
0,
TCG_SVM_FEATURES,
},
// FEAT_XSAVE
{
{
"xsaveopt", "xsavec", "xgetbv1", "xsaves",
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
},
0xd,
true,1,
R_EAX,
0,
TCG_XSAVE_FEATURES,
},
// FEAT_ARAT
{
{
NULL, NULL, "arat", NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
},
6,
false, 0,
R_EAX,
TCG_6_EAX_FEATURES,
},
// FEAT_XSAVE_COMP_LO
{
{NULL},
0xD,
true, 0,
R_EAX,
~0U,
0,
XSTATE_FP_MASK | XSTATE_SSE_MASK |
XSTATE_YMM_MASK | XSTATE_BNDREGS_MASK | XSTATE_BNDCSR_MASK |
XSTATE_OPMASK_MASK | XSTATE_ZMM_Hi256_MASK | XSTATE_Hi16_ZMM_MASK |
XSTATE_PKRU_MASK,
},
// FEAT_XSAVE_COMP_HI
{
{NULL},
0xD,
true, 0,
R_EDX,
~0U,
},
};
typedef struct X86RegisterInfo32 {
/* Name of register */
const char *name;
/* QAPI enum value register */
X86CPURegister32 qapi_enum;
} X86RegisterInfo32;
#define REGISTER(reg) \
{ #reg, X86_CPU_REGISTER32_##reg }
static const X86RegisterInfo32 x86_reg_info_32[CPU_NB_REGS32] = {
REGISTER(EAX),
REGISTER(ECX),
REGISTER(EDX),
REGISTER(EBX),
REGISTER(ESP),
REGISTER(EBP),
REGISTER(ESI),
REGISTER(EDI),
};
#undef REGISTER
typedef struct ExtSaveArea {
uint32_t feature, bits;
uint32_t offset, size;
} ExtSaveArea;
static const ExtSaveArea x86_ext_save_areas[] = {
// XSTATE_FP_BIT
{
/* x87 FP state component is always enabled if XSAVE is supported */
FEAT_1_ECX, CPUID_EXT_XSAVE,
/* x87 state is in the legacy region of the XSAVE area */
0,
sizeof(X86LegacyXSaveArea) + sizeof(X86XSaveHeader),
},
// XSTATE_SSE_BIT
{
/* SSE state component is always enabled if XSAVE is supported */
FEAT_1_ECX, CPUID_EXT_XSAVE,
/* SSE state is in the legacy region of the XSAVE area */
0,
sizeof(X86LegacyXSaveArea) + sizeof(X86XSaveHeader),
},
// XSTATE_YMM_BIT
{
FEAT_1_ECX, CPUID_EXT_AVX,
offsetof(X86XSaveArea, avx_state),
sizeof(XSaveAVX),
},
// XSTATE_BNDREGS_BIT
{
FEAT_7_0_EBX, CPUID_7_0_EBX_MPX,
offsetof(X86XSaveArea, bndreg_state),
sizeof(XSaveBNDREG),
},
// XSTATE_BNDCSR_BIT
{
FEAT_7_0_EBX, CPUID_7_0_EBX_MPX,
offsetof(X86XSaveArea, bndcsr_state),
sizeof(XSaveBNDCSR),
},
// XSTATE_OPMASK_BIT
{
FEAT_7_0_EBX, CPUID_7_0_EBX_AVX512F,
offsetof(X86XSaveArea, opmask_state),
sizeof(XSaveOpmask),
},
// XSTATE_ZMM_Hi256_BIT
{
FEAT_7_0_EBX, CPUID_7_0_EBX_AVX512F,
offsetof(X86XSaveArea, zmm_hi256_state),
sizeof(XSaveZMM_Hi256),
},
// XSTATE_Hi16_ZMM_BIT
{
FEAT_7_0_EBX, CPUID_7_0_EBX_AVX512F,
offsetof(X86XSaveArea, hi16_zmm_state),
sizeof(XSaveHi16_ZMM),
},
// XSTATE_PKRU_BIT
{
FEAT_7_0_ECX, CPUID_7_0_ECX_PKU,
offsetof(X86XSaveArea, pkru_state),
sizeof(XSavePKRU),
},
};
static uint32_t xsave_area_size(uint64_t mask)
{
int i;
uint64_t ret = 0;
for (i = 0; i < ARRAY_SIZE(x86_ext_save_areas); i++) {
const ExtSaveArea *esa = &x86_ext_save_areas[i];
if ((mask >> i) & 1) {
ret = MAX(ret, esa->offset + esa->size);
}
}
return ret;
}
static inline uint64_t x86_cpu_xsave_components(X86CPU *cpu)
{
return ((uint64_t)cpu->env.features[FEAT_XSAVE_COMP_HI]) << 32 |
cpu->env.features[FEAT_XSAVE_COMP_LO];
}
const char *get_register_name_32(unsigned int reg)
{
if (reg >= CPU_NB_REGS32) {
return NULL;
}
return x86_reg_info_32[reg].name;
}
#ifdef _MSC_VER
#include
#endif
/*
* Returns the set of feature flags that are supported and migratable by
* QEMU, for a given FeatureWord.
*/
static uint32_t x86_cpu_get_migratable_flags(FeatureWord w)
{
FeatureWordInfo *wi = &feature_word_info[w];
uint32_t r = 0;
int i;
for (i = 0; i < 32; i++) {
uint32_t f = 1U << i;
/* If the feature name is known, it is implicitly considered migratable,
* unless it is explicitly set in unmigratable_flags */
if ((wi->migratable_flags & f) ||
(wi->feat_names[i] && !(wi->unmigratable_flags & f))) {
r |= f;
}
}
return r;
}
void host_cpuid(uint32_t function, uint32_t count,
uint32_t *eax, uint32_t *ebx, uint32_t *ecx, uint32_t *edx)
{
uint32_t vec[4];
#ifdef _MSC_VER
__cpuidex((int*)vec, function, count);
#else
#ifdef __x86_64__
asm volatile("cpuid"
: "=a"(vec[0]), "=b"(vec[1]),
"=c"(vec[2]), "=d"(vec[3])
: "0"(function), "c"(count) : "cc");
#elif defined(__i386__)
asm volatile("pusha \n\t"
"cpuid \n\t"
"mov %%eax, 0(%2) \n\t"
"mov %%ebx, 4(%2) \n\t"
"mov %%ecx, 8(%2) \n\t"
"mov %%edx, 12(%2) \n\t"
"popa"
: : "a"(function), "c"(count), "S"(vec)
: "memory", "cc");
#else
abort();
#endif
#endif // _MSC_VER
if (eax)
*eax = vec[0];
if (ebx)
*ebx = vec[1];
if (ecx)
*ecx = vec[2];
if (edx)
*edx = vec[3];
}
#define iswhite(c) ((c) && ((c) <= ' ' || '~' < (c)))
/* general substring compare of *[s1..e1) and *[s2..e2). sx is start of
* a substring. ex if !NULL points to the first char after a substring,
* otherwise the string is assumed to sized by a terminating nul.
* Return lexical ordering of *s1:*s2.
*/
static int sstrcmp(const char *s1, const char *e1,
const char *s2, const char *e2)
{
for (;;) {
if (!*s1 || !*s2 || *s1 != *s2)
return (*s1 - *s2);
++s1, ++s2;
if (s1 == e1 && s2 == e2)
return (0);
else if (s1 == e1)
return (*s2);
else if (s2 == e2)
return (*s1);
}
}
/* compare *[s..e) to *altstr. *altstr may be a simple string or multiple
* '|' delimited (possibly empty) strings in which case search for a match
* within the alternatives proceeds left to right. Return 0 for success,
* non-zero otherwise.
*/
static int altcmp(const char *s, const char *e, const char *altstr)
{
const char *p, *q;
for (q = p = altstr; ; ) {
while (*p && *p != '|')
++p;
if ((q == p && !*s) || (q != p && !sstrcmp(s, e, q, p)))
return (0);
if (!*p)
return (1);
else
q = ++p;
}
}
/* search featureset for flag *[s..e), if found set corresponding bit in
* *pval and return true, otherwise return false
*/
static bool lookup_feature(uint32_t *pval, const char *s, const char *e,
const char **featureset)
{
uint32_t mask;
const char **ppc;
bool found = false;
for (mask = 1, ppc = featureset; mask; mask <<= 1, ++ppc) {
if (*ppc && !altcmp(s, e, *ppc)) {
*pval |= mask;
found = true;
}
}
return found;
}
static void add_flagname_to_bitmaps(const char *flagname,
FeatureWordArray words,
Error **errp)
{
FeatureWord w;
for (w = 0; w < FEATURE_WORDS; w++) {
FeatureWordInfo *wi = &feature_word_info[w];
if (lookup_feature(&words[w], flagname, NULL, wi->feat_names)) {
break;
}
}
if (w == FEATURE_WORDS) {
error_setg(errp, "CPU feature %s not found", flagname);
}
}
void host_vendor_fms(char *vendor, int *family, int *model, int *stepping)
{
uint32_t eax, ebx, ecx, edx;
host_cpuid(0x0, 0, &eax, &ebx, &ecx, &edx);
x86_cpu_vendor_words2str(vendor, ebx, edx, ecx);
host_cpuid(0x1, 0, &eax, &ebx, &ecx, &edx);
if (family) {
*family = ((eax >> 8) & 0x0F) + ((eax >> 20) & 0xFF);
}
if (model) {
*model = ((eax >> 4) & 0x0F) | ((eax & 0xF0000) >> 12);
}
if (stepping) {
*stepping = eax & 0x0F;
}
}
/* Return type name for a given CPU model name
* Caller is responsible for freeing the returned string.
*/
static char *x86_cpu_type_name(const char *model_name)
{
return g_strdup_printf(X86_CPU_TYPE_NAME("%s"), model_name);
}
static ObjectClass *x86_cpu_class_by_name(struct uc_struct *uc, const char *cpu_model)
{
ObjectClass *oc;
char *typename;
if (cpu_model == NULL) {
return NULL;
}
typename = x86_cpu_type_name(cpu_model);
oc = object_class_by_name(uc, typename);
g_free(typename);
return oc;
}
struct X86CPUDefinition {
const char *name;
uint32_t level;
uint32_t xlevel;
/* vendor is zero-terminated, 12 character ASCII string */
char vendor[CPUID_VENDOR_SZ + 1];
int family;
int model;
int stepping;
FeatureWordArray features;
const char *model_id;
bool cache_info_passthrough;
CPUCaches *cache_info;
};
static CPUCacheInfo epyc_l1d_cache = {
DCACHE,
1,
32 * KiB,
64,
8,
1,
64,
1,
1,
true,
};
static CPUCacheInfo epyc_l1i_cache = {
ICACHE,
1,
64 * KiB,
64,
4,
1,
256,
1,
1,
true,
};
static CPUCacheInfo epyc_l2_cache = {
UNIFIED_CACHE,
2,
512 * KiB,
64,
8,
1,
1024,
1,
};
static CPUCacheInfo epyc_l3_cache = {
UNIFIED_CACHE,
3,
8 * MiB,
64,
16,
1,
8192,
1,
true,
false,
true,
true,
};
static CPUCaches epyc_cache_info = {
&epyc_l1d_cache,
&epyc_l1i_cache,
&epyc_l2_cache,
&epyc_l3_cache,
};
static X86CPUDefinition builtin_x86_defs[] = {
{
"qemu64",
0xd, 0x8000000A,
CPUID_VENDOR_AMD,
6, 6, 3,
{
// FEAT_1_EDX
PPRO_FEATURES |
CPUID_MTRR | CPUID_CLFLUSH | CPUID_MCA |
CPUID_PSE36,
// FEAT_1_ECX
CPUID_EXT_SSE3 | CPUID_EXT_CX16,
// FEAT_7_0_EBX
0,
// FEAT_7_0_ECX
0,
// FEAT_7_0_EDX
0,
// FEAT_8000_0001_EDX
CPUID_EXT2_LM | CPUID_EXT2_SYSCALL | CPUID_EXT2_NX,
// FEAT_8000_0001_ECX
CPUID_EXT3_LAHF_LM | CPUID_EXT3_SVM,
},
"QEMU Virtual CPU version " QEMU_HW_VERSION
},
{
"phenom",
5, 0x8000001A,
CPUID_VENDOR_AMD,
16, 2, 3,
{
/* Missing: CPUID_HT */
// FEAT_1_EDX
PPRO_FEATURES |
CPUID_MTRR | CPUID_CLFLUSH | CPUID_MCA |
CPUID_PSE36 | CPUID_VME,
// FEAT_1_ECX
CPUID_EXT_SSE3 | CPUID_EXT_MONITOR | CPUID_EXT_CX16 |
CPUID_EXT_POPCNT,
// FEAT_7_0_EBX
0,
// FEAT_7_0_ECX
0,
// FEAT_7_0_EDX
0,
// FEAT_8000_0001_EDX
CPUID_EXT2_LM | CPUID_EXT2_SYSCALL | CPUID_EXT2_NX |
CPUID_EXT2_3DNOW | CPUID_EXT2_3DNOWEXT | CPUID_EXT2_MMXEXT |
CPUID_EXT2_FFXSR | CPUID_EXT2_PDPE1GB | CPUID_EXT2_RDTSCP,
/* Missing: CPUID_EXT3_CMP_LEG, CPUID_EXT3_EXTAPIC,
CPUID_EXT3_CR8LEG,
CPUID_EXT3_MISALIGNSSE, CPUID_EXT3_3DNOWPREFETCH,
CPUID_EXT3_OSVW, CPUID_EXT3_IBS */
// FEAT_8000_0001_ECX
CPUID_EXT3_LAHF_LM | CPUID_EXT3_SVM |
CPUID_EXT3_ABM | CPUID_EXT3_SSE4A,
// FEAT_8000_0007_EDX
0,
// FEAT_8000_0008_EBX
0,
// FEAT_C000_0001_EDX
0,
// FEAT_KVM
0,
// FEAT_KVM_HINTS
0,
// FEAT_HYPERV_EAX
0,
// FEAT_HYPERV_EBX
0,
// FEAT_HYPERV_EDX
0,
/* Missing: CPUID_SVM_LBRV */
// FEAT_SVM
CPUID_SVM_NPT,
},
"AMD Phenom(tm) 9550 Quad-Core Processor",
},
{
"core2duo",
10, 0x80000008,
CPUID_VENDOR_INTEL,
6, 15, 11,
{
/* Missing: CPUID_DTS, CPUID_HT, CPUID_TM, CPUID_PBE */
// FEAT_1_EDX
PPRO_FEATURES |
CPUID_MTRR | CPUID_CLFLUSH | CPUID_MCA |
CPUID_PSE36 | CPUID_VME | CPUID_ACPI | CPUID_SS,
/* Missing: CPUID_EXT_DTES64, CPUID_EXT_DSCPL, CPUID_EXT_EST,
* CPUID_EXT_TM2, CPUID_EXT_XTPR, CPUID_EXT_PDCM, CPUID_EXT_VMX */
// FEAT_1_ECX
CPUID_EXT_SSE3 | CPUID_EXT_MONITOR | CPUID_EXT_SSSE3 |
CPUID_EXT_CX16,
// FEAT_7_0_EBX
0,
// FEAT_7_0_ECX
0,
// FEAT_7_0_EDX
0,
// FEAT_8000_0001_EDX
CPUID_EXT2_LM | CPUID_EXT2_SYSCALL | CPUID_EXT2_NX,
// FEAT_8000_0001_ECX
CPUID_EXT3_LAHF_LM,
},
"Intel(R) Core(TM)2 Duo CPU T7700 @ 2.40GHz",
},
{
"kvm64",
0xd, 0x80000008,
CPUID_VENDOR_INTEL,
15, 6, 1,
{
/* Missing: CPUID_HT */
// FEAT_1_EDX
PPRO_FEATURES | CPUID_VME |
CPUID_MTRR | CPUID_CLFLUSH | CPUID_MCA |
CPUID_PSE36,
/* Missing: CPUID_EXT_POPCNT, CPUID_EXT_MONITOR */
// FEAT_1_ECX
CPUID_EXT_SSE3 | CPUID_EXT_CX16,
// FEAT_7_0_EBX
0,
// FEAT_7_0_ECX
0,
// FEAT_7_0_EDX
0,
/* Missing: CPUID_EXT2_PDPE1GB, CPUID_EXT2_RDTSCP */
// FEAT_8000_0001_EDX
CPUID_EXT2_LM | CPUID_EXT2_SYSCALL | CPUID_EXT2_NX,
/* Missing: CPUID_EXT3_LAHF_LM, CPUID_EXT3_CMP_LEG, CPUID_EXT3_EXTAPIC,
CPUID_EXT3_CR8LEG, CPUID_EXT3_ABM, CPUID_EXT3_SSE4A,
CPUID_EXT3_MISALIGNSSE, CPUID_EXT3_3DNOWPREFETCH,
CPUID_EXT3_OSVW, CPUID_EXT3_IBS, CPUID_EXT3_SVM */
// FEAT_8000_0001_ECX
0,
},
"Common KVM processor",
},
{
