#ifndef TARGET_ARM_TRANSLATE_H #define TARGET_ARM_TRANSLATE_H #include "exec/translator.h" #include "internals.h" /* internal defines */ typedef struct DisasContext { DisasContextBase base; const ARMISARegisters *isar; /* The address of the current instruction being translated. */ target_ulong pc_curr; target_ulong page_start; uint32_t insn; /* Nonzero if this instruction has been conditionally skipped. */ int condjmp; /* The label that will be jumped to when the instruction is skipped. */ TCGLabel *condlabel; /* Thumb-2 conditional execution bits. */ int condexec_mask; int condexec_cond; int thumb; int sctlr_b; MemOp be_data; #if !defined(CONFIG_USER_ONLY) int user; #endif ARMMMUIdx mmu_idx; /* MMU index to use for normal loads/stores */ uint8_t tbii; /* TBI1|TBI0 for insns */ uint8_t tbid; /* TBI1|TBI0 for data */ bool ns; /* Use non-secure CPREG bank on access */ int fp_excp_el; /* FP exception EL or 0 if enabled */ int sve_excp_el; /* SVE exception EL or 0 if enabled */ int sve_len; /* SVE vector length in bytes */ /* Flag indicating that exceptions from secure mode are routed to EL3. */ bool secure_routed_to_el3; bool vfp_enabled; /* FP enabled via FPSCR.EN */ int vec_len; int vec_stride; bool v7m_handler_mode; bool v8m_secure; /* true if v8M and we're in Secure mode */ bool v8m_stackcheck; /* true if we need to perform v8M stack limit checks */ bool v8m_fpccr_s_wrong; /* true if v8M FPCCR.S != v8m_secure */ bool v7m_new_fp_ctxt_needed; /* ASPEN set but no active FP context */ bool v7m_lspact; /* FPCCR.LSPACT set */ /* Immediate value in AArch32 SVC insn; must be set if is_jmp == DISAS_SWI * so that top level loop can generate correct syndrome information. */ uint32_t svc_imm; int aarch64; int current_el; /* Debug target exception level for single-step exceptions */ int debug_target_el; GHashTable *cp_regs; uint64_t features; /* CPU features bits */ /* Because unallocated encodings generate different exception syndrome * information from traps due to FP being disabled, we can't do a single * "is fp access disabled" check at a high level in the decode tree. * To help in catching bugs where the access check was forgotten in some * code path, we set this flag when the access check is done, and assert * that it is set at the point where we actually touch the FP regs. */ bool fp_access_checked; /* ARMv8 single-step state (this is distinct from the QEMU gdbstub * single-step support). */ bool ss_active; bool pstate_ss; /* True if the insn just emitted was a load-exclusive instruction * (necessary for syndrome information for single step exceptions), * ie A64 LDX*, LDAX*, A32/T32 LDREX*, LDAEX*. */ bool is_ldex; /* True if AccType_UNPRIV should be used for LDTR et al */ bool unpriv; /* True if v8.3-PAuth is active. */ bool pauth_active; /* Bottom two bits of XScale c15_cpar coprocessor access control reg */ int c15_cpar; /* True with v8.5-BTI and SCTLR_ELx.BT* set. */ bool bt; /* True if any CP15 access is trapped by HSTR_EL2 */ bool hstr_active; /* * >= 0, a copy of PSTATE.BTYPE, which will be 0 without v8.5-BTI. * < 0, set by the current instruction. */ int8_t btype; /* True if this page is guarded. */ bool guarded_page; /* TCG op of the current insn_start. */ TCGOp *insn_start; #define TMP_A64_MAX 16 int tmp_a64_count; TCGv_i64 tmp_a64[TMP_A64_MAX]; // Unicorn: Moved here to avoid global state. TCGv_i64 V0; TCGv_i64 V1; TCGv_i64 M0; // Unicorn engine struct uc_struct *uc; } DisasContext; typedef struct DisasCompare { TCGCond cond; TCGv_i32 value; bool value_global; } DisasCompare; static inline int arm_dc_feature(DisasContext *dc, int feature) { return (dc->features & (1ULL << feature)) != 