/* * i386 CPUID helper functions * * Copyright (c) 2003 Fabrice Bellard * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include #include #include #include "unicorn/platform.h" #include "cpu.h" #include "sysemu/cpus.h" #include "qapi/qmp/qerror.h" #include "qapi-types.h" #include "qapi-visit.h" #include "qapi/visitor.h" #include "hw/hw.h" #include "sysemu/sysemu.h" #include "hw/cpu/icc_bus.h" #ifndef CONFIG_USER_ONLY #include "exec/address-spaces.h" #include "hw/i386/apic_internal.h" #endif /* Cache topology CPUID constants: */ /* CPUID Leaf 2 Descriptors */ #define CPUID_2_L1D_32KB_8WAY_64B 0x2c #define CPUID_2_L1I_32KB_8WAY_64B 0x30 #define CPUID_2_L2_2MB_8WAY_64B 0x7d /* CPUID Leaf 4 constants: */ /* EAX: */ #define CPUID_4_TYPE_DCACHE 1 #define CPUID_4_TYPE_ICACHE 2 #define CPUID_4_TYPE_UNIFIED 3 #define CPUID_4_LEVEL(l) ((l) << 5) #define CPUID_4_SELF_INIT_LEVEL (1 << 8) #define CPUID_4_FULLY_ASSOC (1 << 9) /* EDX: */ #define CPUID_4_NO_INVD_SHARING (1 << 0) #define CPUID_4_INCLUSIVE (1 << 1) #define CPUID_4_COMPLEX_IDX (1 << 2) #define ASSOC_FULL 0xFF /* AMD associativity encoding used on CPUID Leaf 0x80000006: */ #define AMD_ENC_ASSOC(a) (a <= 1 ? a : \ a == 2 ? 0x2 : \ a == 4 ? 0x4 : \ a == 8 ? 0x6 : \ a == 16 ? 0x8 : \ a == 32 ? 0xA : \ a == 48 ? 0xB : \ a == 64 ? 0xC : \ a == 96 ? 0xD : \ a == 128 ? 0xE : \ a == ASSOC_FULL ? 0xF : \ 0 /* invalid value */) /* Definitions of the hardcoded cache entries we expose: */ /* L1 data cache: */ #define L1D_LINE_SIZE 64 #define L1D_ASSOCIATIVITY 8 #define L1D_SETS 64 #define L1D_PARTITIONS 1 /* Size = LINE_SIZE*ASSOCIATIVITY*SETS*PARTITIONS = 32KiB */ #define L1D_DESCRIPTOR CPUID_2_L1D_32KB_8WAY_64B /*FIXME: CPUID leaf 0x80000005 is inconsistent with leaves 2 & 4 */ #define L1D_LINES_PER_TAG 1 #define L1D_SIZE_KB_AMD 64 #define L1D_ASSOCIATIVITY_AMD 2 /* L1 instruction cache: */ #define L1I_LINE_SIZE 64 #define L1I_ASSOCIATIVITY 8 #define L1I_SETS 64 #define L1I_PARTITIONS 1 /* Size = LINE_SIZE*ASSOCIATIVITY*SETS*PARTITIONS = 32KiB */ #define L1I_DESCRIPTOR CPUID_2_L1I_32KB_8WAY_64B /*FIXME: CPUID leaf 0x80000005 is inconsistent with leaves 2 & 4 */ #define L1I_LINES_PER_TAG 1 #define L1I_SIZE_KB_AMD 64 #define L1I_ASSOCIATIVITY_AMD 2 /* Level 2 unified cache: */ #define L2_LINE_SIZE 64 #define L2_ASSOCIATIVITY 16 #define L2_SETS 4096 #define L2_PARTITIONS 1 /* Size = LINE_SIZE*ASSOCIATIVITY*SETS*PARTITIONS = 4MiB */ /*FIXME: CPUID leaf 2 descriptor is inconsistent with CPUID leaf 4 */ #define L2_DESCRIPTOR CPUID_2_L2_2MB_8WAY_64B /*FIXME: CPUID leaf 0x80000006 is inconsistent with leaves 2 & 4 */ #define L2_LINES_PER_TAG 1 #define L2_SIZE_KB_AMD 512 /* No L3 cache: */ #define L3_SIZE_KB 0 /* disabled */ #define L3_ASSOCIATIVITY 0 /* disabled */ #define L3_LINES_PER_TAG 0 /* disabled */ #define L3_LINE_SIZE 0 /* disabled */ /* TLB definitions: */ #define L1_DTLB_2M_ASSOC 1 #define L1_DTLB_2M_ENTRIES 255 #define L1_DTLB_4K_ASSOC 1 #define L1_DTLB_4K_ENTRIES 255 #define L1_ITLB_2M_ASSOC 1 #define L1_ITLB_2M_ENTRIES 255 #define L1_ITLB_4K_ASSOC 1 #define L1_ITLB_4K_ENTRIES 255 #define L2_DTLB_2M_ASSOC 0 /* disabled */ #define L2_DTLB_2M_ENTRIES 0 /* disabled */ #define L2_DTLB_4K_ASSOC 4 #define L2_DTLB_4K_ENTRIES 512 #define L2_ITLB_2M_ASSOC 0 /* disabled */ #define L2_ITLB_2M_ENTRIES 0 /* disabled */ #define L2_ITLB_4K_ASSOC 4 #define L2_ITLB_4K_ENTRIES 512 void x86_cpu_register_types(void *); static void x86_cpu_vendor_words2str(char *dst, uint32_t vendor1, uint32_t vendor2, uint32_t vendor3) { int i; for (i = 0; i < 4; i++) { dst[i] = vendor1 >> (8 * i); dst[i + 4] = vendor2 >> (8 * i); dst[i + 8] = vendor3 >> (8 * i); } dst[CPUID_VENDOR_SZ] = '\0'; } /* feature flags taken from "Intel Processor Identification and the CPUID * Instruction" and AMD's "CPUID Specification". In cases of disagreement * between feature naming conventions, aliases may be added. */ static const char *feature_name[] = { "fpu", "vme", "de", "pse", "tsc", "msr", "pae", "mce", "cx8", "apic", NULL, "sep", "mtrr", "pge", "mca", "cmov", "pat", "pse36", "pn" /* Intel psn */, "clflush" /* Intel clfsh */, NULL, "ds" /* Intel dts */, "acpi", "mmx", "fxsr", "sse", "sse2", "ss", "ht" /* Intel htt */, "tm", "ia64", "pbe", }; static const char *ext_feature_name[] = { "pni|sse3" /* Intel,AMD sse3 */, "pclmulqdq|pclmuldq", "dtes64", "monitor", "ds_cpl", "vmx", "smx", "est", "tm2", "ssse3", "cid", NULL, "fma", "cx16", "xtpr", "pdcm", NULL, "pcid", "dca", "sse4.1|sse4_1", "sse4.2|sse4_2", "x2apic", "movbe", "popcnt", "tsc-deadline", "aes", "xsave", "osxsave", "avx", "f16c", "rdrand", "hypervisor", }; /* Feature names that are already defined on feature_name[] but are set on * CPUID[8000_0001].EDX on AMD CPUs don't have their names on * ext2_feature_name[]. They are copied automatically to cpuid_ext2_features * if and only if CPU vendor is AMD. */ static const char *ext2_feature_name[] = { NULL /* fpu */, NULL /* vme */, NULL /* de */, NULL /* pse */, NULL /* tsc */, NULL /* msr */, NULL /* pae */, NULL /* mce */, NULL /* cx8 */ /* AMD CMPXCHG8B */, NULL /* apic */, NULL, "syscall", NULL /* mtrr */, NULL /* pge */, NULL /* mca */, NULL /* cmov */, NULL /* pat */, NULL /* pse36 */, NULL, NULL /* Linux mp */, "nx|xd", NULL, "mmxext", NULL /* mmx */, NULL /* fxsr */, "fxsr_opt|ffxsr", "pdpe1gb" /* AMD Page1GB */, "rdtscp", NULL, "lm|i64", "3dnowext", "3dnow", }; static const char *ext3_feature_name[] = { "lahf_lm" /* AMD LahfSahf */, "cmp_legacy", "svm", "extapic" /* AMD ExtApicSpace */, "cr8legacy" /* AMD AltMovCr8 */, "abm", "sse4a", "misalignsse", "3dnowprefetch", "osvw", "ibs", "xop", "skinit", "wdt", NULL, "lwp", "fma4", "tce", NULL, "nodeid_msr", NULL, "tbm", "topoext", "perfctr_core", "perfctr_nb", NULL, NULL, NULL, NULL, NULL, NULL, NULL, }; static const char *ext4_feature_name[] = { NULL, NULL, "xstore", "xstore-en", NULL, NULL, "xcrypt", "xcrypt-en", "ace2", "ace2-en", "phe", "phe-en", "pmm", "pmm-en", NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, }; static const char *cpuid_7_0_ebx_feature_name[] = { "fsgsbase", "tsc_adjust", NULL, "bmi1", "hle", "avx2", NULL, "smep", "bmi2", "erms", "invpcid", "rtm", NULL, NULL, "mpx", NULL, "avx512f", NULL, "rdseed", "adx", "smap", NULL, NULL, NULL, NULL, NULL, "avx512pf", "avx512er", "avx512cd", NULL, NULL, NULL, }; static const char *cpuid_apm_edx_feature_name[] = { NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, "invtsc", NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, }; static const char *cpuid_xsave_feature_name[] = { "xsaveopt", "xsavec", "xgetbv1", "xsaves", NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, }; static const char *cpuid_6_feature_name[] = { NULL, NULL, "arat", NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, }; #define I486_FEATURES (CPUID_FP87 | CPUID_VME | CPUID_PSE) #define PENTIUM_FEATURES (I486_FEATURES | CPUID_DE | CPUID_TSC | \ CPUID_MSR | CPUID_MCE | CPUID_CX8 | CPUID_MMX | CPUID_APIC) #define PENTIUM2_FEATURES (PENTIUM_FEATURES | CPUID_PAE | CPUID_SEP | \ CPUID_MTRR | CPUID_PGE | CPUID_MCA | CPUID_CMOV | CPUID_PAT | \ CPUID_PSE36 | CPUID_FXSR) #define PENTIUM3_FEATURES (PENTIUM2_FEATURES | CPUID_SSE) #define PPRO_FEATURES (CPUID_FP87 | CPUID_DE | CPUID_PSE | CPUID_TSC | \ CPUID_MSR | CPUID_MCE | CPUID_CX8 | CPUID_PGE | CPUID_CMOV | \ CPUID_PAT | CPUID_FXSR | CPUID_MMX | CPUID_SSE | CPUID_SSE2 | \ CPUID_PAE | CPUID_SEP | CPUID_APIC) #define TCG_FEATURES (CPUID_FP87 | CPUID_PSE | CPUID_TSC | CPUID_MSR | \ CPUID_PAE | CPUID_MCE | CPUID_CX8 | CPUID_APIC | CPUID_SEP | \ CPUID_MTRR | CPUID_PGE | CPUID_MCA | CPUID_CMOV | CPUID_PAT | \ CPUID_PSE36 | CPUID_CLFLUSH | CPUID_ACPI | CPUID_MMX | \ CPUID_FXSR | CPUID_SSE | CPUID_SSE2 | CPUID_SS | CPUID_DE) /* partly implemented: CPUID_MTRR, CPUID_MCA, CPUID_CLFLUSH (needed for Win64) */ /* missing: CPUID_VME, CPUID_DTS, CPUID_SS, CPUID_HT, CPUID_TM, CPUID_PBE */ #define TCG_EXT_FEATURES (CPUID_EXT_SSE3 | CPUID_EXT_PCLMULQDQ | \ CPUID_EXT_MONITOR | CPUID_EXT_SSSE3 | CPUID_EXT_CX16 | \ CPUID_EXT_SSE41 | CPUID_EXT_SSE42 | CPUID_EXT_POPCNT | \ CPUID_EXT_MOVBE | CPUID_EXT_AES | CPUID_EXT_HYPERVISOR) /* missing: CPUID_EXT_DTES64, CPUID_EXT_DSCPL, CPUID_EXT_VMX, CPUID_EXT_SMX, CPUID_EXT_EST, CPUID_EXT_TM2, CPUID_EXT_CID, CPUID_EXT_FMA, CPUID_EXT_XTPR, CPUID_EXT_PDCM, CPUID_EXT_PCID, CPUID_EXT_DCA, CPUID_EXT_X2APIC, CPUID_EXT_TSC_DEADLINE_TIMER, CPUID_EXT_XSAVE, CPUID_EXT_OSXSAVE, CPUID_EXT_AVX, CPUID_EXT_F16C, CPUID_EXT_RDRAND */ #ifdef TARGET_X86_64 #define TCG_EXT2_X86_64_FEATURES (CPUID_EXT2_SYSCALL | CPUID_EXT2_LM) #else #define TCG_EXT2_X86_64_FEATURES 0 #endif #define TCG_EXT2_FEATURES ((TCG_FEATURES & CPUID_EXT2_AMD_ALIASES) | \ CPUID_EXT2_NX | CPUID_EXT2_MMXEXT | CPUID_EXT2_RDTSCP | \ CPUID_EXT2_3DNOW | CPUID_EXT2_3DNOWEXT | CPUID_EXT2_PDPE1GB | \ TCG_EXT2_X86_64_FEATURES) #define TCG_EXT3_FEATURES (CPUID_EXT3_LAHF_LM | CPUID_EXT3_SVM | \ CPUID_EXT3_CR8LEG | CPUID_EXT3_ABM | CPUID_EXT3_SSE4A) #define TCG_EXT4_FEATURES 0 #define TCG_SVM_FEATURES 0 #define TCG_KVM_FEATURES 0 #define TCG_7_0_EBX_FEATURES (CPUID_7_0_EBX_SMEP | CPUID_7_0_EBX_SMAP | \ CPUID_7_0_EBX_BMI1 | CPUID_7_0_EBX_BMI2 | CPUID_7_0_EBX_ADX) /* missing: CPUID_7_0_EBX_FSGSBASE, CPUID_7_0_EBX_HLE, CPUID_7_0_EBX_AVX2, CPUID_7_0_EBX_ERMS, CPUID_7_0_EBX_INVPCID, CPUID_7_0_EBX_RTM, CPUID_7_0_EBX_RDSEED */ #define TCG_APM_FEATURES 0 #define TCG_6_EAX_FEATURES CPUID_6_EAX_ARAT typedef struct FeatureWordInfo { const char **feat_names; uint32_t cpuid_eax; /* Input EAX for CPUID */ bool cpuid_needs_ecx; /* CPUID instruction uses ECX as input */ uint32_t cpuid_ecx; /* Input ECX value for CPUID */ int cpuid_reg; /* output register (R_* constant) */ uint32_t tcg_features; /* Feature flags supported by TCG */ uint32_t unmigratable_flags; /* Feature flags known to be unmigratable */ } FeatureWordInfo; static FeatureWordInfo feature_word_info[FEATURE_WORDS] = { #ifdef _MSC_VER // FEAT_1_EDX { feature_name, 1, false,0, R_EDX, TCG_FEATURES, }, // FEAT_1_ECX { ext_feature_name, 1, false,0, R_ECX, TCG_EXT_FEATURES, }, // FEAT_7_0_EBX { cpuid_7_0_ebx_feature_name, 7, true, 0, R_EBX, TCG_7_0_EBX_FEATURES, }, // FEAT_8000_0001_EDX { ext2_feature_name, 0x80000001, false,0, R_EDX, TCG_EXT2_FEATURES, }, // FEAT_8000_0001_ECX { ext3_feature_name, 0x80000001, false,0, R_ECX, TCG_EXT3_FEATURES, }, // FEAT_8000_0007_EDX { cpuid_apm_edx_feature_name, 0x80000007, false,0, R_EDX, TCG_APM_FEATURES, CPUID_APM_INVTSC, }, // FEAT_C000_0001_EDX { ext4_feature_name, 0xC0000001, false,0, R_EDX, TCG_EXT4_FEATURES, }, // FEAT_KVM {0}, // FEAT_SVM {0}, // FEAT_XSAVE { cpuid_xsave_feature_name, 0xd, true,1, R_EAX, 0, 0, }, // FEAT_ARAT { cpuid_6_feature_name, 6, false, 0, R_EAX, TCG_6_EAX_FEATURES, } #else [FEAT_1_EDX] = { .feat_names = feature_name, .cpuid_eax = 1, .cpuid_reg = R_EDX, .tcg_features = TCG_FEATURES, }, [FEAT_1_ECX] = { .feat_names = ext_feature_name, .cpuid_eax = 1, .cpuid_reg = R_ECX, .tcg_features = TCG_EXT_FEATURES, }, [FEAT_8000_0001_EDX] = { .feat_names = ext2_feature_name, .cpuid_eax = 0x80000001, .cpuid_reg = R_EDX, .tcg_features = TCG_EXT2_FEATURES, }, [FEAT_8000_0001_ECX] = { .feat_names = ext3_feature_name, .cpuid_eax = 0x80000001, .cpuid_reg = R_ECX, .tcg_features = TCG_EXT3_FEATURES, }, [FEAT_C000_0001_EDX] = { .feat_names = ext4_feature_name, .cpuid_eax = 0xC0000001, .cpuid_reg = R_EDX, .tcg_features = TCG_EXT4_FEATURES, }, [FEAT_7_0_EBX] = { .feat_names = cpuid_7_0_ebx_feature_name, .cpuid_eax = 7, .cpuid_needs_ecx = true, .cpuid_ecx = 0, .cpuid_reg = R_EBX, .tcg_features = TCG_7_0_EBX_FEATURES, }, [FEAT_8000_0007_EDX] = { .feat_names = cpuid_apm_edx_feature_name, .cpuid_eax = 0x80000007, .cpuid_reg = R_EDX, .tcg_features = TCG_APM_FEATURES, .unmigratable_flags = CPUID_APM_INVTSC, }, [FEAT_XSAVE] = { .feat_names = cpuid_xsave_feature_name, .cpuid_eax = 0xd, .cpuid_needs_ecx = true, .cpuid_ecx = 1, .cpuid_reg = R_EAX, .tcg_features = 0, }, [FEAT_6_EAX] = { .feat_names = cpuid_6_feature_name, .cpuid_eax = 6, .cpuid_reg = R_EAX, .tcg_features = TCG_6_EAX_FEATURES, }, #endif }; typedef struct X86RegisterInfo32 { /* Name of register */ const char *name; /* QAPI enum value register */ X86CPURegister32 qapi_enum; } X86RegisterInfo32; #define REGISTER(reg) \ { #reg, X86_CPU_REGISTER32_##reg } static const X86RegisterInfo32 x86_reg_info_32[CPU_NB_REGS32] = { REGISTER(EAX), REGISTER(ECX), REGISTER(EDX), REGISTER(EBX), REGISTER(ESP), REGISTER(EBP), REGISTER(ESI), REGISTER(EDI), }; #undef REGISTER typedef struct ExtSaveArea { uint32_t feature, bits; uint32_t offset, size; } ExtSaveArea; const char *get_register_name_32(unsigned int reg) { if (reg >= CPU_NB_REGS32) { return NULL; } return x86_reg_info_32[reg].name; } #ifdef _MSC_VER #include #endif void host_cpuid(uint32_t function, uint32_t count, uint32_t *eax, uint32_t *ebx, uint32_t *ecx, uint32_t *edx) { uint32_t vec[4]; #ifdef _MSC_VER __cpuidex((int*)vec, function, count); #else #ifdef __x86_64__ asm volatile("cpuid" : "=a"(vec[0]), "=b"(vec[1]), "=c"(vec[2]), "=d"(vec[3]) : "0"(function), "c"(count) : "cc"); #elif defined(__i386__) asm volatile("pusha \n\t" "cpuid \n\t" "mov %%eax, 0(%2) \n\t" "mov %%ebx, 4(%2) \n\t" "mov %%ecx, 8(%2) \n\t" "mov %%edx, 12(%2) \n\t" "popa" : : "a"(function), "c"(count), "S"(vec) : "memory", "cc"); #else abort(); #endif #endif // _MSC_VER if (eax) *eax = vec[0]; if (ebx) *ebx = vec[1]; if (ecx) *ecx = vec[2]; if (edx) *edx = vec[3]; } #define iswhite(c) ((c) && ((c) <= ' ' || '~' < (c))) /* general substring compare of *[s1..e1) and *[s2..e2). sx is start of * a substring. ex if !NULL points to the first char after a substring, * otherwise the string is assumed to sized by a terminating nul. * Return lexical ordering of *s1:*s2. */ static int sstrcmp(const char *s1, const char *e1, const char *s2, const char *e2) { for (;;) { if (!*s1 || !*s2 || *s1 != *s2) return (*s1 - *s2); ++s1, ++s2; if (s1 == e1 && s2 == e2) return (0); else if (s1 == e1) return (*s2); else if (s2 == e2) return (*s1); } } /* compare *[s..e) to *altstr. *altstr may be a simple string or multiple * '|' delimited (possibly empty) strings in which case search for a match * within the alternatives proceeds left to right. Return 0 for success, * non-zero otherwise. */ static int altcmp(const char *s, const char *e, const char *altstr) { const char *p, *q; for (q = p = altstr; ; ) { while (*p && *p != '|') ++p; if ((q == p && !*s) || (q != p && !sstrcmp(s, e, q, p))) return (0); if (!*p) return (1); else q = ++p; } } /* search featureset for flag *[s..e), if found set corresponding bit in * *pval and return true, otherwise return false */ static bool lookup_feature(uint32_t *pval, const char *s, const char *e, const char **featureset) { uint32_t mask; const char **ppc; bool found = false; for (mask = 1, ppc = featureset; mask; mask <<= 1, ++ppc) { if (*ppc && !altcmp(s, e, *ppc)) { *pval |= mask; found = true; } } return found; } static void add_flagname_to_bitmaps(const char *flagname, FeatureWordArray words, Error **errp) { FeatureWord w; for (w = 0; w < FEATURE_WORDS; w++) { FeatureWordInfo *wi = &feature_word_info[w]; if (wi->feat_names && lookup_feature(&words[w], flagname, NULL, wi->feat_names)) { break; } } if (w == FEATURE_WORDS) { error_setg(errp, "CPU feature %s not found", flagname); } } /* CPU class name definitions: */ #define X86_CPU_TYPE_SUFFIX "-" TYPE_X86_CPU #define X86_CPU_TYPE_NAME(name) (name X86_CPU_TYPE_SUFFIX) /* Return type name for a given CPU model name * Caller is responsible for freeing the returned string. */ static char *x86_cpu_type_name(const char *model_name) { return g_strdup_printf(X86_CPU_TYPE_NAME("%s"), model_name); } static ObjectClass *x86_cpu_class_by_name(struct uc_struct *uc, const char *cpu_model) { ObjectClass *oc; char *typename; if (cpu_model == NULL) { return NULL; } typename = x86_cpu_type_name(cpu_model); oc = object_class_by_name(uc, typename); g_free(typename); return oc; } struct X86CPUDefinition { const char *name; uint32_t level; uint32_t xlevel; uint32_t xlevel2; /* vendor is zero-terminated, 12 character ASCII string */ char vendor[CPUID_VENDOR_SZ + 1]; int family; int model; int stepping; FeatureWordArray features; char model_id[48]; bool cache_info_passthrough; }; static X86CPUDefinition builtin_x86_defs[] = { { "qemu64", 0xd, 0x8000000A, 0, CPUID_VENDOR_AMD, 6, 6, 3, { // FEAT_1_EDX PPRO_FEATURES | CPUID_MTRR | CPUID_CLFLUSH | CPUID_MCA | CPUID_PSE36, // FEAT_1_ECX CPUID_EXT_SSE3 | CPUID_EXT_CX16 | CPUID_EXT_POPCNT, // FEAT_7_0_EBX 0, // FEAT_8000_0001_EDX CPUID_EXT2_LM | CPUID_EXT2_SYSCALL | CPUID_EXT2_NX, // FEAT_8000_0001_ECX CPUID_EXT3_LAHF_LM | CPUID_EXT3_SVM | CPUID_EXT3_ABM | CPUID_EXT3_SSE4A, }, }, { "phenom", 5, 0x8000001A, 0, CPUID_VENDOR_AMD, 16, 2, 3, { /* Missing: CPUID_HT */ // FEAT_1_EDX PPRO_FEATURES | CPUID_MTRR | CPUID_CLFLUSH | CPUID_MCA | CPUID_PSE36 | CPUID_VME, // FEAT_1_ECX CPUID_EXT_SSE3 | CPUID_EXT_MONITOR | CPUID_EXT_CX16 | CPUID_EXT_POPCNT, // FEAT_7_0_EBX 0, // FEAT_8000_0001_EDX CPUID_EXT2_LM | CPUID_EXT2_SYSCALL | CPUID_EXT2_NX | CPUID_EXT2_3DNOW | CPUID_EXT2_3DNOWEXT | CPUID_EXT2_MMXEXT | CPUID_EXT2_FFXSR | CPUID_EXT2_PDPE1GB | CPUID_EXT2_RDTSCP, /* Missing: CPUID_EXT3_CMP_LEG, CPUID_EXT3_EXTAPIC, CPUID_EXT3_CR8LEG, CPUID_EXT3_MISALIGNSSE, CPUID_EXT3_3DNOWPREFETCH, CPUID_EXT3_OSVW, CPUID_EXT3_IBS */ // FEAT_8000_0001_ECX CPUID_EXT3_LAHF_LM | CPUID_EXT3_SVM | CPUID_EXT3_ABM | CPUID_EXT3_SSE4A, // FEAT_8000_0007_EDX 0, // FEAT_C000_0001_EDX 0, // FEAT_KVM 0, /* Missing: CPUID_SVM_LBRV */ // FEAT_SVM CPUID_SVM_NPT, }, "AMD Phenom(tm) 9550 Quad-Core Processor", }, { "core2duo", 10, 0x80000008, 0, CPUID_VENDOR_INTEL, 6, 15, 11, { /* Missing: CPUID_DTS, CPUID_HT, CPUID_TM, CPUID_PBE */ // FEAT_1_EDX PPRO_FEATURES | CPUID_MTRR | CPUID_CLFLUSH | CPUID_MCA | CPUID_PSE36 | CPUID_VME | CPUID_ACPI | CPUID_SS, /* Missing: CPUID_EXT_DTES64, CPUID_EXT_DSCPL, CPUID_EXT_EST, * CPUID_EXT_TM2, CPUID_EXT_XTPR, CPUID_EXT_PDCM, CPUID_EXT_VMX */ // FEAT_1_ECX CPUID_EXT_SSE3 | CPUID_EXT_MONITOR | CPUID_EXT_SSSE3 | CPUID_EXT_CX16, // FEAT_7_0_EBX 0, // FEAT_8000_0001_EDX CPUID_EXT2_LM | CPUID_EXT2_SYSCALL | CPUID_EXT2_NX, // FEAT_8000_0001_ECX CPUID_EXT3_LAHF_LM, }, "Intel(R) Core(TM)2 Duo CPU T7700 @ 2.40GHz", }, { "kvm64", 0xd, 0x80000008, 0, CPUID_VENDOR_INTEL, 15, 6, 1, { /* Missing: CPUID_HT */ // FEAT_1_EDX PPRO_FEATURES | CPUID_VME | CPUID_MTRR | CPUID_CLFLUSH | CPUID_MCA | CPUID_PSE36, /* Missing: CPUID_EXT_POPCNT, CPUID_EXT_MONITOR */ // FEAT_1_ECX CPUID_EXT_SSE3 | CPUID_EXT_CX16, // FEAT_7_0_EBX 0, /* Missing: CPUID_EXT2_PDPE1GB, CPUID_EXT2_RDTSCP */ // FEAT_8000_0001_EDX CPUID_EXT2_LM | CPUID_EXT2_SYSCALL | CPUID_EXT2_NX, /* Missing: CPUID_EXT3_LAHF_LM, CPUID_EXT3_CMP_LEG, CPUID_EXT3_EXTAPIC, CPUID_EXT3_CR8LEG, CPUID_EXT3_ABM, CPUID_EXT3_SSE4A, CPUID_EXT3_MISALIGNSSE, CPUID_EXT3_3DNOWPREFETCH, CPUID_EXT3_OSVW, CPUID_EXT3_IBS, CPUID_EXT3_SVM */ // FEAT_8000_0001_ECX 0, }, "Common KVM processor", }, { "qemu32", 4, 0x80000004, 0, CPUID_VENDOR_INTEL, 6, 6, 3, { // FEAT_1_EDX PPRO_FEATURES, // FEAT_1_ECX CPUID_EXT_SSE3 | CPUID_EXT_POPCNT, }, }, { "kvm32", 5, 0x80000008, 0, CPUID_VENDOR_INTEL, 15, 6, 1, { // FEAT_1_EDX PPRO_FEATURES | CPUID_VME | CPUID_MTRR | CPUID_CLFLUSH | CPUID_MCA | CPUID_PSE36, // FEAT_1_ECX CPUID_EXT_SSE3, // FEAT_7_0_EBX 0, // FEAT_8000_0001_EDX // FEAT_8000_0001_ECX 0, }, "Common 32-bit KVM processor", }, { "coreduo", 10, 0x80000008, 0, CPUID_VENDOR_INTEL, 6, 14, 8, { /* Missing: CPUID_DTS, CPUID_HT, CPUID_TM, CPUID_PBE */ // FEAT_1_EDX PPRO_FEATURES | CPUID_VME | CPUID_MTRR | CPUID_CLFLUSH | CPUID_MCA | CPUID_ACPI | CPUID_SS, /* Missing: CPUID_EXT_EST, CPUID_EXT_TM2 , CPUID_EXT_XTPR, * CPUID_EXT_PDCM, CPUID_EXT_VMX */ // FEAT_1_ECX CPUID_EXT_SSE3 | CPUID_EXT_MONITOR, // FEAT_7_0_EBX 0, // FEAT_8000_0001_EDX CPUID_EXT2_NX, }, "Genuine Intel(R) CPU T2600 @ 2.16GHz", }, { "486", 1, 0, 0, CPUID_VENDOR_INTEL, 4, 8, 0, { // FEAT_1_EDX I486_FEATURES, }, }, { "pentium", 1, 0, 0, CPUID_VENDOR_INTEL, 5, 4, 3, { // FEAT_1_EDX PENTIUM_FEATURES, }, }, { "pentium2", 2, 0, 0, CPUID_VENDOR_INTEL, 6, 5, 2, { // FEAT_1_EDX PENTIUM2_FEATURES, }, }, { "pentium3", 3, 0, 0, CPUID_VENDOR_INTEL, 6, 7, 3, { // FEAT_1_EDX PENTIUM3_FEATURES, }, }, { "athlon", 2, 0x80000008, 0, CPUID_VENDOR_AMD, 6, 2, 3, { // FEAT_1_EDX PPRO_FEATURES | CPUID_PSE36 | CPUID_VME | CPUID_MTRR | CPUID_MCA, // FEAT_1_ECX 0, // FEAT_7_0_EBX 0, // FEAT_8000_0001_EDX CPUID_EXT2_MMXEXT | CPUID_EXT2_3DNOW | CPUID_EXT2_3DNOWEXT, }, }, { "n270", 10, 0x80000008, 0, CPUID_VENDOR_INTEL, 6, 28, 2, { /* Missing: CPUID_DTS, CPUID_HT, CPUID_TM, CPUID_PBE */ // FEAT_1_EDX PPRO_FEATURES | CPUID_MTRR | CPUID_CLFLUSH | CPUID_MCA | CPUID_VME | CPUID_ACPI | CPUID_SS, /* Some CPUs got no CPUID_SEP */ /* Missing: CPUID_EXT_DSCPL, CPUID_EXT_EST, CPUID_EXT_TM2, * CPUID_EXT_XTPR */ // FEAT_1_ECX CPUID_EXT_SSE3 | CPUID_EXT_MONITOR | CPUID_EXT_SSSE3 | CPUID_EXT_MOVBE, // FEAT_7_0_EBX 0, // FEAT_8000_0001_EDX CPUID_EXT2_NX, // FEAT_8000_0001_ECX CPUID_EXT3_LAHF_LM, }, "Intel(R) Atom(TM) CPU N270 @ 1.60GHz", }, { "Conroe", 10, 0x80000008, 0, CPUID_VENDOR_INTEL, 6, 15, 3, { // FEAT_1_EDX CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX | CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA | CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 | CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE | CPUID_DE | CPUID_FP87, // FEAT_1_ECX CPUID_EXT_SSSE3 | CPUID_EXT_SSE3, // FEAT_7_0_EBX 0, // FEAT_8000_0001_EDX CPUID_EXT2_LM | CPUID_EXT2_NX | CPUID_EXT2_SYSCALL, // FEAT_8000_0001_ECX CPUID_EXT3_LAHF_LM, }, "Intel Celeron_4x0 (Conroe/Merom Class Core 2)", }, { "Penryn", 10, 0x80000008, 0, CPUID_VENDOR_INTEL, 6, 23, 3, { // FEAT_1_EDX CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX | CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA | CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 | CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE | CPUID_DE | CPUID_FP87, // FEAT_1_ECX CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 | CPUID_EXT_SSE3, // FEAT_7_0_EBX 0, // FEAT_8000_0001_EDX CPUID_EXT2_LM | CPUID_EXT2_NX | CPUID_EXT2_SYSCALL, // FEAT_8000_0001_ECX CPUID_EXT3_LAHF_LM, }, "Intel Core 2 Duo P9xxx (Penryn Class Core 2)", }, { "Nehalem", 11, 0x80000008, 0, CPUID_VENDOR_INTEL, 6, 26, 3, { // FEAT_1_EDX CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX | CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA | CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 | CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE | CPUID_DE | CPUID_FP87, // FEAT_1_ECX CPUID_EXT_POPCNT | CPUID_EXT_SSE42 | CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 | CPUID_EXT_SSE3, // FEAT_7_0_EBX 0, // FEAT_8000_0001_EDX CPUID_EXT2_LM | CPUID_EXT2_SYSCALL | CPUID_EXT2_NX, // FEAT_8000_0001_ECX CPUID_EXT3_LAHF_LM, }, "Intel Core i7 9xx (Nehalem Class Core i7)", }, { "Westmere", 11, 0x80000008, 0, CPUID_VENDOR_INTEL, 6, 44, 1, { // FEAT_1_EDX CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX | CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA | CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 | CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE | CPUID_DE | CPUID_FP87, // FEAT_1_ECX CPUID_EXT_AES | CPUID_EXT_POPCNT | CPUID_EXT_SSE42 | CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 | CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3, // FEAT_7_0_EBX 0, // FEAT_8000_0001_EDX CPUID_EXT2_LM | CPUID_EXT2_SYSCALL | CPUID_EXT2_NX, // FEAT_8000_0001_ECX CPUID_EXT3_LAHF_LM, // FEAT_8000_0007_EDX 0, // FEAT_C000_0001_EDX 0, // FEAT_KVM 0, // FEAT_SVM 0, // FEAT_XSAVE 0, // FEAT_ARAT CPUID_6_EAX_ARAT, }, "Westmere E56xx/L56xx/X56xx (Nehalem-C)", }, { "SandyBridge", 0xd, 0x80000008, 0, CPUID_VENDOR_INTEL, 6, 42, 1, { // FEAT_1_EDX CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX | CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA | CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 | CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE | CPUID_DE | CPUID_FP87, // FEAT_1_ECX CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES | CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_POPCNT | CPUID_EXT_X2APIC | CPUID_EXT_SSE42 | CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 | CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3, // FEAT_7_0_EBX 0, // FEAT_8000_0001_EDX CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_NX | CPUID_EXT2_SYSCALL, // FEAT_8000_0001_ECX CPUID_EXT3_LAHF_LM, // FEAT_8000_0007_EDX 0, // FEAT_C000_0001_EDX 0, // FEAT_KVM 0, // FEAT_SVM 0, // FEAT_XSAVE CPUID_XSAVE_XSAVEOPT, // FEAT_ARAT CPUID_6_EAX_ARAT, }, "Intel Xeon E312xx (Sandy Bridge)", }, { "IvyBridge", 0xd, 0x80000008, 0, CPUID_VENDOR_INTEL, 6, 58, 9, { // FEAT_1_EDX CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX | CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA | CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 | CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE | CPUID_DE | CPUID_FP87, // FEAT_1_ECX CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES | CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_POPCNT | CPUID_EXT_X2APIC | CPUID_EXT_SSE42 | CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 | CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3 | CPUID_EXT_F16C | CPUID_EXT_RDRAND, // FEAT_7_0_EBX CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_SMEP | CPUID_7_0_EBX_ERMS, // FEAT_8000_0001_EDX CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_NX | CPUID_EXT2_SYSCALL, // FEAT_8000_0001_ECX CPUID_EXT3_LAHF_LM, // FEAT_8000_0007_EDX 0, // FEAT_C000_0001_EDX 0, // FEAT_KVM 0, // FEAT_SVM 0, // FEAT_XSAVE CPUID_XSAVE_XSAVEOPT, // FEAT_ARAT CPUID_6_EAX_ARAT, }, "Intel Xeon E3-12xx v2 (Ivy Bridge)", }, { "Haswell-noTSX", 0xd, 0x80000008, 0, CPUID_VENDOR_INTEL, 6, 60, 1, { // FEAT_1_EDX CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX | CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA | CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 | CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE | CPUID_DE | CPUID_FP87, // FEAT_1_ECX CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES | CPUID_EXT_POPCNT | CPUID_EXT_X2APIC | CPUID_EXT_SSE42 | CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 | CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3 | CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_FMA | CPUID_EXT_MOVBE | CPUID_EXT_PCID | CPUID_EXT_F16C | CPUID_EXT_RDRAND, // FEAT_7_0_EBX CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_BMI1 | CPUID_7_0_EBX_AVX2 | CPUID_7_0_EBX_SMEP | CPUID_7_0_EBX_BMI2 | CPUID_7_0_EBX_ERMS | CPUID_7_0_EBX_INVPCID, // FEAT_8000_0001_EDX CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_NX | CPUID_EXT2_SYSCALL, // FEAT_8000_0001_ECX CPUID_EXT3_ABM | CPUID_EXT3_LAHF_LM, // FEAT_8000_0007_EDX 0, // FEAT_C000_0001_EDX 0, // FEAT_KVM 0, // FEAT_SVM 0, // FEAT_XSAVE CPUID_XSAVE_XSAVEOPT, // FEAT_ARAT CPUID_6_EAX_ARAT, }, "Intel Core Processor (Haswell, no TSX)", }, { "Haswell", 0xd, 0x80000008, 0, CPUID_VENDOR_INTEL, 6, 60, 1, { // FEAT_1_EDX CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX | CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA | CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 | CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE | CPUID_DE | CPUID_FP87, // FEAT_1_ECX CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES | CPUID_EXT_POPCNT | CPUID_EXT_X2APIC | CPUID_EXT_SSE42 | CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 | CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3 | CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_FMA | CPUID_EXT_MOVBE | CPUID_EXT_PCID | CPUID_EXT_F16C | CPUID_EXT_RDRAND, // FEAT_7_0_EBX CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_BMI1 | CPUID_7_0_EBX_HLE | CPUID_7_0_EBX_AVX2 | CPUID_7_0_EBX_SMEP | CPUID_7_0_EBX_BMI2 | CPUID_7_0_EBX_ERMS | CPUID_7_0_EBX_INVPCID | CPUID_7_0_EBX_RTM, // FEAT_8000_0001_EDX CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_NX | CPUID_EXT2_SYSCALL, // FEAT_8000_0001_ECX CPUID_EXT3_ABM | CPUID_EXT3_LAHF_LM, // FEAT_8000_0007_EDX 0, // FEAT_C000_0001_EDX 0, // FEAT_KVM 0, // FEAT_SVM 0, // FEAT_XSAVE CPUID_XSAVE_XSAVEOPT, // FEAT_ARAT CPUID_6_EAX_ARAT, }, "Intel Core Processor (Haswell)", }, { "Broadwell-noTSX", 0xd, 0x80000008, 0, CPUID_VENDOR_INTEL, 6, 61, 2, { // FEAT_1_EDX CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX | CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA | CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 | CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE | CPUID_DE | CPUID_FP87, // FEAT_1_ECX CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES | CPUID_EXT_POPCNT | CPUID_EXT_X2APIC | CPUID_EXT_SSE42 | CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 | CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3 | CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_FMA | CPUID_EXT_MOVBE | CPUID_EXT_PCID | CPUID_EXT_F16C | CPUID_EXT_RDRAND, // FEAT_7_0_EBX CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_BMI1 | CPUID_7_0_EBX_AVX2 | CPUID_7_0_EBX_SMEP | CPUID_7_0_EBX_BMI2 | CPUID_7_0_EBX_ERMS | CPUID_7_0_EBX_INVPCID | CPUID_7_0_EBX_RDSEED | CPUID_7_0_EBX_ADX | CPUID_7_0_EBX_SMAP, // FEAT_8000_0001_EDX CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_NX | CPUID_EXT2_SYSCALL, // FEAT_8000_0001_ECX CPUID_EXT3_ABM | CPUID_EXT3_LAHF_LM | CPUID_EXT3_3DNOWPREFETCH, // FEAT_8000_0007_EDX 0, // FEAT_C000_0001_EDX 0, // FEAT_KVM 0, // FEAT_SVM 0, // FEAT_XSAVE CPUID_XSAVE_XSAVEOPT, // FEAT_ARAT CPUID_6_EAX_ARAT, }, "Intel Core Processor (Broadwell, no TSX)", }, { "Broadwell", 0xd, 0x80000008, 0, CPUID_VENDOR_INTEL, 6, 61, 2, { // FEAT_1_EDX CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX | CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA | CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 | CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE | CPUID_DE | CPUID_FP87, // FEAT_1_ECX CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES | CPUID_EXT_POPCNT | CPUID_EXT_X2APIC | CPUID_EXT_SSE42 | CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 | CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3 | CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_FMA | CPUID_EXT_MOVBE | CPUID_EXT_PCID | CPUID_EXT_F16C | CPUID_EXT_RDRAND, // FEAT_7_0_EBX CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_BMI1 | CPUID_7_0_EBX_HLE | CPUID_7_0_EBX_AVX2 | CPUID_7_0_EBX_SMEP | CPUID_7_0_EBX_BMI2 | CPUID_7_0_EBX_ERMS | CPUID_7_0_EBX_INVPCID | CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_RDSEED | CPUID_7_0_EBX_ADX | CPUID_7_0_EBX_SMAP, // FEAT_8000_0001_EDX CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_NX | CPUID_EXT2_SYSCALL, // FEAT_8000_0001_ECX CPUID_EXT3_ABM | CPUID_EXT3_LAHF_LM | CPUID_EXT3_3DNOWPREFETCH, // FEAT_8000_0007_EDX 0, // FEAT_C000_0001_EDX 0, // FEAT_KVM 0, // FEAT_SVM 0, // FEAT_XSAVE CPUID_XSAVE_XSAVEOPT, // FEAT_ARAT CPUID_6_EAX_ARAT, }, "Intel Core Processor (Broadwell)", }, { "Opteron_G1", 5, 0x80000008, 0, CPUID_VENDOR_AMD, 15, 6, 1, { // FEAT_1_EDX CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX | CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA | CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 | CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE | CPUID_DE | CPUID_FP87, // FEAT_1_ECX CPUID_EXT_SSE3, // FEAT_7_0_EBX 0, // FEAT_8000_0001_EDX CPUID_EXT2_LM | CPUID_EXT2_FXSR | CPUID_EXT2_MMX | CPUID_EXT2_NX | CPUID_EXT2_PSE36 | CPUID_EXT2_PAT | CPUID_EXT2_CMOV | CPUID_EXT2_MCA | CPUID_EXT2_PGE | CPUID_EXT2_MTRR | CPUID_EXT2_SYSCALL | CPUID_EXT2_APIC | CPUID_EXT2_CX8 | CPUID_EXT2_MCE | CPUID_EXT2_PAE | CPUID_EXT2_MSR | CPUID_EXT2_TSC | CPUID_EXT2_PSE | CPUID_EXT2_DE | CPUID_EXT2_FPU, }, "AMD Opteron 240 (Gen 1 Class Opteron)", }, { "Opteron_G2", 5, 0x80000008, 0, CPUID_VENDOR_AMD, 15, 6, 1, { // FEAT_1_EDX CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX | CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA | CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 | CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE | CPUID_DE | CPUID_FP87, // FEAT_1_ECX CPUID_EXT_CX16 | CPUID_EXT_SSE3, // FEAT_7_0_EBX 0, // FEAT_8000_0001_EDX CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_FXSR | CPUID_EXT2_MMX | CPUID_EXT2_NX | CPUID_EXT2_PSE36 | CPUID_EXT2_PAT | CPUID_EXT2_CMOV | CPUID_EXT2_MCA | CPUID_EXT2_PGE | CPUID_EXT2_MTRR | CPUID_EXT2_SYSCALL | CPUID_EXT2_APIC | CPUID_EXT2_CX8 | CPUID_EXT2_MCE | CPUID_EXT2_PAE | CPUID_EXT2_MSR | CPUID_EXT2_TSC | CPUID_EXT2_PSE | CPUID_EXT2_DE | CPUID_EXT2_FPU, // FEAT_8000_0001_ECX CPUID_EXT3_SVM | CPUID_EXT3_LAHF_LM, }, "AMD Opteron 22xx (Gen 2 Class Opteron)", }, { "Opteron_G3", 5, 0x80000008, 0, CPUID_VENDOR_AMD, 15, 6, 1, { // FEAT_1_EDX CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX | CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA | CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 | CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE | CPUID_DE | CPUID_FP87, // FEAT_1_ECX CPUID_EXT_POPCNT | CPUID_EXT_CX16 | CPUID_EXT_MONITOR | CPUID_EXT_SSE3, // FEAT_7_0_EBX 0, // FEAT_8000_0001_EDX CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_FXSR | CPUID_EXT2_MMX | CPUID_EXT2_NX | CPUID_EXT2_PSE36 | CPUID_EXT2_PAT | CPUID_EXT2_CMOV | CPUID_EXT2_MCA | CPUID_EXT2_PGE | CPUID_EXT2_MTRR | CPUID_EXT2_SYSCALL | CPUID_EXT2_APIC | CPUID_EXT2_CX8 | CPUID_EXT2_MCE | CPUID_EXT2_PAE | CPUID_EXT2_MSR | CPUID_EXT2_TSC | CPUID_EXT2_PSE | CPUID_EXT2_DE | CPUID_EXT2_FPU, // FEAT_8000_0001_ECX CPUID_EXT3_MISALIGNSSE | CPUID_EXT3_SSE4A | CPUID_EXT3_ABM | CPUID_EXT3_SVM | CPUID_EXT3_LAHF_LM, }, "AMD Opteron 23xx (Gen 3 Class Opteron)", }, { "Opteron_G4", 0xd, 0x8000001A, 0, CPUID_VENDOR_AMD, 21, 1, 2, { // FEAT_1_EDX CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX | CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA | CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 | CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE | CPUID_DE | CPUID_FP87, // FEAT_1_ECX CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES | CPUID_EXT_POPCNT | CPUID_EXT_SSE42 | CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 | CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3, // FEAT_7_0_EBX 0, // FEAT_8000_0001_EDX CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_PDPE1GB | CPUID_EXT2_FXSR | CPUID_EXT2_MMX | CPUID_EXT2_NX | CPUID_EXT2_PSE36 | CPUID_EXT2_PAT | CPUID_EXT2_CMOV | CPUID_EXT2_MCA | CPUID_EXT2_PGE | CPUID_EXT2_MTRR | CPUID_EXT2_SYSCALL | CPUID_EXT2_APIC | CPUID_EXT2_CX8 | CPUID_EXT2_MCE | CPUID_EXT2_PAE | CPUID_EXT2_MSR | CPUID_EXT2_TSC | CPUID_EXT2_PSE | CPUID_EXT2_DE | CPUID_EXT2_FPU, // FEAT_8000_0001_ECX CPUID_EXT3_FMA4 | CPUID_EXT3_XOP | CPUID_EXT3_3DNOWPREFETCH | CPUID_EXT3_MISALIGNSSE | CPUID_EXT3_SSE4A | CPUID_EXT3_ABM | CPUID_EXT3_SVM | CPUID_EXT3_LAHF_LM, }, "AMD Opteron 62xx class CPU", }, { "Opteron_G5", 0xd, 0x8000001A, 0, CPUID_VENDOR_AMD, 21, 2, 0, { // FEAT_1_EDX CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX | CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA | CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 | CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE | CPUID_DE | CPUID_FP87, // FEAT_1_ECX CPUID_EXT_F16C | CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES | CPUID_EXT_POPCNT | CPUID_EXT_SSE42 | CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_FMA | CPUID_EXT_SSSE3 | CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3, // FEAT_7_0_EBX 0, // FEAT_8000_0001_EDX CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_PDPE1GB | CPUID_EXT2_FXSR | CPUID_EXT2_MMX | CPUID_EXT2_NX | CPUID_EXT2_PSE36 | CPUID_EXT2_PAT | CPUID_EXT2_CMOV | CPUID_EXT2_MCA | CPUID_EXT2_PGE | CPUID_EXT2_MTRR | CPUID_EXT2_SYSCALL | CPUID_EXT2_APIC | CPUID_EXT2_CX8 | CPUID_EXT2_MCE | CPUID_EXT2_PAE | CPUID_EXT2_MSR | CPUID_EXT2_TSC | CPUID_EXT2_PSE | CPUID_EXT2_DE | CPUID_EXT2_FPU, // FEAT_8000_0001_ECX CPUID_EXT3_TBM | CPUID_EXT3_FMA4 | CPUID_EXT3_XOP | CPUID_EXT3_3DNOWPREFETCH | CPUID_EXT3_MISALIGNSSE | CPUID_EXT3_SSE4A | CPUID_EXT3_ABM | CPUID_EXT3_SVM | CPUID_EXT3_LAHF_LM, }, "AMD Opteron 63xx class CPU", }, }; static uint32_t x86_cpu_get_supported_feature_word(struct uc_struct *uc, FeatureWord w); static void report_unavailable_features(FeatureWord w, uint32_t mask) { FeatureWordInfo *f = &feature_word_info[w]; int i; for (i = 0; i < 32; ++i) { if ((1UL << i) & mask) { const char *reg = get_register_name_32(f->cpuid_reg); assert(reg); fprintf(stderr, "warning: %s doesn't support requested feature: " "CPUID.%02XH:%s%s%s [bit %d]\n", "TCG", f->cpuid_eax, reg, f->feat_names[i] ? "." : "", f->feat_names[i] ? f->feat_names[i] : "", i); } } } static void x86_cpuid_version_get_family(struct uc_struct *uc, Object *obj, Visitor *v, void *opaque, const char *name, Error **errp) { X86CPU *cpu = X86_CPU(uc, obj); CPUX86State *env = &cpu->env; int64_t value; value = (env->cpuid_version >> 8) & 0xf; if (value == 0xf) { value += (env->cpuid_version >> 20) & 0xff; } visit_type_int(v, &value, name, errp); } static int x86_cpuid_version_set_family(struct uc_struct *uc, Object *obj, Visitor *v, void *opaque, const char *name, Error **errp) { X86CPU *cpu = X86_CPU(uc, obj); CPUX86State *env = &cpu->env; const int64_t min = 0; const int64_t max = 0xff + 0xf; Error *local_err = NULL; int64_t value; visit_type_int(v, &value, name, &local_err); if (local_err) { error_propagate(errp, local_err); return -1; } if (value < min || value > max) { error_setg(errp, QERR_PROPERTY_VALUE_OUT_OF_RANGE, "", name ? name : "null", value, min, max); return -1; } env->cpuid_version &= ~0xff00f00; if (value > 0x0f) { env->cpuid_version |= 0xf00 | ((value - 0x0f) << 20); } else { env->cpuid_version |= value << 8; } return 0; } static void x86_cpuid_version_get_model(struct uc_struct *uc, Object *obj, Visitor *v, void *opaque, const char *name, Error **errp) { X86CPU *cpu = X86_CPU(uc, obj); CPUX86State *env = &cpu->env; int64_t value; value = (env->cpuid_version >> 4) & 0xf; value |= ((env->cpuid_version >> 16) & 0xf) << 4; visit_type_int(v, &value, name, errp); } static int x86_cpuid_version_set_model(struct uc_struct *uc, Object *obj, Visitor *v, void *opaque, const char *name, Error **errp) { X86CPU *cpu = X86_CPU(uc, obj); CPUX86State *env = &cpu->env; const int64_t min = 0; const int64_t max = 0xff; Error *local_err = NULL; int64_t value; visit_type_int(v, &value, name, &local_err); if (local_err) { error_propagate(errp, local_err); return -1; } if (value < min || value > max) { error_setg(errp, QERR_PROPERTY_VALUE_OUT_OF_RANGE, "", name ? name : "null", value, min, max); return -1; } env->cpuid_version &= ~0xf00f0; env->cpuid_version |= ((value & 0xf) << 4) | ((value >> 4) << 16); return 0; } static void x86_cpuid_version_get_stepping(struct uc_struct *uc, Object *obj, Visitor *v, void *opaque, const char *name, Error **errp) { X86CPU *cpu = X86_CPU(uc, obj); CPUX86State *env = &cpu->env; int64_t value; value = env->cpuid_version & 0xf; visit_type_int(v, &value, name, errp); } static int x86_cpuid_version_set_stepping(struct uc_struct *uc, Object *obj, Visitor *v, void *opaque, const char *name, Error **errp) { X86CPU *cpu = X86_CPU(uc, obj); CPUX86State *env = &cpu->env; const int64_t min = 0; const int64_t max = 0xf; Error *local_err = NULL; int64_t value; visit_type_int(v, &value, name, &local_err); if (local_err) { error_propagate(errp, local_err); return -1; } if (value < min || value > max) { error_setg(errp, QERR_PROPERTY_VALUE_OUT_OF_RANGE, "", name ? name : "null", value, min, max); return -1; } env->cpuid_version &= ~0xf; env->cpuid_version |= value & 0xf; return 0; } static char *x86_cpuid_get_vendor(struct uc_struct *uc, Object *obj, Error **errp) { X86CPU *cpu = X86_CPU(uc, obj); CPUX86State *env = &cpu->env; char *value; value = (char *)g_malloc(CPUID_VENDOR_SZ + 1); x86_cpu_vendor_words2str(value, env->cpuid_vendor1, env->cpuid_vendor2, env->cpuid_vendor3); return value; } static int x86_cpuid_set_vendor(struct uc_struct *uc, Object *obj, const char *value, Error **errp) { X86CPU *cpu = X86_CPU(uc, obj); CPUX86State *env = &cpu->env; int i; if (strlen(value) != CPUID_VENDOR_SZ) { error_setg(errp, QERR_PROPERTY_VALUE_BAD, "", "vendor", value); return -1; } env->cpuid_vendor1 = 0; env->cpuid_vendor2 = 0; env->cpuid_vendor3 = 0; for (i = 0; i < 4; i++) { env->cpuid_vendor1 |= ((uint8_t)value[i ]) << (8 * i); env->cpuid_vendor2 |= ((uint8_t)value[i + 4]) << (8 * i); env->cpuid_vendor3 |= ((uint8_t)value[i + 8]) << (8 * i); } return 0; } static char *x86_cpuid_get_model_id(struct uc_struct *uc, Object *obj, Error **errp) { X86CPU *cpu = X86_CPU(uc, obj); CPUX86State *env = &cpu->env; char *value; int i; value = g_malloc(48 + 1); for (i = 0; i < 48; i++) { value[i] = env->cpuid_model[i >> 2] >> (8 * (i & 3)); } value[48] = '\0'; return value; } static int x86_cpuid_set_model_id(struct uc_struct *uc, Object *obj, const char *model_id, Error **errp) { X86CPU *cpu = X86_CPU(uc, obj); CPUX86State *env = &cpu->env; int c, len, i; if (model_id == NULL) { model_id = ""; } len = strlen(model_id); memset(env->cpuid_model, 0, 48); for (i = 0; i < 48; i++) { if (i >= len) { c = '\0'; } else { c = (uint8_t)model_id[i]; } env->cpuid_model[i >> 2] |= c << (8 * (i & 3)); } return 0; } static void x86_cpuid_get_tsc_freq(struct uc_struct *uc, Object *obj, Visitor *v, void *opaque, const char *name, Error **errp) { X86CPU *cpu = X86_CPU(uc, obj); int64_t value; value = cpu->env.tsc_khz * 1000; visit_type_int(v, &value, name, errp); } static int x86_cpuid_set_tsc_freq(struct uc_struct *uc, Object *obj, Visitor *v, void *opaque, const char *name, Error **errp) { X86CPU *cpu = X86_CPU(uc, obj); const int64_t min = 0; const int64_t max = INT64_MAX; Error *local_err = NULL; int64_t value; visit_type_int(v, &value, name, &local_err); if (local_err) { error_propagate(errp, local_err); return -1; } if (value < min || value > max) { error_setg(errp, QERR_PROPERTY_VALUE_OUT_OF_RANGE, "", name ? name : "null", value, min, max); return -1; } cpu->env.tsc_khz = (int)(value / 1000); return 0; } static void x86_cpuid_get_apic_id(struct uc_struct *uc, Object *obj, Visitor *v, void *opaque, const char *name, Error **errp) { X86CPU *cpu = X86_CPU(uc, obj); int64_t value = cpu->apic_id; visit_type_int(v, &value, name, errp); } static int x86_cpuid_set_apic_id(struct uc_struct *uc, Object *obj, Visitor *v, void *opaque, const char *name, Error **errp) { X86CPU *cpu = X86_CPU(uc, obj); DeviceState *dev = DEVICE(uc, obj); const int64_t min = 0; const int64_t max = UINT32_MAX; Error *error = NULL; int64_t value; if (dev->realized) { error_setg(errp, "Attempt to set property '%s' on '%s' after " "it was realized", name, object_get_typename(obj)); return -1; } visit_type_int(v, &value, name, &error); if (error) { error_propagate(errp, error); return -1; } if (value < min || value > max) { error_setg(errp, "Property %s.