"qemu32",
4, 0x80000004,
CPUID_VENDOR_INTEL,
6, 6, 3,
{
// FEAT_1_EDX
PPRO_FEATURES,
// FEAT_1_ECX
CPUID_EXT_SSSE3,
},
"QEMU Virtual CPU version " QEMU_HW_VERSION
},
{
"kvm32",
5, 0x80000008,
CPUID_VENDOR_INTEL,
15, 6, 1,
{
// FEAT_1_EDX
PPRO_FEATURES | CPUID_VME |
CPUID_MTRR | CPUID_CLFLUSH | CPUID_MCA | CPUID_PSE36,
// FEAT_1_ECX
CPUID_EXT_SSE3,
// FEAT_7_0_EBX
0,
// FEAT_7_0_ECX
0,
// FEAT_7_0_EDX
0,
// FEAT_8000_0001_EDX
// FEAT_8000_0001_ECX
0,
},
"Common 32-bit KVM processor",
},
{
"coreduo",
10, 0x80000008,
CPUID_VENDOR_INTEL,
6, 14, 8,
{
/* Missing: CPUID_DTS, CPUID_HT, CPUID_TM, CPUID_PBE */
// FEAT_1_EDX
PPRO_FEATURES | CPUID_VME |
CPUID_MTRR | CPUID_CLFLUSH | CPUID_MCA | CPUID_ACPI |
CPUID_SS,
/* Missing: CPUID_EXT_EST, CPUID_EXT_TM2 , CPUID_EXT_XTPR,
* CPUID_EXT_PDCM, CPUID_EXT_VMX */
// FEAT_1_ECX
CPUID_EXT_SSE3 | CPUID_EXT_MONITOR,
// FEAT_7_0_EBX
0,
// FEAT_7_0_ECX
0,
// FEAT_7_0_EDX
0,
// FEAT_8000_0001_EDX
CPUID_EXT2_NX,
},
"Genuine Intel(R) CPU T2600 @ 2.16GHz",
},
{
"486",
1, 0,
CPUID_VENDOR_INTEL,
4, 8, 0,
{
// FEAT_1_EDX
I486_FEATURES,
},
"",
},
{
"pentium",
1, 0,
CPUID_VENDOR_INTEL,
5, 4, 3,
{
// FEAT_1_EDX
PENTIUM_FEATURES,
},
"",
},
{
"pentium2",
2, 0,
CPUID_VENDOR_INTEL,
6, 5, 2,
{
// FEAT_1_EDX
PENTIUM2_FEATURES,
},
"",
},
{
"pentium3",
3, 0,
CPUID_VENDOR_INTEL,
6, 7, 3,
{
// FEAT_1_EDX
PENTIUM3_FEATURES,
},
"",
},
{
"athlon",
2, 0x80000008,
CPUID_VENDOR_AMD,
6, 2, 3,
{
// FEAT_1_EDX
PPRO_FEATURES | CPUID_PSE36 | CPUID_VME | CPUID_MTRR |
CPUID_MCA,
// FEAT_1_ECX
0,
// FEAT_7_0_EBX
0,
// FEAT_7_0_ECX
0,
// FEAT_7_0_EDX
0,
// FEAT_8000_0001_EDX
CPUID_EXT2_MMXEXT | CPUID_EXT2_3DNOW | CPUID_EXT2_3DNOWEXT,
},
"QEMU Virtual CPU version " QEMU_HW_VERSION
},
{
"n270",
10, 0x80000008,
CPUID_VENDOR_INTEL,
6, 28, 2,
{
/* Missing: CPUID_DTS, CPUID_HT, CPUID_TM, CPUID_PBE */
// FEAT_1_EDX
PPRO_FEATURES |
CPUID_MTRR | CPUID_CLFLUSH | CPUID_MCA | CPUID_VME |
CPUID_ACPI | CPUID_SS,
/* Some CPUs got no CPUID_SEP */
/* Missing: CPUID_EXT_DSCPL, CPUID_EXT_EST, CPUID_EXT_TM2,
* CPUID_EXT_XTPR */
// FEAT_1_ECX
CPUID_EXT_SSE3 | CPUID_EXT_MONITOR | CPUID_EXT_SSSE3 |
CPUID_EXT_MOVBE,
// FEAT_7_0_EBX
0,
// FEAT_7_0_ECX
0,
// FEAT_7_0_EDX
0,
// FEAT_8000_0001_EDX
CPUID_EXT2_NX,
// FEAT_8000_0001_ECX
CPUID_EXT3_LAHF_LM,
},
"Intel(R) Atom(TM) CPU N270 @ 1.60GHz",
},
{
"Conroe",
10, 0x80000008,
CPUID_VENDOR_INTEL,
6, 15, 3,
{
// FEAT_1_EDX
CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
CPUID_DE | CPUID_FP87,
// FEAT_1_ECX
CPUID_EXT_SSSE3 | CPUID_EXT_SSE3,
// FEAT_7_0_EBX
0,
// FEAT_7_0_ECX
0,
// FEAT_7_0_EDX
0,
// FEAT_8000_0001_EDX
CPUID_EXT2_LM | CPUID_EXT2_NX | CPUID_EXT2_SYSCALL,
// FEAT_8000_0001_ECX
CPUID_EXT3_LAHF_LM,
},
"Intel Celeron_4x0 (Conroe/Merom Class Core 2)",
},
{
"Penryn",
10, 0x80000008,
CPUID_VENDOR_INTEL,
6, 23, 3,
{
// FEAT_1_EDX
CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
CPUID_DE | CPUID_FP87,
// FEAT_1_ECX
CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 |
CPUID_EXT_SSE3,
// FEAT_7_0_EBX
0,
// FEAT_7_0_ECX
0,
// FEAT_7_0_EDX
0,
// FEAT_8000_0001_EDX
CPUID_EXT2_LM | CPUID_EXT2_NX | CPUID_EXT2_SYSCALL,
// FEAT_8000_0001_ECX
CPUID_EXT3_LAHF_LM,
},
"Intel Core 2 Duo P9xxx (Penryn Class Core 2)",
},
{
"Nehalem",
11, 0x80000008,
CPUID_VENDOR_INTEL,
6, 26, 3,
{
// FEAT_1_EDX
CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
CPUID_DE | CPUID_FP87,
// FEAT_1_ECX
CPUID_EXT_POPCNT | CPUID_EXT_SSE42 | CPUID_EXT_SSE41 |
CPUID_EXT_CX16 | CPUID_EXT_SSSE3 | CPUID_EXT_SSE3,
// FEAT_7_0_EBX
0,
// FEAT_7_0_ECX
0,
// FEAT_7_0_EDX
0,
// FEAT_8000_0001_EDX
CPUID_EXT2_LM | CPUID_EXT2_SYSCALL | CPUID_EXT2_NX,
// FEAT_8000_0001_ECX
CPUID_EXT3_LAHF_LM,
},
"Intel Core i7 9xx (Nehalem Class Core i7)",
},
{
"Nehalem-IBRS",
11, 0x80000008,
CPUID_VENDOR_INTEL,
6,26,3,
{
// FEAT_1_EDX
CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
CPUID_DE | CPUID_FP87,
// FEAT_1_ECX
CPUID_EXT_POPCNT | CPUID_EXT_SSE42 | CPUID_EXT_SSE41 |
CPUID_EXT_CX16 | CPUID_EXT_SSSE3 | CPUID_EXT_SSE3,
// FEAT_7_0_EBX
0,
// FEAT_7_0_ECX
0,
// FEAT_7_0_EDX
CPUID_7_0_EDX_SPEC_CTRL,
// FEAT_8000_0001_EDX
CPUID_EXT2_LM | CPUID_EXT2_SYSCALL | CPUID_EXT2_NX,
// FEAT_8000_0001_ECX
CPUID_EXT3_LAHF_LM,
},
"Intel Core i7 9xx (Nehalem Core i7, IBRS update)",
},
{
"Westmere",
11, 0x80000008,
CPUID_VENDOR_INTEL,
6, 44, 1,
{
// FEAT_1_EDX
CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
CPUID_DE | CPUID_FP87,
// FEAT_1_ECX
CPUID_EXT_AES | CPUID_EXT_POPCNT | CPUID_EXT_SSE42 |
CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 |
CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3,
// FEAT_7_0_EBX
0,
// FEAT_7_0_ECX
0,
// FEAT_7_0_EDX
0,
// FEAT_8000_0001_EDX
CPUID_EXT2_LM | CPUID_EXT2_SYSCALL | CPUID_EXT2_NX,
// FEAT_8000_0001_ECX
CPUID_EXT3_LAHF_LM,
// FEAT_8000_0007_EDX
0,
// FEAT_8000_0008_EBX
0,
// FEAT_C000_0001_EDX
0,
// FEAT_KVM
0,
// FEAT_KVM_HINTS
0,
// FEAT_HYPERV_EAX
0,
// FEAT_HYPERV_EBX
0,
// FEAT_HYPERV_EDX
0,
// FEAT_SVM
0,
// FEAT_XSAVE
0,
// FEAT_ARAT
CPUID_6_EAX_ARAT,
},
"Westmere E56xx/L56xx/X56xx (Nehalem-C)",
},
{
"Westmere-IBRS",
11, 0x80000008,
CPUID_VENDOR_INTEL,
6,44,1,
{
// FEAT_1_EDX
CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
CPUID_DE | CPUID_FP87,
// FEAT_1_ECX
CPUID_EXT_AES | CPUID_EXT_POPCNT | CPUID_EXT_SSE42 |
CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 |
CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3,
// FEAT_7_0_EBX
0,
// FEAT_7_0_ECX
0,
// FEAT_7_0_EDX
CPUID_7_0_EDX_SPEC_CTRL,
// FEAT_8000_0001_EDX
CPUID_EXT2_LM | CPUID_EXT2_SYSCALL | CPUID_EXT2_NX,
// FEAT_8000_0001_ECX
CPUID_EXT3_LAHF_LM,
// FEAT_8000_0007_EDX
0,
// FEAT_8000_0008_EBX
0,
// FEAT_C000_0001_EDX
0,
// FEAT_KVM
0,
// FEAT_KVM_HINTS
0,
// FEAT_HYPERV_EAX
0,
// FEAT_HYPERV_EBX
0,
// FEAT_HYPERV_EDX
0,
// FEAT_SVM
0,
// FEAT_XSAVE
0,
// FEAT_6_EAX
CPUID_6_EAX_ARAT,
},
"Westmere E56xx/L56xx/X56xx (IBRS update)",
},
{
"SandyBridge",
0xd, 0x80000008,
CPUID_VENDOR_INTEL,
6, 42, 1,
{
// FEAT_1_EDX
CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
CPUID_DE | CPUID_FP87,
// FEAT_1_ECX
CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES |
CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_POPCNT |
CPUID_EXT_X2APIC | CPUID_EXT_SSE42 | CPUID_EXT_SSE41 |
CPUID_EXT_CX16 | CPUID_EXT_SSSE3 | CPUID_EXT_PCLMULQDQ |
CPUID_EXT_SSE3,
// FEAT_7_0_EBX
0,
// FEAT_7_0_ECX
0,
// FEAT_7_0_EDX
0,
// FEAT_8000_0001_EDX
CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_NX |
CPUID_EXT2_SYSCALL,
// FEAT_8000_0001_ECX
CPUID_EXT3_LAHF_LM,
// FEAT_8000_0007_EDX
0,
// FEAT_8000_0008_EBX
0,
// FEAT_C000_0001_EDX
0,
// FEAT_KVM
0,
// FEAT_KVM_HINTS
0,
// FEAT_HYPERV_EAX
0,
// FEAT_HYPERV_EBX
0,
// FEAT_HYPERV_EDX
0,
// FEAT_SVM
0,
// FEAT_XSAVE
CPUID_XSAVE_XSAVEOPT,
// FEAT_ARAT
CPUID_6_EAX_ARAT,
},
"Intel Xeon E312xx (Sandy Bridge)",
},
{
"SandyBridge-IBRS",
0xd, 0x80000008,
CPUID_VENDOR_INTEL,
6,42,1,
{
// FEAT_1_EDX
CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
CPUID_DE | CPUID_FP87,
// FEAT_1_ECX
CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES |
CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_POPCNT |
CPUID_EXT_X2APIC | CPUID_EXT_SSE42 | CPUID_EXT_SSE41 |
CPUID_EXT_CX16 | CPUID_EXT_SSSE3 | CPUID_EXT_PCLMULQDQ |
CPUID_EXT_SSE3,
// FEAT_7_0_EBX
0,
// FEAT_7_0_ECX
0,
// FEAT_7_0_EDX
CPUID_7_0_EDX_SPEC_CTRL,
// FEAT_8000_0001_EDX
CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_NX |
CPUID_EXT2_SYSCALL,
// FEAT_8000_0001_ECX
CPUID_EXT3_LAHF_LM,
// FEAT_8000_0007_EDX
0,
// FEAT_8000_0008_EBX
0,
// FEAT_C000_0001_EDX
0,
// FEAT_KVM
0,
// FEAT_KVM_HINTS
0,
// FEAT_HYPERV_EAX
0,
// FEAT_HYPERV_EBX
0,
// FEAT_HYPERV_EDX
0,
// FEAT_SVM
0,
// FEAT_XSAVE
CPUID_XSAVE_XSAVEOPT,
// FEAT_6_EAX
CPUID_6_EAX_ARAT,
},
"Intel Xeon E312xx (Sandy Bridge, IBRS update)",
},
{
"IvyBridge",
0xd, 0x80000008,
CPUID_VENDOR_INTEL,
6, 58, 9,
{
// FEAT_1_EDX
CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
CPUID_DE | CPUID_FP87,
// FEAT_1_ECX
CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES |
CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_POPCNT |
CPUID_EXT_X2APIC | CPUID_EXT_SSE42 | CPUID_EXT_SSE41 |
CPUID_EXT_CX16 | CPUID_EXT_SSSE3 | CPUID_EXT_PCLMULQDQ |
CPUID_EXT_SSE3 | CPUID_EXT_F16C | CPUID_EXT_RDRAND,
// FEAT_7_0_EBX
CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_SMEP |
CPUID_7_0_EBX_ERMS,
// FEAT_7_0_ECX
0,
// FEAT_7_0_EDX
0,
// FEAT_8000_0001_EDX
CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_NX |
CPUID_EXT2_SYSCALL,
// FEAT_8000_0001_ECX
CPUID_EXT3_LAHF_LM,
// FEAT_8000_0007_EDX
0,
// FEAT_8000_0008_EBX
0,
// FEAT_C000_0001_EDX
0,
// FEAT_KVM
0,
// FEAT_KVM_HINTS
0,
// FEAT_HYPERV_EAX
0,
// FEAT_HYPERV_EBX
0,
// FEAT_HYPERV_EDX
0,
// FEAT_SVM
0,
// FEAT_XSAVE
CPUID_XSAVE_XSAVEOPT,
// FEAT_ARAT
CPUID_6_EAX_ARAT,
},
"Intel Xeon E3-12xx v2 (Ivy Bridge)",
},
{
"IvyBridge-IBRS",
0xd, 0x80000008,
CPUID_VENDOR_INTEL,
6,58,9,
{
// FEAT_1_EDX
CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
CPUID_DE | CPUID_FP87,
// FEAT_1_ECX
CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES |
CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_POPCNT |
CPUID_EXT_X2APIC | CPUID_EXT_SSE42 | CPUID_EXT_SSE41 |
CPUID_EXT_CX16 | CPUID_EXT_SSSE3 | CPUID_EXT_PCLMULQDQ |
CPUID_EXT_SSE3 | CPUID_EXT_F16C | CPUID_EXT_RDRAND,
// FEAT_7_0_EBX
CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_SMEP |
CPUID_7_0_EBX_ERMS,
// FEAT_7_0_ECX
0,
// FEAT_7_0_EDX
CPUID_7_0_EDX_SPEC_CTRL,
// FEAT_8000_0001_EDX
CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_NX |
CPUID_EXT2_SYSCALL,
// FEAT_8000_0001_ECX
CPUID_EXT3_LAHF_LM,
// FEAT_8000_0007_EDX
0,
// FEAT_8000_0008_EBX
0,
// FEAT_C000_0001_EDX
0,
// FEAT_KVM
0,
// FEAT_KVM_HINTS
0,
// FEAT_HYPERV_EAX
0,
// FEAT_HYPERV_EBX
0,
// FEAT_HYPERV_EDX
0,
// FEAT_SVM
0,
// FEAT_XSAVE
CPUID_XSAVE_XSAVEOPT,
// FEAT_6_EAX
CPUID_6_EAX_ARAT,
},
"Intel Xeon E3-12xx v2 (Ivy Bridge, IBRS)",
},
{
"Haswell-noTSX",
0xd, 0x80000008,
CPUID_VENDOR_INTEL,
6, 60, 1,
{
// FEAT_1_EDX
CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
CPUID_DE | CPUID_FP87,
// FEAT_1_ECX
CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES |
CPUID_EXT_POPCNT | CPUID_EXT_X2APIC | CPUID_EXT_SSE42 |
CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 |
CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3 |
CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_FMA | CPUID_EXT_MOVBE |
CPUID_EXT_PCID | CPUID_EXT_F16C | CPUID_EXT_RDRAND,
// FEAT_7_0_EBX
CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_BMI1 |
CPUID_7_0_EBX_AVX2 | CPUID_7_0_EBX_SMEP |
CPUID_7_0_EBX_BMI2 | CPUID_7_0_EBX_ERMS | CPUID_7_0_EBX_INVPCID,
// FEAT_7_0_ECX
0,
// FEAT_7_0_EDX
0,
// FEAT_8000_0001_EDX
CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_NX |
CPUID_EXT2_SYSCALL,
// FEAT_8000_0001_ECX
CPUID_EXT3_ABM | CPUID_EXT3_LAHF_LM,
// FEAT_8000_0007_EDX
0,
// FEAT_8000_0008_EBX
0,
// FEAT_C000_0001_EDX
0,