0; } static inline int get_mem_index(DisasContext *s) { return arm_to_core_mmu_idx(s->mmu_idx); } /* Function used to determine the target exception EL when otherwise not known * or default. */ static inline int default_exception_el(DisasContext *s) { /* If we are coming from secure EL0 in a system with a 32-bit EL3, then * there is no secure EL1, so we route exceptions to EL3. Otherwise, * exceptions can only be routed to ELs above 1, so we target the higher of * 1 or the current EL. */ return (s->mmu_idx == ARMMMUIdx_SE10_0 && s->secure_routed_to_el3) ? 3 : MAX(1, s->current_el); } static inline void disas_set_insn_syndrome(DisasContext *s, uint32_t syn) { /* We don't need to save all of the syndrome so we mask and shift * out unneeded bits to help the sleb128 encoder do a better job. */ syn &= ARM_INSN_START_WORD2_MASK; syn >>= ARM_INSN_START_WORD2_SHIFT; /* We check and clear insn_start_idx to catch multiple updates. */ assert(s->insn_start != NULL); tcg_set_insn_start_param(s->insn_start, 2, syn); s->insn_start = NULL; } /* target-specific extra values for is_jmp */ /* is_jmp field values */ #define DISAS_JUMP DISAS_TARGET_0 /* only pc was modified dynamically */ #define DISAS_UPDATE DISAS_TARGET_1 /* cpu state was modified dynamically */ /* These instructions trap after executing, so the A32/T32 decoder must * defer them until after the conditional execution state has been updated. * WFI also needs special handling when single-stepping. */ #define DISAS_WFI DISAS_TARGET_2 #define DISAS_SWI DISAS_TARGET_3 /* WFE */ #define DISAS_WFE DISAS_TARGET_4 #define DISAS_HVC DISAS_TARGET_5 #define DISAS_SMC DISAS_TARGET_6 #define DISAS_YIELD DISAS_TARGET_7 /* M profile branch which might be an exception return (and so needs * custom end-of-TB code) */ #define DISAS_BX_EXCRET DISAS_TARGET_8 /* For instructions which want an immediate exit to the main loop, * as opposed to attempting to use lookup_and_goto_ptr. Unlike * DISAS_UPDATE this doesn't write the PC on exiting the translation * loop so you need to ensure something (gen_a64_set_pc_im or runtime * helper) has done so before we reach return from cpu_tb_exec. */ #define DISAS_EXIT DISAS_TARGET_9 #ifdef TARGET_AARCH64 void a64_translate_init(struct uc_struct *uc); void gen_a64_set_pc_im(DisasContext *s, uint64_t val); extern const TranslatorOps aarch64_translator_ops; #else static inline void a64_translate_init(struct uc_struct *uc) { } static inline void gen_a64_set_pc_im(DisasContext *s, uint64_t val) { } #endif void arm_test_cc(DisasContext *s, DisasCompare *cmp, int cc); void arm_free_cc(DisasContext *s, DisasCompare *cmp); void arm_jump_cc(DisasContext *s, DisasCompare *cmp, TCGLabel *label); void arm_gen_test_cc(DisasContext *s, int cc, TCGLabel *label); /* Return state of Alternate Half-precision flag, caller frees result */ static inline TCGv_i32 get_ahp_flag(DisasContext *s) { TCGContext *tcg_ctx = s->uc->tcg_ctx; TCGv_i32 ret = tcg_temp_new_i32(tcg_ctx); tcg_gen_ld_i32(tcg_ctx, ret, tcg_ctx->cpu_env, offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPSCR])); tcg_gen_extract_i32(tcg_ctx, ret, ret, 26, 1); return ret; } /* Set bits within PSTATE. */ static inline void set_pstate_bits(DisasContext *s, uint32_t bits) { TCGContext *tcg_ctx = s->uc->tcg_ctx; TCGv_i32 p = tcg_temp_new_i32(tcg_ctx); tcg_debug_assert(!(bits & CACHED_PSTATE_BITS)); tcg_gen_ld_i32(tcg_ctx, p, tcg_ctx->cpu_env, offsetof(CPUARMState, pstate)); tcg_gen_ori_i32(tcg_ctx, p, p, bits); tcg_gen_st_i32(tcg_ctx, p, tcg_ctx->cpu_env, offsetof(CPUARMState, pstate)); tcg_temp_free_i32(tcg_ctx, p); } /* Clear bits within PSTATE. */ static inline void clear_pstate_bits(DisasContext *s, uint32_t bits) { TCGContext *tcg_ctx = s->uc->tcg_ctx; TCGv_i32 p = tcg_temp_new_i32(tcg_ctx); tcg_debug_assert(!