%s doesn't take value %" PRId64 " (minimum: %" PRId64 ", maximum: %" PRId64 ")" , object_get_typename(obj), name, value, min, max); return -1; } if ((value != cpu->apic_id) && cpu_exists(uc, value)) { error_setg(errp, "CPU with APIC ID %" PRIi64 " exists", value); return -1; } cpu->apic_id = (uint32_t)value; return 0; } /* Generic getter for "feature-words" and "filtered-features" properties */ static void x86_cpu_get_feature_words(struct uc_struct *uc, Object *obj, Visitor *v, void *opaque, const char *name, Error **errp) { uint32_t *array = (uint32_t *)opaque; FeatureWord w; Error *err = NULL; // These all get setup below, so no need to initialise them here. X86CPUFeatureWordInfo word_infos[FEATURE_WORDS]; X86CPUFeatureWordInfoList list_entries[FEATURE_WORDS]; X86CPUFeatureWordInfoList *list = NULL; for (w = 0; w < FEATURE_WORDS; w++) { FeatureWordInfo *wi = &feature_word_info[w]; X86CPUFeatureWordInfo *qwi = &word_infos[w]; qwi->cpuid_input_eax = wi->cpuid_eax; qwi->has_cpuid_input_ecx = wi->cpuid_needs_ecx; qwi->cpuid_input_ecx = wi->cpuid_ecx; qwi->cpuid_register = x86_reg_info_32[wi->cpuid_reg].qapi_enum; qwi->features = array[w]; /* List will be in reverse order, but order shouldn't matter */ list_entries[w].next = list; list_entries[w].value = &word_infos[w]; list = &list_entries[w]; } visit_type_X86CPUFeatureWordInfoList(v, &list, "feature-words", &err); error_propagate(errp, err); } /* Convert all '_' in a feature string option name to '-', to make feature * name conform to QOM property naming rule, which uses '-' instead of '_'. */ static inline void feat2prop(char *s) { while ((s = strchr(s, '_'))) { *s = '-'; } } /* Parse "+feature,-feature,feature=foo" CPU feature string */ static void x86_cpu_parse_featurestr(CPUState *cs, char *features, Error **errp) { X86CPU *cpu = X86_CPU(cs->uc, cs); char *featurestr; /* Single 'key=value" string being parsed */ FeatureWord w; /* Features to be added */ FeatureWordArray plus_features = { 0 }; /* Features to be removed */ FeatureWordArray minus_features = { 0 }; uint32_t numvalue; CPUX86State *env = &cpu->env; Error *local_err = NULL; featurestr = features ? strtok(features, ",") : NULL; while (featurestr) { char *val; if (featurestr[0] == '+') { add_flagname_to_bitmaps(featurestr + 1, plus_features, &local_err); } else if (featurestr[0] == '-') { add_flagname_to_bitmaps(featurestr + 1, minus_features, &local_err); } else if ((val = strchr(featurestr, '='))) { *val = 0; val++; feat2prop(featurestr); if (!strcmp(featurestr, "xlevel")) { char *err; char num[32]; numvalue = strtoul(val, &err, 0); if (!*val || *err) { error_setg(errp, "bad numerical value %s", val); return; } if (numvalue < 0x80000000) { numvalue += 0x80000000; } snprintf(num, sizeof(num), "%" PRIu32, numvalue); object_property_parse(cs->uc, OBJECT(cpu), num, featurestr, &local_err); } else if (!strcmp(featurestr, "tsc-freq")) { int64_t tsc_freq; char *err; char num[32]; tsc_freq = strtosz_suffix_unit(val, &err, STRTOSZ_DEFSUFFIX_B, 1000); if (tsc_freq < 0 || *err) { error_setg(errp, "bad numerical value %s", val); return; } snprintf(num, sizeof(num), "%" PRId64, tsc_freq); object_property_parse(cs->uc, OBJECT(cpu), num, "tsc-frequency", &local_err); } else if (!strcmp(featurestr, "hv-spinlocks")) { char *err; const int min = 0xFFF; char num[32]; numvalue = strtoul(val, &err, 0); if (!*val || *err) { error_setg(errp, "bad numerical value %s", val); return; } if (numvalue < (uint32_t)min) { numvalue = min; } snprintf(num, sizeof(num), "%" PRId32, numvalue); object_property_parse(cs->uc, OBJECT(cpu), num, featurestr, &local_err); } else { object_property_parse(cs->uc, OBJECT(cpu), val, featurestr, &local_err); } } else { feat2prop(featurestr); object_property_parse(cs->uc, OBJECT(cpu), "on", featurestr, &local_err); } if (local_err) { error_propagate(errp, local_err); return; } featurestr = strtok(NULL, ","); } if (cpu->host_features) { for (w = 0; w < FEATURE_WORDS; w++) { env->features[w] = x86_cpu_get_supported_feature_word(env->uc, w); } } for (w = 0; w < FEATURE_WORDS; w++) { env->features[w] |= plus_features[w]; env->features[w] &= ~minus_features[w]; } } static uint32_t x86_cpu_get_supported_feature_word(struct uc_struct *uc, FeatureWord w) { FeatureWordInfo *wi = &feature_word_info[w]; if (tcg_enabled(uc)) { return wi->tcg_features; } else { return ~0; } } /* * Filters CPU feature words based on host availability of each feature. * * Returns: 0 if all flags are supported by the host, non-zero otherwise. */ static int x86_cpu_filter_features(X86CPU *cpu) { CPUX86State *env = &cpu->env; FeatureWord w; int rv = 0; for (w = 0; w < FEATURE_WORDS; w++) { uint32_t host_feat = x86_cpu_get_supported_feature_word(env->uc, w); uint32_t requested_features = env->features[w]; env->features[w] &= host_feat; cpu->filtered_features[w] = requested_features & ~env->features[w]; if (cpu->filtered_features[w]) { if (cpu->check_cpuid || cpu->enforce_cpuid) { report_unavailable_features(w, cpu->filtered_features[w]); } rv = 1; } } return rv; } /* Load data from X86CPUDefinition */ static void x86_cpu_load_def(X86CPU *cpu, X86CPUDefinition *def, Error **errp) { CPUX86State *env = &cpu->env; const char *vendor; FeatureWord w; object_property_set_int(env->uc, OBJECT(cpu), def->level, "level", errp); object_property_set_int(env->uc, OBJECT(cpu), def->family, "family", errp); object_property_set_int(env->uc, OBJECT(cpu), def->model, "model", errp); object_property_set_int(env->uc, OBJECT(cpu), def->stepping, "stepping", errp); object_property_set_int(env->uc, OBJECT(cpu), def->xlevel, "xlevel", errp); object_property_set_int(env->uc, OBJECT(cpu), def->xlevel2, "xlevel2", errp); cpu->cache_info_passthrough = def->cache_info_passthrough; object_property_set_str(env->uc, OBJECT(cpu), def->model_id, "model-id", errp); for (w = 0; w < FEATURE_WORDS; w++) { env->features[w] = def->features[w]; } env->features[FEAT_1_ECX] |= CPUID_EXT_HYPERVISOR; /* sysenter isn't supported in compatibility mode on AMD, * syscall isn't supported in compatibility mode on Intel. * Normally we advertise the actual CPU vendor, but you can * override this using the 'vendor' property if you want to use * KVM's sysenter/syscall emulation in compatibility mode and * when doing cross vendor migration */ vendor = def->vendor; object_property_set_str(env->uc, OBJECT(cpu), vendor, "vendor", errp); } X86CPU *cpu_x86_create(struct uc_struct *uc, const char *cpu_model, Error **errp) { X86CPU *cpu = NULL; ObjectClass *oc; gchar **model_pieces; char *name, *features; Error *error = NULL; model_pieces = g_strsplit(cpu_model, ",", 2); if (!model_pieces[0]) { error_setg(&error, "Invalid/empty CPU model name"); goto out; } name = model_pieces[0]; features = model_pieces[1]; oc = x86_cpu_class_by_name(uc, name); if (oc == NULL) { error_setg(&error, "Unable to find CPU definition: %s", name); goto out; } cpu = X86_CPU(uc, object_new(uc, object_class_get_name(oc))); x86_cpu_parse_featurestr(CPU(cpu), features, &error); if (error) { goto out; } out: if (error != NULL) { error_propagate(errp, error); if (cpu) { object_unref(uc, OBJECT(cpu)); cpu = NULL; } } g_strfreev(model_pieces); return cpu; } CPUX86State *cpu_x86_init_user(struct uc_struct *uc, const char *cpu_model) { Error *error = NULL; X86CPU *cpu; cpu = cpu_x86_create(uc, cpu_model, &error); if (error) { goto error; } object_property_set_int(uc, OBJECT(cpu), CPU(cpu)->cpu_index, "apic-id", &error); if (error) { goto error; } object_property_set_bool(uc, OBJECT(cpu), true, "realized", &error); if (error) { goto error; } return &cpu->env; error: error_free(error); if (cpu != NULL) { object_unref(uc, OBJECT(cpu)); } return NULL; } static void x86_cpu_cpudef_class_init(struct uc_struct *uc, ObjectClass *oc, void *data) { X86CPUDefinition *cpudef = data; X86CPUClass *xcc = X86_CPU_CLASS(uc, oc); xcc->cpu_def = cpudef; } static void x86_register_cpudef_type(struct uc_struct *uc, X86CPUDefinition *def) { char *typename = x86_cpu_type_name(def->name); TypeInfo ti = { typename, TYPE_X86_CPU, 0, 0, NULL, NULL, NULL, NULL, def, x86_cpu_cpudef_class_init, }; type_register(uc, &ti); g_free(typename); } #if !defined(CONFIG_USER_ONLY) void cpu_clear_apic_feature(CPUX86State *env) { env->features[FEAT_1_EDX] &= ~CPUID_APIC; } #endif /* !CONFIG_USER_ONLY */ /* Initialize list of CPU models, filling some non-static fields if necessary */ void x86_cpudef_setup(void) { int i, j; static const char *model_with_versions[] = { "qemu32", "qemu64", "athlon" }; for (i = 0; i < ARRAY_SIZE(builtin_x86_defs); ++i) { X86CPUDefinition *def = &builtin_x86_defs[i]; /* Look for specific "cpudef" models that */ /* have the QEMU version in .model_id */ for (j = 0; j < ARRAY_SIZE(model_with_versions); j++) { if (strcmp(model_with_versions[j], def->name) == 0) { pstrcpy(def->model_id, sizeof(def->model_id), "QEMU Virtual CPU version "); break; } } } } void cpu_x86_cpuid(CPUX86State *env, uint32_t index, uint32_t count, uint32_t *eax, uint32_t *ebx, uint32_t *ecx, uint32_t *edx) { X86CPU *cpu = x86_env_get_cpu(env); CPUState *cs = CPU(cpu); /* test if maximum index reached */ if (index & 