// FEAT_KVM
0,
// FEAT_KVM_HINTS
0,
// FEAT_HYPERV_EAX
0,
// FEAT_HYPERV_EBX
0,
// FEAT_HYPERV_EDX
0,
// FEAT_SVM
0,
// FEAT_XSAVE
CPUID_XSAVE_XSAVEOPT,
// FEAT_ARAT
CPUID_6_EAX_ARAT,
},
"Intel Core Processor (Haswell, no TSX)",
},
{
"Haswell-noTSX-IBRS",
0xd, 0x80000008,
CPUID_VENDOR_INTEL,
6,60,1,
{
// FEAT_1_EDX
CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
CPUID_DE | CPUID_FP87,
// FEAT_1_ECX
CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES |
CPUID_EXT_POPCNT | CPUID_EXT_X2APIC | CPUID_EXT_SSE42 |
CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 |
CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3 |
CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_FMA | CPUID_EXT_MOVBE |
CPUID_EXT_PCID | CPUID_EXT_F16C | CPUID_EXT_RDRAND,
// FEAT_7_0_EBX
CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_BMI1 |
CPUID_7_0_EBX_AVX2 | CPUID_7_0_EBX_SMEP |
CPUID_7_0_EBX_BMI2 | CPUID_7_0_EBX_ERMS | CPUID_7_0_EBX_INVPCID,
// FEAT_7_0_ECX
0,
// FEAT_7_0_EDX
CPUID_7_0_EDX_SPEC_CTRL,
// FEAT_8000_0001_EDX
CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_NX |
CPUID_EXT2_SYSCALL,
// FEAT_8000_0001_ECX
CPUID_EXT3_ABM | CPUID_EXT3_LAHF_LM,
// FEAT_8000_0007_EDX
0,
// FEAT_8000_0008_EBX
0,
// FEAT_C000_0001_EDX
0,
// FEAT_KVM
0,
// FEAT_KVM_HINTS
0,
// FEAT_HYPERV_EAX
0,
// FEAT_HYPERV_EBX
0,
// FEAT_HYPERV_EDX
0,
// FEAT_SVM
0,
// FEAT_XSAVE
CPUID_XSAVE_XSAVEOPT,
// FEAT_6_EAX
CPUID_6_EAX_ARAT,
},
"Intel Core Processor (Haswell, no TSX, IBRS)",
},
{
"Haswell",
0xd, 0x80000008,
CPUID_VENDOR_INTEL,
6, 60, 4,
{
// FEAT_1_EDX
CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
CPUID_DE | CPUID_FP87,
// FEAT_1_ECX
CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES |
CPUID_EXT_POPCNT | CPUID_EXT_X2APIC | CPUID_EXT_SSE42 |
CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 |
CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3 |
CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_FMA | CPUID_EXT_MOVBE |
CPUID_EXT_PCID | CPUID_EXT_F16C | CPUID_EXT_RDRAND,
// FEAT_7_0_EBX
CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_BMI1 |
CPUID_7_0_EBX_HLE | CPUID_7_0_EBX_AVX2 | CPUID_7_0_EBX_SMEP |
CPUID_7_0_EBX_BMI2 | CPUID_7_0_EBX_ERMS | CPUID_7_0_EBX_INVPCID |
CPUID_7_0_EBX_RTM,
// FEAT_7_0_ECX
0,
// FEAT_7_0_EDX
0,
// FEAT_8000_0001_EDX
CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_NX |
CPUID_EXT2_SYSCALL,
// FEAT_8000_0001_ECX
CPUID_EXT3_ABM | CPUID_EXT3_LAHF_LM,
// FEAT_8000_0007_EDX
0,
// FEAT_8000_0008_EBX
0,
// FEAT_C000_0001_EDX
0,
// FEAT_KVM
0,
// FEAT_KVM_HINTS
0,
// FEAT_HYPERV_EAX
0,
// FEAT_HYPERV_EBX
0,
// FEAT_HYPERV_EDX
0,
// FEAT_SVM
0,
// FEAT_XSAVE
CPUID_XSAVE_XSAVEOPT,
// FEAT_ARAT
CPUID_6_EAX_ARAT,
},
"Intel Core Processor (Haswell)",
},
{
"Haswell-IBRS",
0xd, 0x80000008,
CPUID_VENDOR_INTEL,
6,60,4,
{
// FEAT_1_EDX
CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
CPUID_DE | CPUID_FP87,
// FEAT_1_ECX
CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES |
CPUID_EXT_POPCNT | CPUID_EXT_X2APIC | CPUID_EXT_SSE42 |
CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 |
CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3 |
CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_FMA | CPUID_EXT_MOVBE |
CPUID_EXT_PCID | CPUID_EXT_F16C | CPUID_EXT_RDRAND,
// FEAT_7_0_EBX
CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_BMI1 |
CPUID_7_0_EBX_HLE | CPUID_7_0_EBX_AVX2 | CPUID_7_0_EBX_SMEP |
CPUID_7_0_EBX_BMI2 | CPUID_7_0_EBX_ERMS | CPUID_7_0_EBX_INVPCID |
CPUID_7_0_EBX_RTM,
// FEAT_7_0_ECX
0,
// FEAT_7_0_EDX
CPUID_7_0_EDX_SPEC_CTRL,
// FEAT_8000_0001_EDX
CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_NX |
CPUID_EXT2_SYSCALL,
// FEAT_8000_0001_ECX
CPUID_EXT3_ABM | CPUID_EXT3_LAHF_LM,
// FEAT_8000_0007_EDX
0,
// FEAT_8000_0008_EBX
0,
// FEAT_C000_0001_EDX
0,
// FEAT_KVM
0,
// FEAT_KVM_HINTS
0,
// FEAT_HYPERV_EAX
0,
// FEAT_HYPERV_EBX
0,
// FEAT_HYPERV_EDX
0,
// FEAT_SVM
0,
// FEAT_XSAVE
CPUID_XSAVE_XSAVEOPT,
// FEAT_6_EAX
CPUID_6_EAX_ARAT,
},
"Intel Core Processor (Haswell, IBRS)",
},
{
"Broadwell-noTSX",
0xd, 0x80000008,
CPUID_VENDOR_INTEL,
6, 61, 2,
{
// FEAT_1_EDX
CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
CPUID_DE | CPUID_FP87,
// FEAT_1_ECX
CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES |
CPUID_EXT_POPCNT | CPUID_EXT_X2APIC | CPUID_EXT_SSE42 |
CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 |
CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3 |
CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_FMA | CPUID_EXT_MOVBE |
CPUID_EXT_PCID | CPUID_EXT_F16C | CPUID_EXT_RDRAND,
// FEAT_7_0_EBX
CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_BMI1 |
CPUID_7_0_EBX_AVX2 | CPUID_7_0_EBX_SMEP |
CPUID_7_0_EBX_BMI2 | CPUID_7_0_EBX_ERMS | CPUID_7_0_EBX_INVPCID |
CPUID_7_0_EBX_RDSEED | CPUID_7_0_EBX_ADX |
CPUID_7_0_EBX_SMAP,
// FEAT_7_0_ECX
0,
// FEAT_7_0_EDX
0,
// FEAT_8000_0001_EDX
CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_NX |
CPUID_EXT2_SYSCALL,
// FEAT_8000_0001_ECX
CPUID_EXT3_ABM | CPUID_EXT3_LAHF_LM | CPUID_EXT3_3DNOWPREFETCH,
// FEAT_8000_0007_EDX
0,
// FEAT_8000_0008_EBX
0,
// FEAT_C000_0001_EDX
0,
// FEAT_KVM
0,
// FEAT_KVM_HINTS
0,
// FEAT_HYPERV_EAX
0,
// FEAT_HYPERV_EBX
0,
// FEAT_HYPERV_EDX
0,
// FEAT_SVM
0,
// FEAT_XSAVE
CPUID_XSAVE_XSAVEOPT,
// FEAT_ARAT
CPUID_6_EAX_ARAT,
},
"Intel Core Processor (Broadwell, no TSX)",
},
{
"Broadwell-noTSX-IBRS",
0xd,0x80000008,
CPUID_VENDOR_INTEL,
6,61,2,
{
// FEAT_1_EDX
CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
CPUID_DE | CPUID_FP87,
// FEAT_1_ECX
CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES |
CPUID_EXT_POPCNT | CPUID_EXT_X2APIC | CPUID_EXT_SSE42 |
CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 |
CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3 |
CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_FMA | CPUID_EXT_MOVBE |
CPUID_EXT_PCID | CPUID_EXT_F16C | CPUID_EXT_RDRAND,
// FEAT_7_0_EBX
CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_BMI1 |
CPUID_7_0_EBX_AVX2 | CPUID_7_0_EBX_SMEP |
CPUID_7_0_EBX_BMI2 | CPUID_7_0_EBX_ERMS | CPUID_7_0_EBX_INVPCID |
CPUID_7_0_EBX_RDSEED | CPUID_7_0_EBX_ADX |
CPUID_7_0_EBX_SMAP,
// FEAT_7_0_ECX
0,
// FEAT_7_0_EDX
CPUID_7_0_EDX_SPEC_CTRL,
// FEAT_8000_0001_EDX
CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_NX |
CPUID_EXT2_SYSCALL,
// FEAT_8000_0001_ECX
CPUID_EXT3_ABM | CPUID_EXT3_LAHF_LM | CPUID_EXT3_3DNOWPREFETCH,
// FEAT_8000_0007_EDX
0,
// FEAT_8000_0008_EBX
0,
// FEAT_C000_0001_EDX
0,
// FEAT_KVM
0,
// FEAT_KVM_HINTS
0,
// FEAT_HYPERV_EAX
0,
// FEAT_HYPERV_EBX
0,
// FEAT_HYPERV_EDX
0,
// FEAT_SVM
0,
// FEAT_XSAVE
CPUID_XSAVE_XSAVEOPT,
// FEAT_6_EAX
CPUID_6_EAX_ARAT,
},
"Intel Core Processor (Broadwell, no TSX, IBRS)",
},
{
"Broadwell",
0xd, 0x80000008,
CPUID_VENDOR_INTEL,
6, 61, 2,
{
// FEAT_1_EDX
CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
CPUID_DE | CPUID_FP87,
// FEAT_1_ECX
CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES |
CPUID_EXT_POPCNT | CPUID_EXT_X2APIC | CPUID_EXT_SSE42 |
CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 |
CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3 |
CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_FMA | CPUID_EXT_MOVBE |
CPUID_EXT_PCID | CPUID_EXT_F16C | CPUID_EXT_RDRAND,
// FEAT_7_0_EBX
CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_BMI1 |
CPUID_7_0_EBX_HLE | CPUID_7_0_EBX_AVX2 | CPUID_7_0_EBX_SMEP |
CPUID_7_0_EBX_BMI2 | CPUID_7_0_EBX_ERMS | CPUID_7_0_EBX_INVPCID |
CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_RDSEED | CPUID_7_0_EBX_ADX |
CPUID_7_0_EBX_SMAP,
// FEAT_7_0_ECX
0,
// FEAT_7_0_EDX
0,
// FEAT_8000_0001_EDX
CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_NX |
CPUID_EXT2_SYSCALL,
// FEAT_8000_0001_ECX
CPUID_EXT3_ABM | CPUID_EXT3_LAHF_LM | CPUID_EXT3_3DNOWPREFETCH,
// FEAT_8000_0007_EDX
0,
// FEAT_8000_0008_EBX
0,
// FEAT_C000_0001_EDX
0,
// FEAT_KVM
0,
// FEAT_KVM_HINTS
0,
// FEAT_HYPERV_EAX
0,
// FEAT_HYPERV_EBX
0,
// FEAT_HYPERV_EDX
0,
// FEAT_SVM
0,
// FEAT_XSAVE
CPUID_XSAVE_XSAVEOPT,
// FEAT_ARAT
CPUID_6_EAX_ARAT,
},
"Intel Core Processor (Broadwell)",
},
{
"Broadwell-IBRS",
0xd, 0x80000008,
CPUID_VENDOR_INTEL,
6,61,2,
{
// FEAT_1_EDX
CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
CPUID_DE | CPUID_FP87,
// FEAT_1_ECX
CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES |
CPUID_EXT_POPCNT | CPUID_EXT_X2APIC | CPUID_EXT_SSE42 |
CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 |
CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3 |
CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_FMA | CPUID_EXT_MOVBE |
CPUID_EXT_PCID | CPUID_EXT_F16C | CPUID_EXT_RDRAND,
// FEAT_7_0_EBX
CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_BMI1 |
CPUID_7_0_EBX_HLE | CPUID_7_0_EBX_AVX2 | CPUID_7_0_EBX_SMEP |
CPUID_7_0_EBX_BMI2 | CPUID_7_0_EBX_ERMS | CPUID_7_0_EBX_INVPCID |
CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_RDSEED | CPUID_7_0_EBX_ADX |
CPUID_7_0_EBX_SMAP,
// // FEAT_7_0_ECX
0,
// FEAT_7_0_EDX
CPUID_7_0_EDX_SPEC_CTRL,
// FEAT_8000_0001_EDX
CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_NX |
CPUID_EXT2_SYSCALL,
// FEAT_8000_0001_ECX
CPUID_EXT3_ABM | CPUID_EXT3_LAHF_LM | CPUID_EXT3_3DNOWPREFETCH,
// FEAT_8000_0007_EDX
0,
// FEAT_8000_0008_EBX
0,
// FEAT_C000_0001_EDX
0,
// FEAT_KVM
0,
// FEAT_KVM_HINTS
0,
// FEAT_HYPERV_EAX
0,
// FEAT_HYPERV_EBX
0,
// FEAT_HYPERV_EDX
0,
// FEAT_SVM
0,
// FEAT_XSAVE
CPUID_XSAVE_XSAVEOPT,
// FEAT_6_EAX
CPUID_6_EAX_ARAT,
},
"Intel Core Processor (Broadwell, IBRS)",
},
{
"Skylake-Client",
0xd, 0x80000008,
CPUID_VENDOR_INTEL,
6, 94, 3,
{
// FEAT_1_EDX
CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
CPUID_DE | CPUID_FP87,
// FEAT_1_ECX
CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES |
CPUID_EXT_POPCNT | CPUID_EXT_X2APIC | CPUID_EXT_SSE42 |
CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 |
CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3 |
CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_FMA | CPUID_EXT_MOVBE |
CPUID_EXT_PCID | CPUID_EXT_F16C | CPUID_EXT_RDRAND,
// FEAT_7_0_EBX
CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_BMI1 |
CPUID_7_0_EBX_HLE | CPUID_7_0_EBX_AVX2 | CPUID_7_0_EBX_SMEP |
CPUID_7_0_EBX_BMI2 | CPUID_7_0_EBX_ERMS | CPUID_7_0_EBX_INVPCID |
CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_RDSEED | CPUID_7_0_EBX_ADX |
CPUID_7_0_EBX_SMAP | CPUID_7_0_EBX_MPX,
// FEAT_7_0_ECX
0,
// FEAT_7_0_EDX
0,
// FEAT_8000_0001_EDX
CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_NX |
CPUID_EXT2_SYSCALL,
// FEAT_8000_0001_ECX
CPUID_EXT3_ABM | CPUID_EXT3_LAHF_LM | CPUID_EXT3_3DNOWPREFETCH,
// FEAT_8000_0007_EDX
0,
// FEAT_8000_0008_EBX
0,
// FEAT_C000_0001_EDX
0,
// FEAT_KVM
0,
// FEAT_KVM_HINTS
0,
// FEAT_HYPERV_EAX
0,
// FEAT_HYPERV_EBX
0,
// FEAT_HYPERV_EDX
0,
// FEAT_SVM
0,
/* Missing: XSAVES (not supported by some Linux versions,
* including v4.1 to v4.12).