(bits & CACHED_PSTATE_BITS)); tcg_gen_ld_i32(tcg_ctx, p, tcg_ctx->cpu_env, offsetof(CPUARMState, pstate)); tcg_gen_andi_i32(tcg_ctx, p, p, ~bits); tcg_gen_st_i32(tcg_ctx, p, tcg_ctx->cpu_env, offsetof(CPUARMState, pstate)); tcg_temp_free_i32(tcg_ctx, p); } /* If the singlestep state is Active-not-pending, advance to Active-pending. */ static inline void gen_ss_advance(DisasContext *s) { if (s->ss_active) { s->pstate_ss = 0; clear_pstate_bits(s, PSTATE_SS); } } static inline void gen_exception(DisasContext *s, int excp, uint32_t syndrome, uint32_t target_el) { TCGContext *tcg_ctx = s->uc->tcg_ctx; TCGv_i32 tcg_excp = tcg_const_i32(tcg_ctx, excp); TCGv_i32 tcg_syn = tcg_const_i32(tcg_ctx, syndrome); TCGv_i32 tcg_el = tcg_const_i32(tcg_ctx, target_el); gen_helper_exception_with_syndrome(tcg_ctx, tcg_ctx->cpu_env, tcg_excp, tcg_syn, tcg_el); tcg_temp_free_i32(tcg_ctx, tcg_el); tcg_temp_free_i32(tcg_ctx, tcg_syn); tcg_temp_free_i32(tcg_ctx, tcg_excp); } /* Generate an architectural singlestep exception */ static inline void gen_swstep_exception(DisasContext *s, int isv, int ex) { bool same_el = (s->debug_target_el == s->current_el); /* * If singlestep is targeting a lower EL than the current one, * then s->ss_active must be false and we can never get here. */ assert(s->debug_target_el >= s->current_el); gen_exception(s, EXCP_UDEF, syn_swstep(same_el, isv, ex), s->debug_target_el); } /* * Given a VFP floating point constant encoded into an 8 bit immediate in an * instruction, expand it to the actual constant value of the specified * size, as per the VFPExpandImm() pseudocode in the Arm ARM. */ uint64_t vfp_expand_imm(int size, uint8_t imm8); /* Vector operations shared between ARM and AArch64. */ void gen_gvec_ceq0(TCGContext *s, unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); void gen_gvec_clt0(TCGContext *s, unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); void gen_gvec_cgt0(TCGContext *s, unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); void gen_gvec_cle0(TCGContext *s, unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); void gen_gvec_cge0(TCGContext *s, unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); void gen_gvec_mla(TCGContext *s, unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); void gen_gvec_mls(TCGContext *s, unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); void gen_gvec_cmtst(TCGContext *s, unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); void gen_gvec_sshl(TCGContext *s, unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); void gen_gvec_ushl(TCGContext *s, unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); void gen_cmtst_i64(TCGContext* tcg_ctx, TCGv_i64 d, TCGv_i64 a, TCGv_i64 b); void gen_ushl_i32(TCGContext* tcg_ctx, TCGv_i32 d, TCGv_i32 a, TCGv_i32 b); void gen_sshl_i32(TCGContext* tcg_ctx, TCGv_i32 d, TCGv_i32 a, TCGv_i32 b); void gen_ushl_i64(TCGContext* tcg_ctx, TCGv_i64 d, TCGv_i64 a, TCGv_i64 b); void gen_sshl_i64(TCGContext* tcg_ctx, TCGv_i64 d, TCGv_i64 a, TCGv_i64 b); void gen_gvec_uqadd_qc(TCGContext *s, unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); void gen_gvec_sqadd_qc(TCGContext *s, unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); void gen_gvec_uqsub_qc(TCGContext *s, unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); void gen_gvec_sqsub_qc(TCGContext *s, unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); void gen_gvec_ssra(TCGContext* tcg_ctx, unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, int64_t shift, uint32_t opr_sz, uint32_t