0x80000000) { if (index > env->cpuid_xlevel) { if (env->cpuid_xlevel2 > 0) { /* Handle the Centaur's CPUID instruction. */ if (index > env->cpuid_xlevel2) { index = env->cpuid_xlevel2; } else if (index < 0xC0000000) { index = env->cpuid_xlevel; } } else { /* Intel documentation states that invalid EAX input will * return the same information as EAX=cpuid_level * (Intel SDM Vol. 2A - Instruction Set Reference - CPUID) */ index = env->cpuid_level; } } } else { if (index > env->cpuid_level) index = env->cpuid_level; } switch(index) { case 0: *eax = env->cpuid_level; *ebx = env->cpuid_vendor1; *edx = env->cpuid_vendor2; *ecx = env->cpuid_vendor3; break; case 1: *eax = env->cpuid_version; *ebx = (cpu->apic_id << 24) | 8 << 8; /* CLFLUSH size in quad words, Linux wants it. */ *ecx = env->features[FEAT_1_ECX]; *edx = env->features[FEAT_1_EDX]; if (cs->nr_cores * cs->nr_threads > 1) { *ebx |= (cs->nr_cores * cs->nr_threads) << 16; *edx |= 1 << 28; /* HTT bit */ } break; case 2: /* cache info: needed for Pentium Pro compatibility */ if (cpu->cache_info_passthrough) { host_cpuid(index, 0, eax, ebx, ecx, edx); break; } *eax = 1; /* Number of CPUID[EAX=2] calls required */ *ebx = 0; *ecx = 0; *edx = (L1D_DESCRIPTOR << 16) | \ (L1I_DESCRIPTOR << 8) | \ (L2_DESCRIPTOR); break; case 4: /* cache info: needed for Core compatibility */ if (cpu->cache_info_passthrough) { host_cpuid(index, count, eax, ebx, ecx, edx); *eax &= ~0xFC000000; } else { *eax = 0; switch (count) { case 0: /* L1 dcache info */ *eax |= CPUID_4_TYPE_DCACHE | \ CPUID_4_LEVEL(1) | \ CPUID_4_SELF_INIT_LEVEL; *ebx = (L1D_LINE_SIZE - 1) | \ ((L1D_PARTITIONS - 1) << 12) | \ ((L1D_ASSOCIATIVITY - 1) << 22); *ecx = L1D_SETS - 1; *edx = CPUID_4_NO_INVD_SHARING; break; case 1: /* L1 icache info */ *eax |= CPUID_4_TYPE_ICACHE | \ CPUID_4_LEVEL(1) | \ CPUID_4_SELF_INIT_LEVEL; *ebx = (L1I_LINE_SIZE - 1) | \ ((L1I_PARTITIONS - 1) << 12) | \ ((L1I_ASSOCIATIVITY - 1) << 22); *ecx = L1I_SETS - 1; *edx = CPUID_4_NO_INVD_SHARING; break; case 2: /* L2 cache info */ *eax |= CPUID_4_TYPE_UNIFIED | \ CPUID_4_LEVEL(2) | \ CPUID_4_SELF_INIT_LEVEL; if (cs->nr_threads > 1) { *eax |= (cs->nr_threads - 1) << 14; } *ebx = (L2_LINE_SIZE - 1) | \ ((L2_PARTITIONS - 1) << 12) | \ ((L2_ASSOCIATIVITY - 1) << 22); *ecx = L2_SETS - 1; *edx = CPUID_4_NO_INVD_SHARING; break; default: /* end of info */ *eax = 0; *ebx = 0; *ecx = 0; *edx = 0; break; } } /* QEMU gives out its own APIC IDs, never pass down bits 31..26. */ if ((*eax & 31) && cs->nr_cores > 1) { *eax |= (cs->nr_cores - 1) << 26; } break; case 5: /* mwait info: needed for Core compatibility */ *eax = 0; /* Smallest monitor-line size in bytes */ *ebx = 0; /* Largest monitor-line size in bytes */ *ecx = CPUID_MWAIT_EMX | CPUID_MWAIT_IBE; *edx = 0; break; case 6: /* Thermal and Power Leaf */ *eax = env->features[FEAT_6_EAX]; *ebx = 0; *ecx = 0; *edx = 0; break; case 7: /* Structured Extended Feature Flags Enumeration Leaf */ if (count == 0) { *eax = 0; /* Maximum ECX value for sub-leaves */ *ebx = env->features[FEAT_7_0_EBX]; /* Feature flags */ *ecx = 0; /* Reserved */ *edx = 0; /* Reserved */ } else { *eax = 0; *ebx = 0; *ecx = 0; *edx = 0; } break; case 9: /* Direct Cache Access Information Leaf */ *eax = 0; /* Bits 0-31 in DCA_CAP MSR */ *ebx = 0; *ecx = 0; *edx = 0; break; case 0xA: /* Architectural Performance Monitoring Leaf */ *eax = 0; *ebx = 0; *ecx = 0; *edx = 0; break; case 0xD: { break; } case 0x80000000: *eax = env->cpuid_xlevel; *ebx = env->cpuid_vendor1; *edx = env->cpuid_vendor2; *ecx = env->cpuid_vendor3; break; case 0x80000001: *eax = env->cpuid_version; *ebx = 0; *ecx = env->features[FEAT_8000_0001_ECX]; *edx = env->features[FEAT_8000_0001_EDX]; /* The Linux kernel checks for the CMPLegacy bit and * discards multiple thread information if it is set. * So dont set it here for Intel to make Linux guests happy. */ if (cs->nr_cores * cs->nr_threads > 1) { if (env->cpuid_vendor1 != CPUID_VENDOR_INTEL_1 || env->cpuid_vendor2 != CPUID_VENDOR_INTEL_2 || env->cpuid_vendor3 != CPUID_VENDOR_INTEL_3) { *ecx |= 1 << 1; /* CmpLegacy bit */ } } break; case 0x80000002: case 0x80000003: case 0x80000004: *eax = env->cpuid_model[(index - 0x80000002) * 4 + 0]; *ebx = env->cpuid_model[(index - 0x80000002) * 4 + 1]; *ecx = env->cpuid_model[(index - 0x80000002) * 4 + 2]; *edx = env->cpuid_model[(index - 0x80000002) * 4 + 3]; break; case 0x80000005: /* cache info (L1 cache) */ if (cpu->cache_info_passthrough) { host_cpuid(index, 0, eax, ebx, ecx, edx); break; } *eax = (L1_DTLB_2M_ASSOC << 24) | (L1_DTLB_2M_ENTRIES << 16) | \ (L1_ITLB_2M_ASSOC << 8) | (L1_ITLB_2M_ENTRIES); *ebx = (L1_DTLB_4K_ASSOC << 24) | (L1_DTLB_4K_ENTRIES << 16) | \ (L1_ITLB_4K_ASSOC << 8) | (L1_ITLB_4K_ENTRIES); *ecx = (L1D_SIZE_KB_AMD << 24) | (L1D_ASSOCIATIVITY_AMD << 16) | \ (L1D_LINES_PER_TAG << 8) | (L1D_LINE_SIZE); *edx = (L1I_SIZE_KB_AMD << 24) | (L1I_ASSOCIATIVITY_AMD << 16) | \ (L1I_LINES_PER_TAG << 8) | (L1I_LINE_SIZE); break; case 0x80000006: /* cache info (L2 cache) */ if (cpu->cache_info_passthrough) { host_cpuid(index, 0, eax, ebx, ecx, edx); break; } *eax = (AMD_ENC_ASSOC(L2_DTLB_2M_ASSOC) << 28) | \ (L2_DTLB_2M_ENTRIES << 16) | \ (AMD_ENC_ASSOC(L2_ITLB_2M_ASSOC) << 12) | \ (L2_ITLB_2M_ENTRIES); *ebx = (AMD_ENC_ASSOC(L2_DTLB_4K_ASSOC) << 28) | \ (L2_DTLB_4K_ENTRIES << 16) | \ (AMD_ENC_ASSOC(L2_ITLB_4K_ASSOC) << 12) | \ (L2_ITLB_4K_ENTRIES); *ecx = (L2_SIZE_KB_AMD << 16) | \ (AMD_ENC_ASSOC(L2_ASSOCIATIVITY) << 12) | \ (L2_LINES_PER_TAG << 8) | (L2_LINE_SIZE); *edx = ((L3_SIZE_KB/512) << 18) | \ (AMD_ENC_ASSOC(L3_ASSOCIATIVITY) << 12) | \ (L3_LINES_PER_TAG << 8) | (L3_LINE_SIZE); break; case 0x80000007: *eax = 0; *ebx = 0; *ecx = 0; *edx = env->features[FEAT_8000_0007_EDX]; break; case 0x80000008: /* virtual & phys address size in low 2 bytes. */ /* XXX: This value must match the one used in the MMU code. */ if (env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_LM) { /* 64 bit processor */ /* XXX: The physical address space is limited to 42 bits in exec.c. */ *eax = 0x00003028; /* 48 bits virtual, 40 bits physical */ } else { if (env->features[FEAT_1_EDX] & CPUID_PSE36) { *eax = 0x00000024; /* 36 bits physical */ } else { *eax = 0x00000020; /* 32 bits physical */ } } *ebx = 0; *ecx = 0; *edx = 0; if (cs->nr_cores * cs->nr_threads > 1) { *ecx |= (cs->nr_cores * cs->nr_threads) - 1; } break; case 0x8000000A: if (env->features[FEAT_8000_0001_ECX] & CPUID_EXT3_SVM) { *eax = 0x00000001; /* SVM Revision */ *ebx = 0x00000010; /* nr of ASIDs */ *ecx = 0; *edx = env->features[FEAT_SVM]; /* optional features */ } else { *eax = 0; *ebx = 0; *ecx = 0; *edx = 0; } break; case 0xC0000000: *eax = env->cpuid_xlevel2; *ebx = 0; *ecx = 0; *edx = 0; break; case 0xC0000001: /* Support for VIA CPU's CPUID instruction */ *eax = env->cpuid_version; *ebx = 0; *ecx = 0; *edx = env->features[FEAT_C000_0001_EDX]; break; case 0xC0000002: case 0xC0000003: case 0xC0000004: /* Reserved for the future, and now filled with zero */ *eax = 0; *ebx = 0; *ecx = 0; *edx = 0; break; default: /* reserved values: zero */ *eax = 0; *ebx = 0; *ecx = 0; *edx = 0; break; } } /* CPUClass::reset() */ static void x86_cpu_reset(CPUState *s) { X86CPU *cpu = X86_CPU(s->uc, s); X86CPUClass *xcc = X86_CPU_GET_CLASS(s->uc, cpu); CPUX86State *env = &cpu->env; int i; xcc->parent_reset(s); memset(env, 0, offsetof(CPUX86State, cpuid_level)); tlb_flush(s, 1); env->old_exception = -1; /* init to reset state */ #ifdef CONFIG_SOFTMMU env->hflags |= HF_SOFTMMU_MASK; #endif env->hflags2 |= HF2_GIF_MASK; cpu_x86_update_cr0(env, 0x60000010); env->a20_mask = ~0x0; env->smbase = 0x30000; env->idt.limit = 0xffff; env->gdt.limit = 0xffff; env->ldt.limit = 0xffff; env->ldt.flags = DESC_P_MASK | (2 << DESC_TYPE_SHIFT); env->tr.limit = 0xffff; env->tr.flags = DESC_P_MASK | (11 << DESC_TYPE_SHIFT); cpu_x86_load_seg_cache(env, R_CS, 0xf000, 0xffff0000, 0xffff, DESC_P_MASK | DESC_S_MASK | DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK); cpu_x86_load_seg_cache(env, R_DS, 0, 0, 0xffff, DESC_P_MASK | DESC_S_MASK | DESC_W_MASK | DESC_A_MASK); cpu_x86_load_seg_cache(env, R_ES, 0, 0, 0xffff, DESC_P_MASK | DESC_S_MASK | DESC_W_MASK | DESC_A_MASK); cpu_x86_load_seg_cache(env, R_SS, 0, 0, 0xffff, DESC_P_MASK | DESC_S_MASK | DESC_W_MASK | DESC_A_MASK); cpu_x86_load_seg_cache(env, R_FS, 0, 0, 0xffff, DESC_P_MASK | DESC_S_MASK | DESC_W_MASK | DESC_A_MASK); cpu_x86_load_seg_cache(env, R_GS, 0, 0, 0xffff, DESC_P_MASK | DESC_S_MASK | DESC_W_MASK | DESC_A_MASK); env->eip = 0xfff0; env->regs[R_EDX] = env->cpuid_version; env->eflags = 0x2; /* FPU init */ for (i = 0; i < 8; i++) { env->fptags[i] = 1; } cpu_set_fpuc(env, 0x37f); env->mxcsr = 