* KVM doesn't yet expose any XSAVES state save component,
* and the only one defined in Skylake (processor tracing)
* probably will block migration anyway.
*/
// FEAT_XSAVE]
CPUID_XSAVE_XSAVEOPT | CPUID_XSAVE_XSAVEC |
CPUID_XSAVE_XGETBV1,
// FEAT_6_EAX
CPUID_6_EAX_ARAT,
},
"Intel Core Processor (Skylake)",
},
{
"Skylake-Client-IBRS",
0xd, 0x80000008,
CPUID_VENDOR_INTEL,
6, 94, 3,
{
// FEAT_1_EDX
CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
CPUID_DE | CPUID_FP87,
// FEAT_1_ECX
CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES |
CPUID_EXT_POPCNT | CPUID_EXT_X2APIC | CPUID_EXT_SSE42 |
CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 |
CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3 |
CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_FMA | CPUID_EXT_MOVBE |
CPUID_EXT_PCID | CPUID_EXT_F16C | CPUID_EXT_RDRAND,
// FEAT_7_0_EBX
CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_BMI1 |
CPUID_7_0_EBX_HLE | CPUID_7_0_EBX_AVX2 | CPUID_7_0_EBX_SMEP |
CPUID_7_0_EBX_BMI2 | CPUID_7_0_EBX_ERMS | CPUID_7_0_EBX_INVPCID |
CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_RDSEED | CPUID_7_0_EBX_ADX |
CPUID_7_0_EBX_SMAP | CPUID_7_0_EBX_MPX,
// FEAT_7_0_ECX
0,
// FEAT_7_0_EDX
CPUID_7_0_EDX_SPEC_CTRL,
// FEAT_8000_0001_EDX
CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_NX |
CPUID_EXT2_SYSCALL,
// FEAT_8000_0001_ECX
CPUID_EXT3_ABM | CPUID_EXT3_LAHF_LM | CPUID_EXT3_3DNOWPREFETCH,
// FEAT_8000_0007_EDX
0,
// FEAT_8000_0008_EBX
0,
// FEAT_C000_0001_EDX
0,
// FEAT_KVM
0,
// FEAT_KVM_HINTS
0,
// FEAT_HYPERV_EAX
0,
// FEAT_HYPERV_EBX
0,
// FEAT_HYPERV_EDX
0,
// FEAT_SVM
0,
/* Missing: XSAVES (not supported by some Linux versions,
* including v4.1 to v4.12).
* KVM doesn't yet expose any XSAVES state save component,
* and the only one defined in Skylake (processor tracing)
* probably will block migration anyway.
*/
// FEAT_XSAVE]
CPUID_XSAVE_XSAVEOPT | CPUID_XSAVE_XSAVEC |
CPUID_XSAVE_XGETBV1,
// FEAT_6_EAX
CPUID_6_EAX_ARAT,
},
"Intel Core Processor (Skylake, IBRS)",
},
{
"Skylake-Server",
0xd, 0x80000008,
CPUID_VENDOR_INTEL,
6,
85,
4,
{
// FEAT_1_EDX]
CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
CPUID_DE | CPUID_FP87,
// FEAT_1_ECX
CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES |
CPUID_EXT_POPCNT | CPUID_EXT_X2APIC | CPUID_EXT_SSE42 |
CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 |
CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3 |
CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_FMA | CPUID_EXT_MOVBE |
CPUID_EXT_PCID | CPUID_EXT_F16C | CPUID_EXT_RDRAND,
// FEAT_7_0_EBX
CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_BMI1 |
CPUID_7_0_EBX_HLE | CPUID_7_0_EBX_AVX2 | CPUID_7_0_EBX_SMEP |
CPUID_7_0_EBX_BMI2 | CPUID_7_0_EBX_ERMS | CPUID_7_0_EBX_INVPCID |
CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_RDSEED | CPUID_7_0_EBX_ADX |
CPUID_7_0_EBX_SMAP | CPUID_7_0_EBX_MPX | CPUID_7_0_EBX_CLWB |
CPUID_7_0_EBX_AVX512F | CPUID_7_0_EBX_AVX512DQ |
CPUID_7_0_EBX_AVX512BW | CPUID_7_0_EBX_AVX512CD |
CPUID_7_0_EBX_AVX512VL,
// FEAT_7_0_ECX
0,
// FEAT_7_0_EDX
0,
// FEAT_8000_0001_EDX
CPUID_EXT2_LM | CPUID_EXT2_PDPE1GB | CPUID_EXT2_RDTSCP |
CPUID_EXT2_NX | CPUID_EXT2_SYSCALL,
// FEAT_8000_0001_ECX
CPUID_EXT3_ABM | CPUID_EXT3_LAHF_LM | CPUID_EXT3_3DNOWPREFETCH,
// FEAT_8000_0007_EDX
0,
// FEAT_8000_0008_EBX
0,
// FEAT_C000_0001_EDX
0,
// FEAT_KVM
0,
// FEAT_KVM_HINTS
0,
// FEAT_HYPERV_EAX
0,
// FEAT_HYPERV_EBX
0,
// FEAT_HYPERV_EDX
0,
// FEAT_SVM
0,
/* Missing: XSAVES (not supported by some Linux versions,
* including v4.1 to v4.12).
* KVM doesn't yet expose any XSAVES state save component,
* and the only one defined in Skylake (processor tracing)
* probably will block migration anyway.
*/
// FEAT_XSAVE
CPUID_XSAVE_XSAVEOPT | CPUID_XSAVE_XSAVEC |
CPUID_XSAVE_XGETBV1,
// FEAT_6_EAX
CPUID_6_EAX_ARAT,
},
"Intel Xeon Processor (Skylake)",
},
{
"Skylake-Server-IBRS",
0xd, 0x80000008,
CPUID_VENDOR_INTEL,
6,85,4,
{
// FEAT_1_EDX]
CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
CPUID_DE | CPUID_FP87,
// FEAT_1_ECX
CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES |
CPUID_EXT_POPCNT | CPUID_EXT_X2APIC | CPUID_EXT_SSE42 |
CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 |
CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3 |
CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_FMA | CPUID_EXT_MOVBE |
CPUID_EXT_PCID | CPUID_EXT_F16C | CPUID_EXT_RDRAND,
// FEAT_7_0_EBX
CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_BMI1 |
CPUID_7_0_EBX_HLE | CPUID_7_0_EBX_AVX2 | CPUID_7_0_EBX_SMEP |
CPUID_7_0_EBX_BMI2 | CPUID_7_0_EBX_ERMS | CPUID_7_0_EBX_INVPCID |
CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_RDSEED | CPUID_7_0_EBX_ADX |
CPUID_7_0_EBX_SMAP | CPUID_7_0_EBX_MPX | CPUID_7_0_EBX_CLWB |
CPUID_7_0_EBX_AVX512F | CPUID_7_0_EBX_AVX512DQ |
CPUID_7_0_EBX_AVX512BW | CPUID_7_0_EBX_AVX512CD |
CPUID_7_0_EBX_AVX512VL,
// FEAT_7_0_ECX
0,
// FEAT_7_0_EDX
CPUID_7_0_EDX_SPEC_CTRL,
// FEAT_8000_0001_EDX
CPUID_EXT2_LM | CPUID_EXT2_PDPE1GB | CPUID_EXT2_RDTSCP |
CPUID_EXT2_NX | CPUID_EXT2_SYSCALL,
// FEAT_8000_0001_ECX
CPUID_EXT3_ABM | CPUID_EXT3_LAHF_LM | CPUID_EXT3_3DNOWPREFETCH,
// FEAT_8000_0007_EDX
0,
// FEAT_8000_0008_EBX
0,
// FEAT_C000_0001_EDX
0,
// FEAT_KVM
0,
// FEAT_KVM_HINTS
0,
// FEAT_HYPERV_EAX
0,
// FEAT_HYPERV_EBX
0,
// FEAT_HYPERV_EDX
0,
// FEAT_SVM
0,
/* Missing: XSAVES (not supported by some Linux versions,
* including v4.1 to v4.12).
* KVM doesn't yet expose any XSAVES state save component,
* and the only one defined in Skylake (processor tracing)
* probably will block migration anyway.
*/
// FEAT_XSAVE
CPUID_XSAVE_XSAVEOPT | CPUID_XSAVE_XSAVEC |
CPUID_XSAVE_XGETBV1,
// FEAT_6_EAX
CPUID_6_EAX_ARAT,
},
"Intel Xeon Processor (Skylake, IBRS)",
},
{
"KnightsMill",
0xd, 0x80000008,
CPUID_VENDOR_INTEL,
6,
133,
0,
{
// FEAT_1_EDX
CPUID_VME | CPUID_SS | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR |
CPUID_MMX | CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV |
CPUID_MCA | CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC |
CPUID_CX8 | CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC |
CPUID_PSE | CPUID_DE | CPUID_FP87,
// FEAT_1_ECX
CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES |
CPUID_EXT_POPCNT | CPUID_EXT_X2APIC | CPUID_EXT_SSE42 |
CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 |
CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3 |
CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_FMA | CPUID_EXT_MOVBE |
CPUID_EXT_F16C | CPUID_EXT_RDRAND,
// FEAT_7_0_EBX
CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_BMI1 | CPUID_7_0_EBX_AVX2 |
CPUID_7_0_EBX_SMEP | CPUID_7_0_EBX_BMI2 | CPUID_7_0_EBX_ERMS |
CPUID_7_0_EBX_RDSEED | CPUID_7_0_EBX_ADX | CPUID_7_0_EBX_AVX512F |
CPUID_7_0_EBX_AVX512CD | CPUID_7_0_EBX_AVX512PF |
CPUID_7_0_EBX_AVX512ER,
// FEAT_7_0_ECX
CPUID_7_0_ECX_AVX512_VPOPCNTDQ,
// FEAT_7_0_EDX
CPUID_7_0_EDX_AVX512_4VNNIW | CPUID_7_0_EDX_AVX512_4FMAPS,
// FEAT_8000_0001_EDX
CPUID_EXT2_LM | CPUID_EXT2_PDPE1GB | CPUID_EXT2_RDTSCP |
CPUID_EXT2_NX | CPUID_EXT2_SYSCALL,
// FEAT_8000_0001_ECX
CPUID_EXT3_ABM | CPUID_EXT3_LAHF_LM | CPUID_EXT3_3DNOWPREFETCH,
// FEAT_8000_0007_EDX
0,
// FEAT_8000_0008_EBX
0,
// FEAT_C000_0001_EDX
0,
// FEAT_KVM
0,
// FEAT_KVM_HINTS
0,
// FEAT_HYPERV_EAX
0,
// FEAT_HYPERV_EBX
0,
// FEAT_HYPERV_EDX
0,
// FEAT_SVM
0,
// FEAT_XSAVE
CPUID_XSAVE_XSAVEOPT,
// FEAT_6_EAX
CPUID_6_EAX_ARAT,
},
"Intel Xeon Phi Processor (Knights Mill)",
},
{
"Opteron_G1",
5, 0x80000008,
CPUID_VENDOR_AMD,
15, 6, 1,
{
// FEAT_1_EDX
CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
CPUID_DE | CPUID_FP87,
// FEAT_1_ECX
CPUID_EXT_SSE3,
// FEAT_7_0_EBX
0,
// FEAT_7_0_ECX
0,
// FEAT_7_0_EDX
0,
// FEAT_8000_0001_EDX
CPUID_EXT2_LM | CPUID_EXT2_NX | CPUID_EXT2_SYSCALL,
},
"AMD Opteron 240 (Gen 1 Class Opteron)",
},
{
"Opteron_G2",
5, 0x80000008,
CPUID_VENDOR_AMD,
15, 6, 1,
{
// FEAT_1_EDX
CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
CPUID_DE | CPUID_FP87,
// FEAT_1_ECX
CPUID_EXT_CX16 | CPUID_EXT_SSE3,
// FEAT_7_0_EBX
0,
// FEAT_7_0_ECX
0,
// FEAT_7_0_EDX
0,
// FEAT_8000_0001_EDX
CPUID_EXT2_LM | CPUID_EXT2_NX | CPUID_EXT2_SYSCALL,
// FEAT_8000_0001_ECX
CPUID_EXT3_SVM | CPUID_EXT3_LAHF_LM,
},
"AMD Opteron 22xx (Gen 2 Class Opteron)",
},
{
"Opteron_G3",
5, 0x80000008,
CPUID_VENDOR_AMD,
16, 2, 3,
{
// FEAT_1_EDX
CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
CPUID_DE | CPUID_FP87,
// FEAT_1_ECX
CPUID_EXT_POPCNT | CPUID_EXT_CX16 | CPUID_EXT_MONITOR |
CPUID_EXT_SSE3,
// FEAT_7_0_EBX
0,
// FEAT_7_0_ECX
0,
// FEAT_7_0_EDX
0,
// FEAT_8000_0001_EDX
CPUID_EXT2_LM | CPUID_EXT2_NX | CPUID_EXT2_SYSCALL,
// FEAT_8000_0001_ECX
CPUID_EXT3_MISALIGNSSE | CPUID_EXT3_SSE4A |
CPUID_EXT3_ABM | CPUID_EXT3_SVM | CPUID_EXT3_LAHF_LM,
},
"AMD Opteron 23xx (Gen 3 Class Opteron)",
},
{
"Opteron_G4",
0xd, 0x8000001A,
CPUID_VENDOR_AMD,
21, 1, 2,
{
// FEAT_1_EDX
CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
CPUID_DE | CPUID_FP87,
// FEAT_1_ECX
CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES |
CPUID_EXT_POPCNT | CPUID_EXT_SSE42 | CPUID_EXT_SSE41 |
CPUID_EXT_CX16 | CPUID_EXT_SSSE3 | CPUID_EXT_PCLMULQDQ |
CPUID_EXT_SSE3,
// FEAT_7_0_EBX
0,
// FEAT_7_0_ECX
0,
// FEAT_7_0_EDX
0,
// FEAT_8000_0001_EDX
CPUID_EXT2_LM | CPUID_EXT2_PDPE1GB | CPUID_EXT2_NX |
CPUID_EXT2_SYSCALL,
// FEAT_8000_0001_ECX
CPUID_EXT3_FMA4 | CPUID_EXT3_XOP |
CPUID_EXT3_3DNOWPREFETCH | CPUID_EXT3_MISALIGNSSE |
CPUID_EXT3_SSE4A | CPUID_EXT3_ABM | CPUID_EXT3_SVM |
CPUID_EXT3_LAHF_LM,
},
"AMD Opteron 62xx class CPU",
},
{
"Opteron_G5",
0xd, 0x8000001A,
CPUID_VENDOR_AMD,
21, 2, 0,
{
// FEAT_1_EDX
CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
CPUID_DE | CPUID_FP87,
// FEAT_1_ECX
CPUID_EXT_F16C | CPUID_EXT_AVX | CPUID_EXT_XSAVE |
CPUID_EXT_AES | CPUID_EXT_POPCNT | CPUID_EXT_SSE42 |
CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_FMA |
CPUID_EXT_SSSE3 | CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3,
// FEAT_7_0_EBX
0,
// FEAT_7_0_ECX
0,
// FEAT_7_0_EDX
0,
// FEAT_8000_0001_EDX
CPUID_EXT2_LM | CPUID_EXT2_PDPE1GB | CPUID_EXT2_NX |
CPUID_EXT2_SYSCALL,
// FEAT_8000_0001_ECX
CPUID_EXT3_TBM | CPUID_EXT3_FMA4 | CPUID_EXT3_XOP |
CPUID_EXT3_3DNOWPREFETCH | CPUID_EXT3_MISALIGNSSE |
CPUID_EXT3_SSE4A | CPUID_EXT3_ABM | CPUID_EXT3_SVM |
CPUID_EXT3_LAHF_LM,
},
"AMD Opteron 63xx class CPU",
},
{
"EPYC",
0xd, 0x8000000A,
CPUID_VENDOR_AMD,
23, 1, 2,
{
// FEAT_1_EDX
CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX | CPUID_CLFLUSH |
CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA | CPUID_PGE |
CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 | CPUID_MCE |
CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE | CPUID_DE |
CPUID_VME | CPUID_FP87,
// FEAT_1_ECX
CPUID_EXT_RDRAND | CPUID_EXT_F16C | CPUID_EXT_AVX |
CPUID_EXT_XSAVE | CPUID_EXT_AES | CPUID_EXT_POPCNT |
CPUID_EXT_MOVBE | CPUID_EXT_SSE42 | CPUID_EXT_SSE41 |
CPUID_EXT_CX16 | CPUID_EXT_FMA | CPUID_EXT_SSSE3 |
CPUID_EXT_MONITOR | CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3,
// FEAT_7_0_EBX
CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_BMI1 | CPUID_7_0_EBX_AVX2 |
CPUID_7_0_EBX_SMEP | CPUID_7_0_EBX_BMI2 | CPUID_7_0_EBX_RDSEED |
CPUID_7_0_EBX_ADX | CPUID_7_0_EBX_SMAP | CPUID_7_0_EBX_CLFLUSHOPT |
CPUID_7_0_EBX_SHA_NI,
// FEAT_7_0_ECX
0,
// FEAT_7_0_EDX
0,
// FEAT_8000_0001_EDX
CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_PDPE1GB |
CPUID_EXT2_FFXSR | CPUID_EXT2_MMXEXT | CPUID_EXT2_NX |
CPUID_EXT2_SYSCALL,
// FEAT_8000_0001_ECX
CPUID_EXT3_OSVW | CPUID_EXT3_3DNOWPREFETCH |
CPUID_EXT3_MISALIGNSSE | CPUID_EXT3_SSE4A | CPUID_EXT3_ABM |
CPUID_EXT3_CR8LEG | CPUID_EXT3_SVM | CPUID_EXT3_LAHF_LM,
// FEAT_8000_0007_EDX
0,
// FEAT_8000_0008_EBX
0,
// FEAT_C000_0001_EDX
0,
// FEAT_KVM
0,
// FEAT_KVM_HINTS
0,
// FEAT_HYPERV_EAX
0,
// FEAT_HYPERV_EBX
0,
// FEAT_HYPERV_EDX
0,
// FEAT_SVM
0,
/* Missing: XSAVES (not supported by some Linux versions,
* including v4.1 to v4.12).