max_sz); void gen_gvec_usra(TCGContext *tcg_ctx, unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, int64_t shift, uint32_t opr_sz, uint32_t max_sz); void gen_gvec_srshr(TCGContext *tcg_ctx, unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, int64_t shift, uint32_t opr_sz, uint32_t max_sz); void gen_gvec_urshr(TCGContext *tcg_ctx, unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, int64_t shift, uint32_t opr_sz, uint32_t max_sz); void gen_gvec_srsra(TCGContext *tcg_ctx, unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, int64_t shift, uint32_t opr_sz, uint32_t max_sz); void gen_gvec_ursra(TCGContext *tcg_ctx, unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, int64_t shift, uint32_t opr_sz, uint32_t max_sz); void gen_gvec_sri(TCGContext *tcg_ctx, unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, int64_t shift, uint32_t opr_sz, uint32_t max_sz); void gen_gvec_sli(TCGContext *tcg_ctx, unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, int64_t shift, uint32_t opr_sz, uint32_t max_sz); void gen_gvec_sqrdmlah_qc(TCGContext *s, unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); void gen_gvec_sqrdmlsh_qc(TCGContext *s, unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); void gen_gvec_sabd(TCGContext *s, unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); void gen_gvec_uabd(TCGContext *s, unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); void gen_gvec_saba(TCGContext *s, unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); void gen_gvec_uaba(TCGContext *s, unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); /* * Forward to the isar_feature_* tests given a DisasContext pointer. */ #define dc_isar_feature(name, ctx) \ ({ DisasContext *ctx_ = (ctx); isar_feature_##name(ctx_->isar); }) /* Note that the gvec expanders operate on offsets + sizes. */ typedef void GVecGen2Fn(TCGContext *, unsigned, uint32_t, uint32_t, uint32_t, uint32_t); typedef void GVecGen2iFn(TCGContext *, unsigned, uint32_t, uint32_t, int64_t, uint32_t, uint32_t); typedef void GVecGen3Fn(TCGContext *, unsigned, uint32_t, uint32_t, uint32_t, uint32_t, uint32_t); typedef void GVecGen4Fn(TCGContext *, unsigned, uint32_t, uint32_t, uint32_t, uint32_t, uint32_t, uint32_t); /* Function prototype for gen_ functions for calling Neon helpers */ typedef void NeonGenOneOpFn(TCGContext *t, TCGv_i32, TCGv_i32); typedef void NeonGenOneOpEnvFn(TCGContext *t, TCGv_i32, TCGv_ptr, TCGv_i32); typedef void NeonGenTwoOpFn(TCGContext *t, TCGv_i32, TCGv_i32, TCGv_i32); typedef void NeonGenTwoOpEnvFn(TCGContext *t, TCGv_i32, TCGv_ptr, TCGv_i32, TCGv_i32); typedef void NeonGenTwo64OpFn(TCGContext *t, TCGv_i64, TCGv_i64, TCGv_i64); typedef void NeonGenTwo64OpEnvFn(TCGContext *t, TCGv_i64, TCGv_ptr, TCGv_i64, TCGv_i64); typedef void NeonGenNarrowFn(TCGContext *t, TCGv_i32, TCGv_i64); typedef void NeonGenNarrowEnvFn(TCGContext *t, TCGv_i32, TCGv_ptr, TCGv_i64); typedef void NeonGenWidenFn(TCGContext *t, TCGv_i64, TCGv_i32); typedef void NeonGenTwoOpWidenFn(TCGContext *t, TCGv_i64, TCGv_i32, TCGv_i32); typedef void NeonGenTwoSingleOpFn(TCGContext *t, TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr); typedef void NeonGenTwoDoubleOpFn(TCGContext *t, TCGv_i64, TCGv_i64, TCGv_i64, TCGv_ptr); typedef void NeonGenOne64OpFn(TCGContext *t, TCGv_i64, TCGv_i64); typedef void CryptoTwoOpFn(TCGContext *, TCGv_ptr, TCGv_ptr); typedef void CryptoThreeOpIntFn(TCGContext *, TCGv_ptr, TCGv_ptr, TCGv_i32); typedef void CryptoThreeOpFn(TCGContext *, TCGv_ptr, TCGv_ptr, TCGv_ptr); typedef void AtomicThreeOpFn(TCGContext *, TCGv_i64, TCGv_i64, TCGv_i64, TCGArg, MemOp); #endif /* TARGET_ARM_TRANSLATE_H */