0x1f80; env->xstate_bv = XSTATE_FP | XSTATE_SSE; env->pat = 0x0007040600070406ULL; env->msr_ia32_misc_enable = MSR_IA32_MISC_ENABLE_DEFAULT; memset(env->dr, 0, sizeof(env->dr)); env->dr[6] = DR6_FIXED_1; env->dr[7] = DR7_FIXED_1; cpu_breakpoint_remove_all(s, BP_CPU); cpu_watchpoint_remove_all(s, BP_CPU); env->xcr0 = 1; /* * SDM 11.11.5 requires: * - IA32_MTRR_DEF_TYPE MSR.E = 0 * - IA32_MTRR_PHYSMASKn.V = 0 * All other bits are undefined. For simplification, zero it all. */ env->mtrr_deftype = 0; memset(env->mtrr_var, 0, sizeof(env->mtrr_var)); memset(env->mtrr_fixed, 0, sizeof(env->mtrr_fixed)); #if !defined(CONFIG_USER_ONLY) /* We hard-wire the BSP to the first CPU. */ apic_designate_bsp(env->uc, cpu->apic_state, s->cpu_index == 0); s->halted = !cpu_is_bsp(cpu); #endif } #ifndef CONFIG_USER_ONLY bool cpu_is_bsp(X86CPU *cpu) { return (cpu_get_apic_base((&cpu->env)->uc, cpu->apic_state) & MSR_IA32_APICBASE_BSP) != 0; } #endif static void mce_init(X86CPU *cpu) { CPUX86State *cenv = &cpu->env; unsigned int bank; if (((cenv->cpuid_version >> 8) & 0xf) >= 6 && (cenv->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) == (CPUID_MCE | CPUID_MCA)) { cenv->mcg_cap = MCE_CAP_DEF | MCE_BANKS_DEF; cenv->mcg_ctl = ~(uint64_t)0; for (bank = 0; bank < MCE_BANKS_DEF; bank++) { cenv->mce_banks[bank * 4] = ~(uint64_t)0; } } } #ifndef CONFIG_USER_ONLY static void x86_cpu_apic_create(X86CPU *cpu, Error **errp) { #if 0 DeviceState *dev = DEVICE(cpu); APICCommonState *apic; const char *apic_type = "apic"; cpu->apic_state = qdev_try_create(qdev_get_parent_bus(dev), apic_type); if (cpu->apic_state == NULL) { error_setg(errp, "APIC device '%s' could not be created", apic_type); return; } object_property_add_child(OBJECT(cpu), "apic", OBJECT(cpu->apic_state), NULL); //qdev_prop_set_uint8(cpu->apic_state, "id", cpu->apic_id); /* TODO: convert to link<> */ apic = APIC_COMMON(cpu->apic_state); apic->cpu = cpu; #endif } static void x86_cpu_apic_realize(X86CPU *cpu, Error **errp) { if (cpu->apic_state == NULL) { return; } if (qdev_init(cpu->apic_state)) { error_setg(errp, "APIC device '%s' could not be initialized", object_get_typename(OBJECT(cpu->apic_state))); return; } } #else static void x86_cpu_apic_realize(X86CPU *cpu, Error **errp) { } #endif #define IS_INTEL_CPU(env) ((env)->cpuid_vendor1 == CPUID_VENDOR_INTEL_1 && \ (env)->cpuid_vendor2 == CPUID_VENDOR_INTEL_2 && \ (env)->cpuid_vendor3 == CPUID_VENDOR_INTEL_3) #define IS_AMD_CPU(env) ((env)->cpuid_vendor1 == CPUID_VENDOR_AMD_1 && \ (env)->cpuid_vendor2 == CPUID_VENDOR_AMD_2 && \ (env)->cpuid_vendor3 == CPUID_VENDOR_AMD_3) static int x86_cpu_realizefn(struct uc_struct *uc, DeviceState *dev, Error **errp) { CPUState *cs = CPU(dev); X86CPU *cpu = X86_CPU(uc, dev); X86CPUClass *xcc = X86_CPU_GET_CLASS(uc, dev); CPUX86State *env = &cpu->env; Error *local_err = NULL; if (cpu->apic_id < 0) { error_setg(errp, "apic-id property was not initialized properly"); return -1; } if (env->features[FEAT_7_0_EBX] && env->cpuid_level < 7) { env->cpuid_level = 7; } /* On AMD CPUs, some CPUID[8000_0001].EDX bits must match the bits on * CPUID[1].EDX. */ if (IS_AMD_CPU(env)) { env->features[FEAT_8000_0001_EDX] &= ~CPUID_EXT2_AMD_ALIASES; env->features[FEAT_8000_0001_EDX] |= (env->features[FEAT_1_EDX] & CPUID_EXT2_AMD_ALIASES); } if (x86_cpu_filter_features(cpu) && cpu->enforce_cpuid) { error_setg(&local_err, "TCG doesn't support requested features"); goto out; } #ifndef CONFIG_USER_ONLY //qemu_register_reset(x86_cpu_machine_reset_cb, cpu); if (cpu->env.features[FEAT_1_EDX] & CPUID_APIC || smp_cpus > 1) { x86_cpu_apic_create(cpu, &local_err); if (local_err != NULL) { goto out; } } #endif mce_init(cpu); #ifndef CONFIG_USER_ONLY if (tcg_enabled(uc)) { cpu->cpu_as_root = g_new(MemoryRegion, 1); cs->as = g_new(AddressSpace, 1); memory_region_init_alias(uc, cpu->cpu_as_root, OBJECT(cpu), "memory", get_system_memory(uc), 0, ~0ull); memory_region_set_enabled(cpu->cpu_as_root, true); address_space_init(uc, cs->as, cpu->cpu_as_root, "CPU"); } #endif if (qemu_init_vcpu(cs)) return -1; x86_cpu_apic_realize(cpu, &local_err); if (local_err != NULL) { goto out; } cpu_reset(cs); xcc->parent_realize(uc, dev, &local_err); out: if (local_err != NULL) { error_propagate(errp, local_err); return -1; } return 0; } static void x86_cpu_initfn(struct uc_struct *uc, Object *obj, void *opaque) { //printf("... X86 initialize (object)\n"); CPUState *cs = CPU(obj); X86CPU *cpu = X86_CPU(cs->uc, obj); X86CPUClass *xcc = X86_CPU_GET_CLASS(uc, obj); CPUX86State *env = &cpu->env; cs->env_ptr = env; cpu_exec_init(cs, opaque); object_property_add(obj, "family", "int", x86_cpuid_version_get_family, x86_cpuid_version_set_family, NULL, NULL, NULL); object_property_add(obj, "model", "int", x86_cpuid_version_get_model, x86_cpuid_version_set_model, NULL, NULL, NULL); object_property_add(obj, "stepping", "int", x86_cpuid_version_get_stepping, x86_cpuid_version_set_stepping, NULL, NULL, NULL); object_property_add_str(obj, "vendor", x86_cpuid_get_vendor, x86_cpuid_set_vendor, NULL); object_property_add_str(obj, "model-id", x86_cpuid_get_model_id, x86_cpuid_set_model_id, NULL); object_property_add(obj, "tsc-frequency", "int", x86_cpuid_get_tsc_freq, x86_cpuid_set_tsc_freq, NULL, NULL, NULL); object_property_add(obj, "apic-id", "int", x86_cpuid_get_apic_id, x86_cpuid_set_apic_id, NULL, NULL, NULL); object_property_add(obj, "feature-words", "X86CPUFeatureWordInfo", x86_cpu_get_feature_words, NULL, NULL, (void *)env->features, NULL); object_property_add(obj, "filtered-features", "X86CPUFeatureWordInfo", x86_cpu_get_feature_words, NULL, NULL, (void *)cpu->filtered_features, NULL); cpu->hyperv_spinlock_attempts = HYPERV_SPINLOCK_NEVER_RETRY; cpu->apic_id = -1; x86_cpu_load_def(cpu, xcc->cpu_def, &error_abort); /* init various static tables used in TCG mode */ if (tcg_enabled(env->uc)) optimize_flags_init(env->uc); } static int64_t x86_cpu_get_arch_id(CPUState *cs) { X86CPU *cpu = X86_CPU(cs->uc, cs); return cpu->apic_id; } static bool x86_cpu_get_paging_enabled(const CPUState *cs) { X86CPU *cpu = X86_CPU(cs->uc, cs); return (cpu->env.cr[0] & CR0_PG_MASK) != 0; } static void x86_cpu_set_pc(CPUState *cs, vaddr value) { X86CPU *cpu = X86_CPU(cs->uc, cs); cpu->env.eip = value; } static void x86_cpu_synchronize_from_tb(CPUState *cs, TranslationBlock *tb) { X86CPU *cpu = X86_CPU(cs->uc, cs); cpu->env.eip = tb->pc - tb->cs_base; } static bool x86_cpu_has_work(CPUState *cs) { X86CPU *cpu = X86_CPU(cs->uc, cs); CPUX86State *env = &cpu->env; #if !defined(CONFIG_USER_ONLY) if (cs->interrupt_request & CPU_INTERRUPT_POLL) { apic_poll_irq(cpu->apic_state); cpu_reset_interrupt(cs, CPU_INTERRUPT_POLL); } #endif return ((cs->interrupt_request & CPU_INTERRUPT_HARD) && (env->eflags & IF_MASK)) || (cs->interrupt_request & (CPU_INTERRUPT_NMI | CPU_INTERRUPT_INIT | CPU_INTERRUPT_SIPI | CPU_INTERRUPT_MCE)) || ((cs->interrupt_request & CPU_INTERRUPT_SMI) && !(env->hflags & HF_SMM_MASK)); } static void x86_cpu_common_class_init(struct uc_struct *uc, ObjectClass *oc, void *data) { //printf("... init X86 cpu common class\n"); X86CPUClass *xcc = X86_CPU_CLASS(uc, oc); CPUClass *cc = CPU_CLASS(uc, oc); DeviceClass *dc = DEVICE_CLASS(uc, oc); xcc->parent_realize = dc->realize; dc->realize = x86_cpu_realizefn; dc->bus_type = TYPE_ICC_BUS; xcc->parent_reset = cc->reset; cc->reset = x86_cpu_reset; cc->reset_dump_flags = CPU_DUMP_FPU | CPU_DUMP_CCOP; cc->class_by_name = x86_cpu_class_by_name; cc->parse_features = x86_cpu_parse_featurestr; cc->has_work = x86_cpu_has_work; cc->do_interrupt = x86_cpu_do_interrupt; cc->cpu_exec_interrupt = x86_cpu_exec_interrupt; cc->dump_state = x86_cpu_dump_state; cc->set_pc = x86_cpu_set_pc; cc->synchronize_from_tb = x86_cpu_synchronize_from_tb; cc->get_arch_id = x86_cpu_get_arch_id; cc->get_paging_enabled = x86_cpu_get_paging_enabled; #ifdef CONFIG_USER_ONLY cc->handle_mmu_fault = x86_cpu_handle_mmu_fault; #else cc->get_memory_mapping = x86_cpu_get_memory_mapping; cc->get_phys_page_debug = x86_cpu_get_phys_page_debug; #endif #ifndef CONFIG_USER_ONLY cc->debug_excp_handler = breakpoint_handler; #endif cc->cpu_exec_enter = x86_cpu_exec_enter; cc->cpu_exec_exit = x86_cpu_exec_exit; } void x86_cpu_register_types(void *opaque) { const TypeInfo x86_cpu_type_info = { TYPE_X86_CPU, TYPE_CPU, sizeof(X86CPUClass), sizeof(X86CPU), opaque, x86_cpu_initfn, NULL, NULL, NULL, x86_cpu_common_class_init, NULL, NULL, true, }; //printf("... register X86 cpu\n"); int i; type_register_static(opaque, &x86_cpu_type_info); for (i = 0; i < ARRAY_SIZE(builtin_x86_defs); i++) { x86_register_cpudef_type(opaque, &builtin_x86_defs[i]); } //printf("... END OF register X86 cpu\n"); }