* KVM doesn't yet expose any XSAVES state save component.
*/
// FEAT_XSAVE
CPUID_XSAVE_XSAVEOPT | CPUID_XSAVE_XSAVEC |
CPUID_XSAVE_XGETBV1,
// FEAT_6_EAX
CPUID_6_EAX_ARAT,
},
"AMD EPYC Processor",
false,
&epyc_cache_info,
},
{
"EPYC-IBPB",
0xd, 0x8000000A,
CPUID_VENDOR_AMD,
23, 1, 2,
{
// FEAT_1_EDX
CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX | CPUID_CLFLUSH |
CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA | CPUID_PGE |
CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 | CPUID_MCE |
CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE | CPUID_DE |
CPUID_VME | CPUID_FP87,
// FEAT_1_ECX
CPUID_EXT_RDRAND | CPUID_EXT_F16C | CPUID_EXT_AVX |
CPUID_EXT_XSAVE | CPUID_EXT_AES | CPUID_EXT_POPCNT |
CPUID_EXT_MOVBE | CPUID_EXT_SSE42 | CPUID_EXT_SSE41 |
CPUID_EXT_CX16 | CPUID_EXT_FMA | CPUID_EXT_SSSE3 |
CPUID_EXT_MONITOR | CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3,
// FEAT_7_0_EBX
CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_BMI1 | CPUID_7_0_EBX_AVX2 |
CPUID_7_0_EBX_SMEP | CPUID_7_0_EBX_BMI2 | CPUID_7_0_EBX_RDSEED |
CPUID_7_0_EBX_ADX | CPUID_7_0_EBX_SMAP | CPUID_7_0_EBX_CLFLUSHOPT |
CPUID_7_0_EBX_SHA_NI,
// FEAT_7_0_ECX
0,
// FEAT_7_0_EDX
0,
// FEAT_8000_0001_EDX
CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_PDPE1GB |
CPUID_EXT2_FFXSR | CPUID_EXT2_MMXEXT | CPUID_EXT2_NX |
CPUID_EXT2_SYSCALL,
// FEAT_8000_0001_ECX
CPUID_EXT3_OSVW | CPUID_EXT3_3DNOWPREFETCH |
CPUID_EXT3_MISALIGNSSE | CPUID_EXT3_SSE4A | CPUID_EXT3_ABM |
CPUID_EXT3_CR8LEG | CPUID_EXT3_SVM | CPUID_EXT3_LAHF_LM,
// FEAT_8000_0007_EDX
0,
// FEAT_8000_0008_EBX
CPUID_8000_0008_EBX_IBPB,
// FEAT_C000_0001_EDX
0,
// FEAT_KVM
0,
// FEAT_KVM_HINTS
0,
// FEAT_HYPERV_EAX
0,
// FEAT_HYPERV_EBX
0,
// FEAT_HYPERV_EDX
0,
// FEAT_SVM
0,
/* Missing: XSAVES (not supported by some Linux versions,
* including v4.1 to v4.12).
* KVM doesn't yet expose any XSAVES state save component.
*/
// FEAT_XSAVE
CPUID_XSAVE_XSAVEOPT | CPUID_XSAVE_XSAVEC |
CPUID_XSAVE_XGETBV1,
// FEAT_6_EAX
CPUID_6_EAX_ARAT,
},
"AMD EPYC Processor (with IBPB)",
false,
&epyc_cache_info,
},
};
typedef struct PropValue {
const char *prop, *value;
} PropValue;
/* TCG-specific defaults that override all CPU models when using TCG
*/
static PropValue tcg_default_props[] = {
{ "vme", "off" },
{ NULL, NULL },
};
static uint32_t x86_cpu_get_supported_feature_word(struct uc_struct *uc,
FeatureWord w, bool migratable);
static void report_unavailable_features(FeatureWord w, uint32_t mask)
{
FeatureWordInfo *f = &feature_word_info[w];
int i;
for (i = 0; i < 32; ++i) {
if ((1UL << i) & mask) {
const char *reg = get_register_name_32(f->cpuid_reg);
assert(reg);
fprintf(stderr, "warning: %s doesn't support requested feature: "
"CPUID.%02XH:%s%s%s [bit %d]\n",
"TCG",
f->cpuid_eax, reg,
f->feat_names[i] ? "." : "",
f->feat_names[i] ? f->feat_names[i] : "", i);
}
}
}
static void x86_cpuid_version_get_family(struct uc_struct *uc,
Object *obj, Visitor *v,
const char *name, void *opaque,
Error **errp)
{
X86CPU *cpu = X86_CPU(uc, obj);
CPUX86State *env = &cpu->env;
int64_t value;
value = (env->cpuid_version >> 8) & 0xf;
if (value == 0xf) {
value += (env->cpuid_version >> 20) & 0xff;
}
visit_type_int(v, name, &value, errp);
}
static void x86_cpuid_version_set_family(struct uc_struct *uc,
Object *obj, Visitor *v,
const char *name, void *opaque,
Error **errp)
{
X86CPU *cpu = X86_CPU(uc, obj);
CPUX86State *env = &cpu->env;
const int64_t min = 0;
const int64_t max = 0xff + 0xf;
Error *local_err = NULL;
int64_t value;
visit_type_int(v, name, &value, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
if (value < min || value > max) {
error_setg(errp, QERR_PROPERTY_VALUE_OUT_OF_RANGE, "",
name ? name : "null", value, min, max);
return;
}
env->cpuid_version &= ~0xff00f00;
if (value > 0x0f) {
env->cpuid_version |= 0xf00 | ((value - 0x0f) << 20);
} else {
env->cpuid_version |= value << 8;
}
}
static void x86_cpuid_version_get_model(struct uc_struct *uc,
Object *obj, Visitor *v,
const char *name, void *opaque,
Error **errp)
{
X86CPU *cpu = X86_CPU(uc, obj);
CPUX86State *env = &cpu->env;
int64_t value;
value = (env->cpuid_version >> 4) & 0xf;
value |= ((env->cpuid_version >> 16) & 0xf) << 4;
visit_type_int(v, name, &value, errp);
}
static void x86_cpuid_version_set_model(struct uc_struct *uc,
Object *obj, Visitor *v,
const char *name, void *opaque,
Error **errp)
{
X86CPU *cpu = X86_CPU(uc, obj);
CPUX86State *env = &cpu->env;
const int64_t min = 0;
const int64_t max = 0xff;
Error *local_err = NULL;
int64_t value;
visit_type_int(v, name, &value, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
if (value < min || value > max) {
error_setg(errp, QERR_PROPERTY_VALUE_OUT_OF_RANGE, "",
name ? name : "null", value, min, max);
return;
}
env->cpuid_version &= ~0xf00f0;
env->cpuid_version |= ((value & 0xf) << 4) | ((value >> 4) << 16);
}
static void x86_cpuid_version_get_stepping(struct uc_struct *uc,
Object *obj, Visitor *v,
const char *name, void *opaque,
Error **errp)
{
X86CPU *cpu = X86_CPU(uc, obj);
CPUX86State *env = &cpu->env;
int64_t value;
value = env->cpuid_version & 0xf;
visit_type_int(v, name, &value, errp);
}
static void x86_cpuid_version_set_stepping(struct uc_struct *uc,
Object *obj, Visitor *v,
const char *name, void *opaque,
Error **errp)
{
X86CPU *cpu = X86_CPU(uc, obj);
CPUX86State *env = &cpu->env;
const int64_t min = 0;
const int64_t max = 0xf;
Error *local_err = NULL;
int64_t value;
visit_type_int(v, name, &value, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
if (value < min || value > max) {
error_setg(errp, QERR_PROPERTY_VALUE_OUT_OF_RANGE, "",
name ? name : "null", value, min, max);
return;
}
env->cpuid_version &= ~0xf;
env->cpuid_version |= value & 0xf;
}
static char *x86_cpuid_get_vendor(struct uc_struct *uc, Object *obj, Error **errp)
{
X86CPU *cpu = X86_CPU(uc, obj);
CPUX86State *env = &cpu->env;
char *value;
value = (char *)g_malloc(CPUID_VENDOR_SZ + 1);
x86_cpu_vendor_words2str(value, env->cpuid_vendor1, env->cpuid_vendor2,
env->cpuid_vendor3);
return value;
}
static int x86_cpuid_set_vendor(struct uc_struct *uc, Object *obj,
const char *value, Error **errp)
{
X86CPU *cpu = X86_CPU(uc, obj);
CPUX86State *env = &cpu->env;
int i;
if (strlen(value) != CPUID_VENDOR_SZ) {
error_setg(errp, QERR_PROPERTY_VALUE_BAD, "",
"vendor", value);
return -1;
}
env->cpuid_vendor1 = 0;
env->cpuid_vendor2 = 0;
env->cpuid_vendor3 = 0;
for (i = 0; i < 4; i++) {
env->cpuid_vendor1 |= ((uint8_t)value[i ]) << (8 * i);
env->cpuid_vendor2 |= ((uint8_t)value[i + 4]) << (8 * i);
env->cpuid_vendor3 |= ((uint8_t)value[i + 8]) << (8 * i);
}
return 0;
}
static char *x86_cpuid_get_model_id(struct uc_struct *uc, Object *obj, Error **errp)
{
X86CPU *cpu = X86_CPU(uc, obj);
CPUX86State *env = &cpu->env;
char *value;
int i;
value = g_malloc(48 + 1);
for (i = 0; i < 48; i++) {
value[i] = env->cpuid_model[i >> 2] >> (8 * (i & 3));
}
value[48] = '\0';
return value;
}
static int x86_cpuid_set_model_id(struct uc_struct *uc, Object *obj,
const char *model_id, Error **errp)
{
X86CPU *cpu = X86_CPU(uc, obj);
CPUX86State *env = &cpu->env;
int c, len, i;
if (model_id == NULL) {
model_id = "";
}
len = strlen(model_id);
memset(env->cpuid_model, 0, 48);
for (i = 0; i < 48; i++) {
if (i >= len) {
c = '\0';
} else {
c = (uint8_t)model_id[i];
}
env->cpuid_model[i >> 2] |= c << (8 * (i & 3));
}
return 0;
}
static void x86_cpuid_get_tsc_freq(struct uc_struct *uc,
Object *obj, Visitor *v,
const char *name, void *opaque,
Error **errp)
{
X86CPU *cpu = X86_CPU(uc, obj);
int64_t value;
value = cpu->env.tsc_khz * 1000;
visit_type_int(v, name, &value, errp);
}
static void x86_cpuid_set_tsc_freq(struct uc_struct *uc,
Object *obj, Visitor *v,
const char *name, void *opaque,
Error **errp)
{
X86CPU *cpu = X86_CPU(uc, obj);
const int64_t min = 0;
const int64_t max = INT64_MAX;
Error *local_err = NULL;
int64_t value;
visit_type_int(v, name, &value, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
if (value < min || value > max) {
error_setg(errp, QERR_PROPERTY_VALUE_OUT_OF_RANGE, "",
name ? name : "null", value, min, max);
return;
}
cpu->env.tsc_khz = (int)(value / 1000);
}
/* Generic getter for "feature-words" and "filtered-features" properties */
static void x86_cpu_get_feature_words(struct uc_struct *uc,
Object *obj, Visitor *v,
const char *name, void *opaque,
Error **errp)
{
uint32_t *array = (uint32_t *)opaque;
FeatureWord w;
// These all get setup below, so no need to initialise them here.
X86CPUFeatureWordInfo word_infos[FEATURE_WORDS];
X86CPUFeatureWordInfoList list_entries[FEATURE_WORDS];
X86CPUFeatureWordInfoList *list = NULL;
for (w = 0; w < FEATURE_WORDS; w++) {
FeatureWordInfo *wi = &feature_word_info[w];
X86CPUFeatureWordInfo *qwi = &word_infos[w];
qwi->cpuid_input_eax = wi->cpuid_eax;
qwi->has_cpuid_input_ecx = wi->cpuid_needs_ecx;
qwi->cpuid_input_ecx = wi->cpuid_ecx;
qwi->cpuid_register = x86_reg_info_32[wi->cpuid_reg].qapi_enum;
qwi->features = array[w];
/* List will be in reverse order, but order shouldn't matter */
list_entries[w].next = list;
list_entries[w].value = &word_infos[w];
list = &list_entries[w];
}
visit_type_X86CPUFeatureWordInfoList(v, "feature-words", &list, errp);
}
/* Convert all '_' in a feature string option name to '-', to make feature
* name conform to QOM property naming rule, which uses '-' instead of '_'.
*/
static inline void feat2prop(char *s)
{
while ((s = strchr(s, '_'))) {
*s = '-';
}
}
/* Parse "+feature,-feature,feature=foo" CPU feature string
*/
static void x86_cpu_parse_featurestr(struct uc_struct *uc, const char *typename, char *features,
Error **errp)
{
X86CPU *cpu = X86_CPU(uc, uc->cpu);
char *featurestr; /* Single 'key=value" string being parsed */
Error *local_err = NULL;
if (cpu->cpu_globals_initialized) {
return;
}
cpu->cpu_globals_initialized = true;
if (!features) {
return;
}
for (featurestr = strtok(features, ",");
featurestr && !local_err;
featurestr = strtok(NULL, ",")) {
const char *name;
const char *val = NULL;
char *eq = NULL;
char num[32];
// Unicorn: If'd out
#if 0
GlobalProperty *prop;
#endif
/* Compatibility syntax: */
if (featurestr[0] == '+') {
add_flagname_to_bitmaps(featurestr + 1, cpu->plus_features, &local_err);
continue;
} else if (featurestr[0] == '-') {
add_flagname_to_bitmaps(featurestr + 1, cpu->minus_features, &local_err);
continue;
}
eq = strchr(featurestr, '=');
if (eq) {
*eq++ = 0;
val = eq;
} else {
val = "on";
}
feat2prop(featurestr);
name = featurestr;
/* Special case: */
if (!strcmp(name, "tsc-freq")) {
int ret;
uint64_t tsc_freq;
ret = qemu_strtosz_metric(val, NULL, &tsc_freq);
if (ret < 0 || tsc_freq > INT64_MAX) {
error_setg(errp, "bad numerical value %s", val);
return;
}
snprintf(num, sizeof(num), "%" PRId64, tsc_freq);
val = num;
name = "tsc-frequency";
}
// Unicorn: if'd out
#if 0
prop = g_new0(GlobalProperty, 1);
prop->driver = typename;
prop->property = g_strdup(name);
prop->value = g_strdup(val);
prop->errp = &error_fatal;
qdev_prop_register_global(prop);
#endif
}
if (local_err) {
error_propagate(errp, local_err);
}
}
static uint32_t x86_cpu_get_supported_feature_word(struct uc_struct *uc,
FeatureWord w, bool migratable_only)
{
FeatureWordInfo *wi = &feature_word_info[w];
uint32_t r;
if (tcg_enabled(uc)) {
r = wi->tcg_features;
} else {
return ~0;
}
if (migratable_only) {
r &= x86_cpu_get_migratable_flags(w);
}
return r;
}
static void x86_cpu_report_filtered_features(X86CPU *cpu)
{
FeatureWord w;
for (w = 0; w < FEATURE_WORDS; w++) {
report_unavailable_features(w, cpu->filtered_features[w]);
}
}
static void x86_cpu_apply_props(X86CPU *cpu, PropValue *props)
{
CPUX86State *env = &cpu->env;
PropValue *pv;
for (pv = props; pv->prop; pv++) {
if (!pv->value) {
continue;
}
object_property_parse(env->uc, OBJECT(cpu), pv->value, pv->prop,
&error_abort);
}
}
/* Load data from X86CPUDefinition
*/
static void x86_cpu_load_def(X86CPU *cpu, X86CPUDefinition *def, Error **errp)
{
CPUX86State *env = &cpu->env;
const char *vendor;
FeatureWord w;
object_property_set_int(env->uc, OBJECT(cpu), def->level, "level", errp);
object_property_set_int(env->uc, OBJECT(cpu), def->family, "family", errp);
object_property_set_int(env->uc, OBJECT(cpu), def->model, "model", errp);
object_property_set_int(env->uc, OBJECT(cpu), def->stepping, "stepping", errp);
object_property_set_int(env->uc, OBJECT(cpu), def->xlevel, "xlevel", errp);
cpu->cache_info_passthrough = def->cache_info_passthrough;
object_property_set_str(env->uc, OBJECT(cpu), def->model_id, "model-id", errp);
for (w = 0; w < FEATURE_WORDS; w++) {
env->features[w] = def->features[w];
}
/* Store Cache information from the X86CPUDefinition if available */
/* legacy-cache defaults to 'off' if CPU model provides cache info */
cpu->legacy_cache = !def->cache_info;
if (tcg_enabled(env->uc)) {
x86_cpu_apply_props(cpu, tcg_default_props);
}
env->features[FEAT_1_ECX] |= CPUID_EXT_HYPERVISOR;
/* sysenter isn't supported in compatibility mode on AMD,
* syscall isn't supported in compatibility mode on Intel.
* Normally we advertise the actual CPU vendor, but you can
* override this using the 'vendor' property if you want to use
* KVM's sysenter/syscall emulation in compatibility mode and
* when doing cross vendor migration
*/
vendor = def->vendor;
object_property_set_str(env->uc, OBJECT(cpu), vendor, "vendor", errp);
}
static void x86_cpu_cpudef_class_init(struct uc_struct *uc, ObjectClass *oc, void *data)
{
X86CPUDefinition *cpudef = data;
X86CPUClass *xcc = X86_CPU_CLASS(uc, oc);
xcc->cpu_def = cpudef;
}
static void x86_register_cpudef_type(struct uc_struct *uc, X86CPUDefinition *def)
{
char *typename = x86_cpu_type_name(def->name);
TypeInfo ti = {
typename,
TYPE_X86_CPU,
0,
0,
NULL,
NULL,
NULL,
NULL,
def,
x86_cpu_cpudef_class_init,
};
/* catch mistakes instead of silently truncating model_id when too long */
assert(def->model_id && strlen(def->model_id) <= 48);
type_register(uc, &ti);
g_free(typename);
}
#if !defined(CONFIG_USER_ONLY)
void cpu_clear_apic_feature(CPUX86State *env)
{
env->features[FEAT_1_EDX] &= ~CPUID_APIC;
}
#endif /* !CONFIG_USER_ONLY */
void cpu_x86_cpuid(CPUX86State *env, uint32_t index, uint32_t count,
uint32_t *eax, uint32_t *ebx,
uint32_t *ecx, uint32_t *edx)
{
X86CPU *cpu = x86_env_get_cpu(env);
CPUState *cs = CPU(cpu);
uint32_t pkg_offset;
uint32_t limit;
uint32_t signature[3];
/* Calculate & apply limits for different index ranges */
if (index >= 0xC0000000) {
limit = env->cpuid_xlevel2;
} else if (index >= 0x80000000) {
limit = env->cpuid_xlevel;
} else if (index >= 0x40000000) {
limit = 0x40000001;
} else {
limit = env->cpuid_level;
}
if (index > limit) {
/* Intel documentation states that invalid EAX input will
* return the same information as EAX=cpuid_level
* (Intel SDM Vol. 2A - Instruction Set Reference - CPUID)
*/
index = env->cpuid_level;
}
switch(index) {
case 0:
*eax = env->cpuid_level;
*ebx = env->cpuid_vendor1;
*edx = env->cpuid_vendor2;
*ecx = env->cpuid_vendor3;
break;
case 1:
*eax = env->cpuid_version;
*ebx = (cpu->apic_id << 24) |
8 << 8; /* CLFLUSH size in quad words, Linux wants it. */
*ecx = env->features[FEAT_1_ECX];
if ((*ecx & CPUID_EXT_XSAVE) && (env->cr[4] & CR4_OSXSAVE_MASK)) {
*ecx |= CPUID_EXT_OSXSAVE;
}
*edx = env->features[FEAT_1_EDX];
if (cs->nr_cores * cs->nr_threads > 1) {
*ebx |= (cs->nr_cores * cs->nr_threads) << 16;
*edx |= CPUID_HT;
}
break;
case 2:
/* cache info: needed for Pentium Pro compatibility */
if (cpu->cache_info_passthrough) {
host_cpuid(index, 0, eax, ebx, ecx, edx);
break;
}
*eax = 1; /* Number of CPUID[EAX=2] calls required */
*ebx = 0;
if (!cpu->enable_l3_cache) {
*ecx = 0;
} else {
*ecx = cpuid2_cache_descriptor(env->cache_info_cpuid2.l3_cache);
}
*edx = (cpuid2_cache_descriptor(env->cache_info_cpuid2.l1d_cache) << 16) |
(cpuid2_cache_descriptor(env->cache_info_cpuid2.l1i_cache) << 8) |
(cpuid2_cache_descriptor(env->cache_info_cpuid2.l2_cache));
break;
case 4:
/* cache info: needed for Core compatibility */
if (cpu->cache_info_passthrough) {
host_cpuid(index, count, eax, ebx, ecx, edx);
/* QEMU gives out its own APIC IDs, never pass down bits 31..26. */
*eax &= ~0xFC000000;
if ((*eax & 31) && cs->nr_cores > 1) {
*eax |= (cs->nr_cores - 1) << 26;
}
} else {
*eax = 0;
switch (count) {
case 0: /* L1 dcache info */
encode_cache_cpuid4(env->cache_info_cpuid4.l1d_cache,
1, cs->nr_cores,
eax, ebx, ecx, edx);
break;
case 1: /* L1 icache info */
encode_cache_cpuid4(env->cache_info_cpuid4.l1i_cache,
1, cs->nr_cores,
eax, ebx, ecx, edx);
break;
case 2: /* L2 cache info */
encode_cache_cpuid4(env->cache_info_cpuid4.l2_cache,
cs->nr_threads, cs->nr_cores,
eax, ebx, ecx, edx);
break;
case 3: /* L3 cache info */
pkg_offset = apicid_pkg_offset(cs->nr_cores, cs->nr_threads);
if (cpu->enable_l3_cache) {
encode_cache_cpuid4(env->cache_info_cpuid4.l3_cache,
(1 << pkg_offset), cs->nr_cores,
eax, ebx, ecx, edx);
break;
}
/* fall through */
default: /* end of info */
*eax = *ebx = *ecx = *edx = 0;
break;
}
}
break;
case 5:
/* mwait info: needed for Core compatibility */
*eax = 0; /* Smallest monitor-line size in bytes */
*ebx = 0; /* Largest monitor-line size in bytes */
*ecx = CPUID_MWAIT_EMX | CPUID_MWAIT_IBE;
*edx = 0;
break;
case 6:
/* Thermal and Power Leaf */
*eax = env->features[FEAT_6_EAX];
*ebx = 0;
*ecx = 0;
*edx = 0;
break;
case 7:
/* Structured Extended Feature Flags Enumeration Leaf */
if (count == 0) {
*eax = 0; /* Maximum ECX value for sub-leaves */
*ebx = env->features[FEAT_7_0_EBX]; /* Feature flags */
*ecx = env->features[FEAT_7_0_ECX]; /* Feature flags */
if ((*ecx & CPUID_7_0_ECX_PKU) && env->cr[4] & CR4_PKE_MASK) {
*ecx |= CPUID_7_0_ECX_OSPKE;
}
*edx = env->features[FEAT_7_0_EDX]; /* Feature flags */
} else {
*eax = 0;
*ebx = 0;
*ecx = 0;
*edx = 0;
}
break;
case 9:
/* Direct Cache Access Information Leaf */
*eax = 0; /* Bits 0-31 in DCA_CAP MSR */
*ebx = 0;
*ecx = 0;
*edx = 0;
break;
case 0xA:
/* Architectural Performance Monitoring Leaf */
*eax = 0;
*ebx = 0;
*ecx = 0;
*edx = 0;
break;
case 0xB:
/* Extended Topology Enumeration Leaf */
if (!cpu->enable_cpuid_0xb) {
*eax = *ebx = *ecx = *edx = 0;
break;
}
*ecx = count & 0xff;
*edx = cpu->apic_id;
switch (count) {
case 0:
*eax = apicid_core_offset(smp_cores, smp_threads);
*ebx = smp_threads;
*ecx |= CPUID_TOPOLOGY_LEVEL_SMT;
break;
case 1:
*eax = apicid_pkg_offset(smp_cores, smp_threads);
*ebx = smp_cores * smp_threads;
*ecx |= CPUID_TOPOLOGY_LEVEL_CORE;
break;
default:
*eax = 0;
*ebx = 0;
*ecx |= CPUID_TOPOLOGY_LEVEL_INVALID;
}
assert(!(*eax & ~0x1f));
*ebx &= 0xffff; /* The count doesn't need to be reliable. */
break;
case 0xD: {
/* Processor Extended State */
*eax = 0;
*ebx = 0;
*ecx = 0;
*edx = 0;
if (!(env->features[FEAT_1_ECX] & CPUID_EXT_XSAVE)) {
break;
}
if (count == 0) {
*ecx = xsave_area_size(x86_cpu_xsave_components(cpu));
*eax = env->features[FEAT_XSAVE_COMP_LO];
*edx = env->features[FEAT_XSAVE_COMP_HI];
*ebx = *ecx;
} else if (count == 1) {
*eax = env->features[FEAT_XSAVE];
} else if (count < ARRAY_SIZE(x86_ext_save_areas)) {
if ((x86_cpu_xsave_components(cpu) >> count) & 1) {
const ExtSaveArea *esa = &x86_ext_save_areas[count];
*eax = esa->size;
*ebx = esa->offset;
}
}
break;
}
case 0x14: {
/* Intel Processor Trace Enumeration */
*eax = 0;
*ebx = 0;
*ecx = 0;
*edx = 0;
break;
// Unicorn: if'd out
#if 0
if (!(env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) ||
!kvm_enabled()) {
break;
}
if (count == 0) {
*eax = INTEL_PT_MAX_SUBLEAF;
*ebx = INTEL_PT_MINIMAL_EBX;
*ecx = INTEL_PT_MINIMAL_ECX;
} else if (count == 1) {
*eax = INTEL_PT_MTC_BITMAP | INTEL_PT_ADDR_RANGES_NUM;
*ebx = INTEL_PT_PSB_BITMAP | INTEL_PT_CYCLE_BITMAP;
}
#endif
break;
}
case 0x40000000:
/*
* CPUID code in kvm_arch_init_vcpu() ignores stuff
* set here, but we restrict to TCG none the less.
*/
if (tcg_enabled(env->uc) && cpu->expose_tcg) {
memcpy(signature, "TCGTCGTCGTCG", 12);
*eax = 0x40000001;
*ebx = signature[0];
*ecx = signature[1];
*edx = signature[2];
} else {
*eax = 0;
*ebx = 0;
*ecx = 0;
*edx = 0;
}
break;
case 0x40000001:
*eax = 0;
*ebx = 0;
*ecx = 0;
*edx = 0;
break;
case 0x80000000:
*eax = env->cpuid_xlevel;
*ebx = env->cpuid_vendor1;
*edx = env->cpuid_vendor2;
*ecx = env->cpuid_vendor3;
break;
case 0x80000001:
*eax = env->cpuid_version;
*ebx = 0;
*ecx = env->features[FEAT_8000_0001_ECX];
*edx = env->features[FEAT_8000_0001_EDX];
/* The Linux kernel checks for the CMPLegacy bit and
* discards multiple thread information if it is set.
* So dont set it here for Intel to make Linux guests happy.
*/
if (cs->nr_cores * cs->nr_threads > 1) {
if (env->cpuid_vendor1 != CPUID_VENDOR_INTEL_1 ||
env->cpuid_vendor2 != CPUID_VENDOR_INTEL_2 ||
env->cpuid_vendor3 != CPUID_VENDOR_INTEL_3) {
*ecx |= 1 << 1; /* CmpLegacy bit */
}
}
break;
case 0x80000002:
case 0x80000003:
case 0x80000004:
*eax = env->cpuid_model[(index - 0x80000002) * 4 + 0];
*ebx = env->cpuid_model[(index - 0x80000002) * 4 + 1];
*ecx = env->cpuid_model[(index - 0x80000002) * 4 + 2];
*edx = env->cpuid_model[(index - 0x80000002) * 4 + 3];
break;
case 0x80000005:
/* cache info (L1 cache) */
if (cpu->cache_info_passthrough) {
host_cpuid(index, 0, eax, ebx, ecx, edx);
break;
}
*eax = (L1_DTLB_2M_ASSOC << 24) | (L1_DTLB_2M_ENTRIES << 16) | \
(L1_ITLB_2M_ASSOC << 8) | (L1_ITLB_2M_ENTRIES);
*ebx = (L1_DTLB_4K_ASSOC << 24) | (L1_DTLB_4K_ENTRIES << 16) | \
(L1_ITLB_4K_ASSOC << 8) | (L1_ITLB_4K_ENTRIES);
*ecx = encode_cache_cpuid80000005(env->cache_info_amd.l1d_cache);
*edx = encode_cache_cpuid80000005(env->cache_info_amd.l1i_cache);
break;
case 0x80000006:
/* cache info (L2 cache) */
if (cpu->cache_info_passthrough) {
host_cpuid(index, 0, eax, ebx, ecx, edx);
break;
}
*eax = (AMD_ENC_ASSOC(L2_DTLB_2M_ASSOC) << 28) | \
(L2_DTLB_2M_ENTRIES << 16) | \
(AMD_ENC_ASSOC(L2_ITLB_2M_ASSOC) << 12) | \
(L2_ITLB_2M_ENTRIES);
*ebx = (AMD_ENC_ASSOC(L2_DTLB_4K_ASSOC) << 28) | \
(L2_DTLB_4K_ENTRIES << 16) | \
(AMD_ENC_ASSOC(L2_ITLB_4K_ASSOC) << 12) | \
(L2_ITLB_4K_ENTRIES);
encode_cache_cpuid80000006(env->cache_info_amd.l2_cache,
cpu->enable_l3_cache ?
env->cache_info_amd.l3_cache : NULL,
ecx, edx);
break;
case 0x80000007:
*eax = 0;
*ebx = 0;
*ecx = 0;
*edx = env->features[FEAT_8000_0007_EDX];
break;
case 0x80000008:
/* virtual & phys address size in low 2 bytes. */
if (env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_LM) {
/* 64 bit processor */
*eax = cpu->phys_bits; /* configurable physical bits */
if (env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_LA57) {
*eax |= 0x00003900; /* 57 bits virtual */
} else {
*eax |= 0x00003000; /* 48 bits virtual */
}
} else {
*eax = cpu->phys_bits;
}
*ebx = env->features[FEAT_8000_0008_EBX];
*ecx = 0;
*edx = 0;
if (cs->nr_cores * cs->nr_threads > 1) {
*ecx |= (cs->nr_cores * cs->nr_threads) - 1;
}
break;
case 0x8000000A:
if (env->features[FEAT_8000_0001_ECX] & CPUID_EXT3_SVM) {
*eax = 0x00000001; /* SVM Revision */
*ebx = 0x00000010; /* nr of ASIDs */
*ecx = 0;
*edx = env->features[FEAT_SVM]; /* optional features */
} else {
*eax = 0;
*ebx = 0;
*ecx = 0;
*edx = 0;
}
break;
case 0xC0000000:
*eax = env->cpuid_xlevel2;
*ebx = 0;
*ecx = 0;
*edx = 0;
break;
case 0xC0000001:
/* Support for VIA CPU's CPUID instruction */
*eax = env->cpuid_version;
*ebx = 0;
*ecx = 0;
*edx = env->features[FEAT_C000_0001_EDX];
break;
case 0xC0000002:
case 0xC0000003:
case 0xC0000004:
/* Reserved for the future, and now filled with zero */
*eax = 0;
*ebx = 0;
*ecx = 0;
*edx = 0;
break;
case 0x8000001F:
*eax = 0;
*ebx = 0;
*ecx = 0;
*edx = 0;
break;
default:
/* reserved values: zero */
*eax = 0;
*ebx = 0;
*ecx = 0;
*edx = 0;
break;
}
}
/* CPUClass::reset() */
static void x86_cpu_reset(CPUState *s)
{
X86CPU *cpu = X86_CPU(s->uc, s);
X86CPUClass *xcc = X86_CPU_GET_CLASS(s->uc, cpu);
CPUX86State *env = &cpu->env;
int i;
target_ulong cr4;
uint64_t xcr0;
xcc->parent_reset(s);
memset(env, 0, offsetof(CPUX86State, end_reset_fields));
env->old_exception = -1;
/* init to reset state */
env->hflags2 |= HF2_GIF_MASK;
cpu_x86_update_cr0(env, 0x60000010);
env->a20_mask = ~0x0;
env->smbase = 0x30000;
env->msr_smi_count = 0;
env->idt.limit = 0xffff;
env->gdt.limit = 0xffff;
env->ldt.limit = 0xffff;
env->ldt.flags = DESC_P_MASK | (2 << DESC_TYPE_SHIFT);
env->tr.limit = 0xffff;
env->tr.flags = DESC_P_MASK | (11 << DESC_TYPE_SHIFT);
cpu_x86_load_seg_cache(env, R_CS, 0xf000, 0xffff0000, 0xffff,
DESC_P_MASK | DESC_S_MASK | DESC_CS_MASK |
DESC_R_MASK | DESC_A_MASK);
cpu_x86_load_seg_cache(env, R_DS, 0, 0, 0xffff,
DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
DESC_A_MASK);
cpu_x86_load_seg_cache(env, R_ES, 0, 0, 0xffff,
DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
DESC_A_MASK);
cpu_x86_load_seg_cache(env, R_SS, 0, 0, 0xffff,
DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
DESC_A_MASK);
cpu_x86_load_seg_cache(env, R_FS, 0, 0, 0xffff,
DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
DESC_A_MASK);
cpu_x86_load_seg_cache(env, R_GS, 0, 0, 0xffff,
DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
DESC_A_MASK);
env->eip = 0xfff0;
env->regs[R_EDX] = env->cpuid_version;
env->eflags = 0x2;
/* FPU init */
for (i = 0; i < 8; i++) {
env->fptags[i] = 1;
}
cpu_set_fpuc(env, 0x37f);
env->mxcsr = 0x1f80;
/* All units are in INIT state. */
env->xstate_bv = 0;
env->pat = 0x0007040600070406ULL;
env->msr_ia32_misc_enable = MSR_IA32_MISC_ENABLE_DEFAULT;
memset(env->dr, 0, sizeof(env->dr));
env->dr[6] = DR6_FIXED_1;
env->dr[7] = DR7_FIXED_1;
cpu_breakpoint_remove_all(s, BP_CPU);
cpu_watchpoint_remove_all(s, BP_CPU);
cr4 = 0;
xcr0 = XSTATE_FP_MASK;
#ifdef CONFIG_USER_ONLY
/* Enable all the features for user-mode. */
if (env->features[FEAT_1_EDX] & CPUID_SSE) {
xcr0 |= XSTATE_SSE_MASK;
}
for (i = 2; i < ARRAY_SIZE(x86_ext_save_areas); i++) {
const ExtSaveArea *esa = &x86_ext_save_areas[i];
if (env->features[esa->feature] & esa->bits) {
xcr0 |= 1ull << i;
}
}
if (env->features[FEAT_1_ECX] & CPUID_EXT_XSAVE) {
cr4 |= CR4_OSFXSR_MASK | CR4_OSXSAVE_MASK;
}
if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_FSGSBASE) {
cr4 |= CR4_FSGSBASE_MASK;
}
#endif
env->xcr0 = xcr0;
cpu_x86_update_cr4(env, cr4);
/*
* SDM 11.11.5 requires:
* - IA32_MTRR_DEF_TYPE MSR.E = 0
* - IA32_MTRR_PHYSMASKn.V = 0
* All other bits are undefined. For simplification, zero it all.
*/
env->mtrr_deftype = 0;
memset(env->mtrr_var, 0, sizeof(env->mtrr_var));
memset(env->mtrr_fixed, 0, sizeof(env->mtrr_fixed));
#if !defined(CONFIG_USER_ONLY)
/* We hard-wire the BSP to the first CPU. */
apic_designate_bsp(env->uc, cpu->apic_state, s->cpu_index == 0);
s->halted = !cpu_is_bsp(cpu);
#endif
}
#ifndef CONFIG_USER_ONLY
bool cpu_is_bsp(X86CPU *cpu)
{
return (cpu_get_apic_base((&cpu->env)->uc, cpu->apic_state) & MSR_IA32_APICBASE_BSP) != 0;
}
#endif
static void mce_init(X86CPU *cpu)
{
CPUX86State *cenv = &cpu->env;
unsigned int bank;
if (((cenv->cpuid_version >> 8) & 0xf) >= 6
&& (cenv->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) ==
(CPUID_MCE | CPUID_MCA)) {
cenv->mcg_cap = MCE_CAP_DEF | MCE_BANKS_DEF |
(cpu->enable_lmce ? MCG_LMCE_P : 0);
cenv->mcg_ctl = ~(uint64_t)0;
for (bank = 0; bank < MCE_BANKS_DEF; bank++) {
cenv->mce_banks[bank * 4] = ~(uint64_t)0;
}
}
}
#ifndef CONFIG_USER_ONLY
static void x86_cpu_apic_create(X86CPU *cpu, Error **errp)
{
#if 0
DeviceState *dev = DEVICE(cpu);
APICCommonState *apic;
const char *apic_type = "apic";
cpu->apic_state = qdev_try_create(qdev_get_parent_bus(dev), apic_type);
if (cpu->apic_state == NULL) {
error_setg(errp, "APIC device '%s' could not be created", apic_type);
return;
}
object_property_add_child(OBJECT(cpu), "lapic",
OBJECT(cpu->apic_state), &error_abort);
object_unref(OBJECT(cpu->apic_state));
//qdev_prop_set_uint8(cpu->apic_state, "id", cpu->apic_id);
/* TODO: convert to link<> */
apic = APIC_COMMON(cpu->apic_state);
apic->cpu = cpu;
#endif
}
static void x86_cpu_apic_realize(X86CPU *cpu, Error **errp)
{
if (cpu->apic_state == NULL) {
return;
}
if (qdev_init(cpu->apic_state)) {
error_setg(errp, "APIC device '%s' could not be initialized",
object_get_typename(OBJECT(cpu->apic_state)));
return;
}
}
#else
static void x86_cpu_apic_realize(X86CPU *cpu, Error **errp)
{
}
#endif
/* Note: Only safe for use on x86(-64) hosts */
static QEMU_UNUSED_FUNC uint32_t x86_host_phys_bits(void)
{
uint32_t eax;
uint32_t host_phys_bits;
host_cpuid(0x80000000, 0, &eax, NULL, NULL, NULL);
if (eax >= 0x80000008) {
host_cpuid(0x80000008, 0, &eax, NULL, NULL, NULL);
/* Note: According to AMD doc 25481 rev 2.34 they have a field
* at 23:16 that can specify a maximum physical address bits for
* the guest that can override this value; but I've not seen
* anything with that set.
*/
host_phys_bits = eax & 0xff;
} else {
/* It's an odd 64 bit machine that doesn't have the leaf for
* physical address bits; fall back to 36 that's most older
* Intel.
*/
host_phys_bits = 36;
}
return host_phys_bits;
}
static void x86_cpu_adjust_level(X86CPU *cpu, uint32_t *min, uint32_t value)
{
if (*min < value) {
*min = value;
}
}
/* Increase cpuid_min_{level,xlevel,xlevel2} automatically, if appropriate */
static void x86_cpu_adjust_feat_level(X86CPU *cpu, FeatureWord w)
{
CPUX86State *env = &cpu->env;
FeatureWordInfo *fi = &feature_word_info[w];
uint32_t eax = fi->cpuid_eax;
uint32_t region = eax & 0xF0000000;
if (!env->features[w]) {
return;
}
switch (region) {
case 0x00000000:
x86_cpu_adjust_level(cpu, &env->cpuid_min_level, eax);
break;
case 0x80000000:
x86_cpu_adjust_level(cpu, &env->cpuid_min_xlevel, eax);
break;
case 0xC0000000:
x86_cpu_adjust_level(cpu, &env->cpuid_min_xlevel2, eax);
break;
}
}
/* Calculate XSAVE components based on the configured CPU feature flags */
static void x86_cpu_enable_xsave_components(X86CPU *cpu)
{
CPUX86State *env = &cpu->env;
int i;
uint64_t mask;
if (!(env->features[FEAT_1_ECX] & CPUID_EXT_XSAVE)) {
return;
}
mask = 0;
for (i = 0; i < ARRAY_SIZE(x86_ext_save_areas); i++) {
const ExtSaveArea *esa = &x86_ext_save_areas[i];
if (env->features[esa->feature] & esa->bits) {
mask |= (1ULL << i);
}
}
env->features[FEAT_XSAVE_COMP_LO] = mask;
env->features[FEAT_XSAVE_COMP_HI] = mask >> 32;
}
/***** Steps involved on loading and filtering CPUID data
*
* When initializing and realizing a CPU object, the steps
* involved in setting up CPUID data are:
*
* 1) Loading CPU model definition (X86CPUDefinition). This is
* implemented by x86_cpu_load_def() and should be completely
* transparent, as it is done automatically by instance_init.
* No code should need to look at X86CPUDefinition structs
* outside instance_init.
*
* 2) CPU expansion. This is done by realize before CPUID
* filtering, and will make sure host/accelerator data is
* loaded for CPU models that depend on host capabilities
* (e.g. "host"). Done by x86_cpu_expand_features().
*
* 3) CPUID filtering. This initializes extra data related to
* CPUID, and checks if the host supports all capabilities
* required by the CPU. Runnability of a CPU model is
* determined at this step. Done by x86_cpu_filter_features().
*
* Some operations don't require all steps to be performed.
* More precisely:
*
* - CPU instance creation (instance_init) will run only CPU
* model loading. CPU expansion can't run at instance_init-time
* because host/accelerator data may be not available yet.
* - CPU realization will perform both CPU model expansion and CPUID
* filtering, and return an error in case one of them fails.
* - query-cpu-definitions needs to run all 3 steps. It needs
* to run CPUID filtering, as the 'unavailable-features'
* field is set based on the filtering results.
* - The query-cpu-model-expansion QMP command only needs to run
* CPU model loading and CPU expansion. It should not filter
* any CPUID data based on host capabilities.
*/
/* Expand CPU configuration data, based on configured features
* and host/accelerator capabilities when appropriate.
*/
static void x86_cpu_expand_features(struct uc_struct *uc, X86CPU *cpu, Error **errp)
{
CPUX86State *env = &cpu->env;
FeatureWord w;
Error *local_err = NULL;
/*TODO: Now cpu->max_features doesn't overwrite features
* set using QOM properties, and we can convert
* plus_features & minus_features to global properties
* inside x86_cpu_parse_featurestr() too.
*/
if (cpu->max_features) {
for (w = 0; w < FEATURE_WORDS; w++) {
/* Override only features that weren't set explicitly
* by the user.
*/
env->features[w] |=
x86_cpu_get_supported_feature_word(uc, w, cpu->migratable) &
~env->user_features[w];
}
}
for (w = 0; w < FEATURE_WORDS; w++) {
cpu->env.features[w] |= cpu->plus_features[w];
cpu->env.features[w] &= ~cpu->minus_features[w];
}
// Unicorn: commented out
//if (!kvm_enabled() || !cpu->expose_kvm) {
env->features[FEAT_KVM] = 0;
//}
x86_cpu_enable_xsave_components(cpu);
/* CPUID[EAX=7,ECX=0].EBX always increased level automatically: */
x86_cpu_adjust_feat_level(cpu, FEAT_7_0_EBX);
if (cpu->full_cpuid_auto_level) {
x86_cpu_adjust_feat_level(cpu, FEAT_1_EDX);
x86_cpu_adjust_feat_level(cpu, FEAT_1_ECX);
x86_cpu_adjust_feat_level(cpu, FEAT_6_EAX);
x86_cpu_adjust_feat_level(cpu, FEAT_7_0_ECX);
x86_cpu_adjust_feat_level(cpu, FEAT_8000_0001_EDX);
x86_cpu_adjust_feat_level(cpu, FEAT_8000_0001_ECX);
x86_cpu_adjust_feat_level(cpu, FEAT_8000_0007_EDX);
x86_cpu_adjust_feat_level(cpu, FEAT_8000_0008_EBX);
x86_cpu_adjust_feat_level(cpu, FEAT_C000_0001_EDX);
x86_cpu_adjust_feat_level(cpu, FEAT_SVM);
x86_cpu_adjust_feat_level(cpu, FEAT_XSAVE);
/* SVM requires CPUID[0x8000000A] */
if (env->features[FEAT_8000_0001_ECX] & CPUID_EXT3_SVM) {
x86_cpu_adjust_level(cpu, &env->cpuid_min_xlevel, 0x8000000A);
}
}
/* Set cpuid_*level* based on cpuid_min_*level, if not explicitly set */
if (env->cpuid_level == UINT32_MAX) {
env->cpuid_level = env->cpuid_min_level;
}
if (env->cpuid_xlevel == UINT32_MAX) {
env->cpuid_xlevel = env->cpuid_min_xlevel;
}
if (env->cpuid_xlevel2 == UINT32_MAX) {
env->cpuid_xlevel2 = env->cpuid_min_xlevel2;
}
if (local_err != NULL) {
error_propagate(errp, local_err);
}
}
/*
* Finishes initialization of CPUID data, filters CPU feature
* words based on host availability of each feature.
*
* Returns: 0 if all flags are supported by the host, non-zero otherwise.
*/
static int x86_cpu_filter_features(X86CPU *cpu)
{
CPUX86State *env = &cpu->env;
FeatureWord w;
int rv = 0;
for (w = 0; w < FEATURE_WORDS; w++) {
uint32_t host_feat =
x86_cpu_get_supported_feature_word(env->uc, w, false);
uint32_t requested_features = env->features[w];
env->features[w] &= host_feat;
cpu->filtered_features[w] = requested_features & ~env->features[w];
if (cpu->filtered_features[w]) {
rv = 1;
}
}
return rv;
}
#define IS_INTEL_CPU(env) ((env)->cpuid_vendor1 == CPUID_VENDOR_INTEL_1 && \
(env)->cpuid_vendor2 == CPUID_VENDOR_INTEL_2 && \
(env)->cpuid_vendor3 == CPUID_VENDOR_INTEL_3)
#define IS_AMD_CPU(env) ((env)->cpuid_vendor1 == CPUID_VENDOR_AMD_1 && \
(env)->cpuid_vendor2 == CPUID_VENDOR_AMD_2 && \
(env)->cpuid_vendor3 == CPUID_VENDOR_AMD_3)
static int x86_cpu_realizefn(struct uc_struct *uc, DeviceState *dev, Error **errp)
{
CPUState *cs = CPU(dev);
X86CPU *cpu = X86_CPU(uc, dev);
X86CPUClass *xcc = X86_CPU_GET_CLASS(uc, dev);
CPUX86State *env = &cpu->env;
Error *local_err = NULL;
object_property_set_int(uc, OBJECT(cpu), CPU(cpu)->cpu_index, "apic-id",
&local_err);
if (local_err) {
goto out;
}
if (cpu->apic_id == UNASSIGNED_APIC_ID) {
error_setg(errp, "apic-id property was not initialized properly");
return -1;
}
x86_cpu_expand_features(uc, cpu, &local_err);
if (local_err) {
goto out;
}
if (x86_cpu_filter_features(cpu) &&
(cpu->check_cpuid || cpu->enforce_cpuid)) {
x86_cpu_report_filtered_features(cpu);
if (cpu->enforce_cpuid) {
error_setg(&local_err,
"TCG doesn't support requested features");
goto out;
}
}
/* On AMD CPUs, some CPUID[8000_0001].EDX bits must match the bits on
* CPUID[1].EDX.
*/
if (IS_AMD_CPU(env)) {
env->features[FEAT_8000_0001_EDX] &= ~CPUID_EXT2_AMD_ALIASES;
env->features[FEAT_8000_0001_EDX] |= (env->features[FEAT_1_EDX]
& CPUID_EXT2_AMD_ALIASES);
}
/* For 64bit systems think about the number of physical bits to present.
* ideally this should be the same as the host; anything other than matching
* the host can cause incorrect guest behaviour.
* QEMU used to pick the magic value of 40 bits that corresponds to
* consumer AMD devices but nothing else.
*/
if (env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_LM) {
// Unicorn: removed KVM checks
if (cpu->phys_bits && cpu->phys_bits != TCG_PHYS_ADDR_BITS) {
error_setg(errp, "TCG only supports phys-bits=%u",
TCG_PHYS_ADDR_BITS);
return -1;
}
/* 0 means it was not explicitly set by the user (or by machine
* compat_props or by the host code above). In this case, the default
* is the value used by TCG (40).
*/
if (cpu->phys_bits == 0) {
cpu->phys_bits = TCG_PHYS_ADDR_BITS;
}
} else {
/* For 32 bit systems don't use the user set value, but keep
* phys_bits consistent with what we tell the guest.
*/
if (cpu->phys_bits != 0) {
error_setg(errp, "phys-bits is not user-configurable in 32 bit");
return -1;
}
if (env->features[FEAT_1_EDX] & CPUID_PSE36) {
cpu->phys_bits = 36;
} else {
cpu->phys_bits = 32;
}
}
/* Cache information initialization */
if (!cpu->legacy_cache) {
/* Unicorn: commented out
if (!xcc->cpu_def || !xcc->cpu_def->cache_info) {
char *name = x86_cpu_class_get_model_name(xcc);
error_setg(errp,
"CPU model '%s' doesn't support legacy-cache=off", name);
g_free(name);
return;
}
*/
env->cache_info_cpuid2 = env->cache_info_cpuid4 = env->cache_info_amd =
*xcc->cpu_def->cache_info;
} else {
/* Build legacy cache information */
env->cache_info_cpuid2.l1d_cache = &legacy_l1d_cache;
env->cache_info_cpuid2.l1i_cache = &legacy_l1i_cache;
env->cache_info_cpuid2.l2_cache = &legacy_l2_cache_cpuid2;
env->cache_info_cpuid2.l3_cache = &legacy_l3_cache;
env->cache_info_cpuid4.l1d_cache = &legacy_l1d_cache;
env->cache_info_cpuid4.l1i_cache = &legacy_l1i_cache;
env->cache_info_cpuid4.l2_cache = &legacy_l2_cache;
env->cache_info_cpuid4.l3_cache = &legacy_l3_cache;
env->cache_info_amd.l1d_cache = &legacy_l1d_cache_amd;
env->cache_info_amd.l1i_cache = &legacy_l1i_cache_amd;
env->cache_info_amd.l2_cache = &legacy_l2_cache_amd;
env->cache_info_amd.l3_cache = &legacy_l3_cache;
}
if (x86_cpu_filter_features(cpu) && cpu->enforce_cpuid) {
error_setg(&local_err,
"TCG doesn't support requested features");
goto out;
}
#ifndef CONFIG_USER_ONLY
//qemu_register_reset(x86_cpu_machine_reset_cb, cpu);
if (cpu->env.features[FEAT_1_EDX] & CPUID_APIC || smp_cpus > 1) {
x86_cpu_apic_create(cpu, &local_err);
if (local_err != NULL) {
goto out;
}
}
#endif
mce_init(cpu);
#ifndef CONFIG_USER_ONLY
if (tcg_enabled(uc)) {
cpu->cpu_as_mem = g_new(MemoryRegion, 1);
cpu->cpu_as_root = g_new(MemoryRegion, 1);
/* Outer container... */
memory_region_init(uc, cpu->cpu_as_root, OBJECT(cpu), "memory", ~0ull);
memory_region_set_enabled(cpu->cpu_as_root, true);
/* ... with two regions inside: normal system memory with low
* priority, and...
*/
memory_region_init_alias(uc, cpu->cpu_as_mem, OBJECT(cpu), "memory",
get_system_memory(uc), 0, ~0ull);
memory_region_add_subregion_overlap(cpu->cpu_as_root, 0, cpu->cpu_as_mem, 0);
memory_region_set_enabled(cpu->cpu_as_mem, true);
cs->num_ases = 2;
cpu_address_space_init(cs, 0, "cpu-memory", cs->memory);
cpu_address_space_init(cs, 1, "cpu-smm", cpu->cpu_as_root);
}
#endif
if (qemu_init_vcpu(cs)) {
return -1;
}
x86_cpu_apic_realize(cpu, &local_err);
if (local_err != NULL) {
goto out;
}
cpu_reset(cs);
xcc->parent_realize(uc, dev, &local_err);
out:
if (local_err != NULL) {
error_propagate(errp, local_err);
return -1;
}
return 0;
}
static void x86_cpu_unrealizefn(struct uc_struct *uc, DeviceState *dev, Error **errp)
{
/* Unicorn: commented out
X86CPU *cpu = X86_CPU(uc, dev);
#ifndef CONFIG_USER_ONLY
cpu_remove_sync(CPU(dev));
qemu_unregister_reset(x86_cpu_machine_reset_cb, dev);
#endif
if (cpu->apic_state) {
object_unparent(OBJECT(cpu->apic_state));
cpu->apic_state = NULL;
}*/
}
static void x86_cpu_initfn(struct uc_struct *uc, Object *obj, void *opaque)
{
//printf("... X86 initialize (object)\n");
CPUState *cs = CPU(obj);
X86CPU *cpu = X86_CPU(cs->uc, obj);
X86CPUClass *xcc = X86_CPU_GET_CLASS(uc, obj);
CPUX86State *env = &cpu->env;
cs->env_ptr = env;
cpu_exec_init(cs, &error_abort, opaque);
object_property_add(uc, obj, "family", "int",
x86_cpuid_version_get_family,
x86_cpuid_version_set_family, NULL, NULL, NULL);
object_property_add(uc, obj, "model", "int",
x86_cpuid_version_get_model,
x86_cpuid_version_set_model, NULL, NULL, NULL);
object_property_add(uc, obj, "stepping", "int",
x86_cpuid_version_get_stepping,
x86_cpuid_version_set_stepping, NULL, NULL, NULL);
object_property_add_str(uc, obj, "vendor",
x86_cpuid_get_vendor,
x86_cpuid_set_vendor, NULL);
object_property_add_str(uc, obj, "model-id",
x86_cpuid_get_model_id,
x86_cpuid_set_model_id, NULL);
object_property_add(uc, obj, "tsc-frequency", "int",
x86_cpuid_get_tsc_freq,
x86_cpuid_set_tsc_freq, NULL, NULL, NULL);
object_property_add(uc, obj, "feature-words", "X86CPUFeatureWordInfo",
x86_cpu_get_feature_words,
NULL, NULL, (void *)env->features, NULL);
object_property_add(uc, obj, "filtered-features", "X86CPUFeatureWordInfo",
x86_cpu_get_feature_words,
NULL, NULL, (void *)cpu->filtered_features, NULL);
cpu->hyperv_spinlock_attempts = HYPERV_SPINLOCK_NEVER_RETRY;
// Unicorn: Should be removed with the commit backporting 2da00e3176abac34ca7a6aab1f5bbb94a0d03fc5
// from qemu, but left this in to keep the member value initialized
cpu->apic_id = UNASSIGNED_APIC_ID;
x86_cpu_load_def(cpu, xcc->cpu_def, &error_abort);
}
static int64_t x86_cpu_get_arch_id(CPUState *cs)
{
X86CPU *cpu = X86_CPU(cs->uc, cs);
return cpu->apic_id;
}
static bool x86_cpu_get_paging_enabled(const CPUState *cs)
{
X86CPU *cpu = X86_CPU(cs->uc, cs);
return (cpu->env.cr[0] & CR0_PG_MASK) != 0;
}
static void x86_cpu_set_pc(CPUState *cs, vaddr value)
{
X86CPU *cpu = X86_CPU(cs->uc, cs);
cpu->env.eip = value;
}
static void x86_cpu_synchronize_from_tb(CPUState *cs, TranslationBlock *tb)
{
X86CPU *cpu = X86_CPU(cs->uc, cs);
cpu->env.eip = tb->pc - tb->cs_base;
}
static bool x86_cpu_has_work(CPUState *cs)
{
X86CPU *cpu = X86_CPU(cs->uc, cs);
CPUX86State *env = &cpu->env;
#if !defined(CONFIG_USER_ONLY)
if (cs->interrupt_request & CPU_INTERRUPT_POLL) {
apic_poll_irq(cpu->apic_state);
cpu_reset_interrupt(cs, CPU_INTERRUPT_POLL);
}
#endif
return ((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
(env->eflags & IF_MASK)) ||
(cs->interrupt_request & (CPU_INTERRUPT_NMI |
CPU_INTERRUPT_INIT |
CPU_INTERRUPT_SIPI |
CPU_INTERRUPT_MCE)) ||
((cs->interrupt_request & CPU_INTERRUPT_SMI) &&
!(env->hflags & HF_SMM_MASK));
}
static void x86_cpu_common_class_init(struct uc_struct *uc, ObjectClass *oc, void *data)
{
//printf("... init X86 cpu common class\n");
X86CPUClass *xcc = X86_CPU_CLASS(uc, oc);
CPUClass *cc = CPU_CLASS(uc, oc);
DeviceClass *dc = DEVICE_CLASS(uc, oc);
xcc->parent_realize = dc->realize;
dc->realize = x86_cpu_realizefn;
dc->unrealize = x86_cpu_unrealizefn;
dc->bus_type = TYPE_ICC_BUS;
xcc->parent_reset = cc->reset;
cc->reset = x86_cpu_reset;
cc->reset_dump_flags = CPU_DUMP_FPU | CPU_DUMP_CCOP;
cc->class_by_name = x86_cpu_class_by_name;
cc->parse_features = x86_cpu_parse_featurestr;
cc->has_work = x86_cpu_has_work;
#ifdef CONFIG_TCG
cc->do_interrupt = x86_cpu_do_interrupt;
cc->cpu_exec_interrupt = x86_cpu_exec_interrupt;
#endif
cc->dump_state = x86_cpu_dump_state;
cc->set_pc = x86_cpu_set_pc;
cc->synchronize_from_tb = x86_cpu_synchronize_from_tb;
cc->get_arch_id = x86_cpu_get_arch_id;
cc->get_paging_enabled = x86_cpu_get_paging_enabled;
#ifdef CONFIG_USER_ONLY
cc->handle_mmu_fault = x86_cpu_handle_mmu_fault;
#else
cc->asidx_from_attrs = x86_asidx_from_attrs;
cc->get_memory_mapping = x86_cpu_get_memory_mapping;
cc->get_phys_page_debug = x86_cpu_get_phys_page_debug;
#endif
#if defined(CONFIG_TCG) && !defined(CONFIG_USER_ONLY)
cc->debug_excp_handler = breakpoint_handler;
#endif
cc->cpu_exec_enter = x86_cpu_exec_enter;
cc->cpu_exec_exit = x86_cpu_exec_exit;
cc->tcg_initialize = tcg_x86_init;
}
void x86_cpu_register_types(void *opaque)
{
const TypeInfo x86_cpu_type_info = {
TYPE_X86_CPU,
TYPE_CPU,
sizeof(X86CPUClass),
sizeof(X86CPU),
opaque,
x86_cpu_initfn,
NULL,
NULL,
NULL,
x86_cpu_common_class_init,
NULL,
NULL,
true,
};
//printf("... register X86 cpu\n");
int i;
type_register_static(opaque, &x86_cpu_type_info);
for (i = 0; i < ARRAY_SIZE(builtin_x86_defs); i++) {
x86_register_cpudef_type(opaque, &builtin_x86_defs[i]);
}
//printf("... END OF register X86 cpu\n");
}