/* * ARM helper routines * * Copyright (c) 2005-2007 CodeSourcery, LLC * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include "qemu/osdep.h" #include "qemu/log.h" #include "cpu.h" #include "exec/helper-proto.h" #include "internals.h" #include "exec/exec-all.h" #include "exec/cpu_ldst.h" #define SIGNBIT (uint32_t)0x80000000 #define SIGNBIT64 ((uint64_t)1 << 63) static void raise_exception(CPUARMState *env, uint32_t excp, uint32_t syndrome, uint32_t target_el) { CPUState *cs = CPU(arm_env_get_cpu(env)); assert(!excp_is_internal(excp)); cs->exception_index = excp; env->exception.syndrome = syndrome; env->exception.target_el = target_el; cpu_loop_exit(cs); } static int exception_target_el(CPUARMState *env) { int target_el = MAX(1, arm_current_el(env)); /* No such thing as secure EL1 if EL3 is aarch32, so update the target EL * to EL3 in this case. */ if (arm_is_secure(env) && !arm_el_is_aa64(env, 3) && target_el == 1) { target_el = 3; } return target_el; } uint32_t HELPER(neon_tbl)(CPUARMState *env, uint32_t ireg, uint32_t def, uint32_t rn, uint32_t maxindex) { uint32_t val; uint32_t tmp; int index; int shift; uint64_t *table; table = (uint64_t *)&env->vfp.regs[rn]; val = 0; for (shift = 0; shift < 32; shift += 8) { index = (ireg >> shift) & 0xff; if (index < maxindex) { tmp = (table[index >> 3] >> ((index & 7) << 3)) & 0xff; val |= tmp << shift; } else { val |= def & (0xff << shift); } } return val; } #if !defined(CONFIG_USER_ONLY) static inline uint32_t merge_syn_data_abort(uint32_t template_syn, unsigned int target_el, bool same_el, bool s1ptw, bool is_write, int fsc) { uint32_t syn; /* ISV is only set for data aborts routed to EL2 and * never for stage-1 page table walks faulting on stage 2. * * Furthermore, ISV is only set for certain kinds of load/stores. * If the template syndrome does not have ISV set, we should leave * it cleared. * * See ARMv8 specs, D7-1974: * ISS encoding for an exception from a Data Abort, the * ISV field. */ if (!(template_syn & ARM_EL_ISV) || target_el != 2 || s1ptw) { syn = syn_data_abort_no_iss(same_el, 0, 0, s1ptw, is_write, fsc); } else { /* Fields: IL, ISV, SAS, SSE, SRT, SF and AR come from the template * syndrome created at translation time. * Now we create the runtime syndrome with the remaining fields. */ syn = syn_data_abort_with_iss(same_el, 0, 0, 0, 0, 0, 0, 0, s1ptw, is_write, fsc, false); /* Merge the runtime syndrome with the template syndrome. */ syn |= template_syn; } return syn; } /* try to fill the TLB and return an exception if error. If retaddr is * NULL, it means that the function was called in C code (i.e. not * from generated code or from helper.c) */ void tlb_fill(CPUState *cs, target_ulong addr, MMUAccessType access_type, int mmu_idx, uintptr_t retaddr) { bool ret; uint32_t fsr = 0; ARMMMUFaultInfo fi = {0}; ret = arm_tlb_fill(cs, addr, access_type, mmu_idx, &fsr, &fi); if (unlikely(ret)) { ARMCPU *cpu = ARM_CPU(cs->uc, cs); CPUARMState *env = &cpu->env; uint32_t syn, exc, fsc; unsigned int target_el; bool same_el; if (retaddr) { /* now we have a real cpu fault */ cpu_restore_state(cs, retaddr); } target_el = exception_target_el(env); if (fi.stage2) { target_el = 2; env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4; } same_el = arm_current_el(env) == target_el; if (fsr & (1 << 9)) { /* LPAE format fault status register : bottom 6 bits are * status code in the same form as needed for syndrome */ fsc = extract32(fsr, 0, 6); } else { /* Short format FSR : this fault will never actually be reported * to an EL that uses a syndrome register. Check that here, * and use a (currently) reserved FSR code in case the constructed * syndrome does leak into the guest somehow. */ assert(target_el != 2 && !arm_el_is_aa64(env, target_el)); fsc = 0x3f; } /* For insn and data aborts we assume there is no instruction syndrome * information; this is always true for exceptions reported to EL1. */ if (access_type == MMU_INST_FETCH) { syn = syn_insn_abort(same_el, 0, fi.s1ptw, fsc); exc = EXCP_PREFETCH_ABORT; } else { syn = merge_syn_data_abort(env->exception.syndrome, target_el, same_el, fi.s1ptw, access_type == MMU_DATA_STORE, fsc); if (access_type == MMU_DATA_STORE && arm_feature(env, ARM_FEATURE_V6)) { fsr |= (1 << 11); } exc = EXCP_DATA_ABORT; } env->exception.vaddress = addr; env->exception.fsr = fsr; raise_exception(env, exc, syn, target_el); } } /* Raise a data fault alignment exception for the specified virtual address */ void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr, MMUAccessType access_type, int mmu_idx, uintptr_t retaddr) { ARMCPU *cpu = ARM_CPU(cs->uc, cs); CPUARMState *env = &cpu->env; int target_el; bool same_el; uint32_t syn; ARMMMUIdx arm_mmu_idx = core_to_arm_mmu_idx(env, mmu_idx); if (retaddr) { /* now we have a real cpu fault */ cpu_restore_state(cs, retaddr); } target_el = exception_target_el(env); same_el = (arm_current_el(env) == target_el); env->exception.vaddress = vaddr; /* the DFSR for an alignment fault depends on whether we're using * the LPAE long descriptor format, or the short descriptor format */ if (arm_s1_regime_using_lpae_format(env, arm_mmu_idx)) { env->exception.fsr = (1 << 9) | 0x21; } else { env->exception.fsr = 0x1; } if (access_type == MMU_DATA_STORE && arm_feature(env, ARM_FEATURE_V6)) { env->exception.fsr |= (1 << 11); } syn = merge_syn_data_abort(env->exception.syndrome, target_el, same_el, 0, access_type == MMU_DATA_STORE, 0x21); raise_exception(env, EXCP_DATA_ABORT, syn, target_el); } #endif /* !defined(CONFIG_USER_ONLY) */ uint32_t HELPER(add_setq)(CPUARMState *env, uint32_t a, uint32_t b) { uint32_t res = a + b; if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT)) env->QF = 1; return res; } uint32_t HELPER(add_saturate)(CPUARMState *env, uint32_t a, uint32_t b) { uint32_t res = a + b; if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT)) { env->QF = 1; res = ~(((int32_t)a >> 31) ^ SIGNBIT); } return res; } uint32_t HELPER(sub_saturate)(CPUARMState *env, uint32_t a, uint32_t b) { uint32_t res = a - b; if (((res ^ a) & SIGNBIT) && ((a ^ b) & SIGNBIT)) { env->QF = 1; res = ~(((int32_t)a >> 31) ^ SIGNBIT); } return res; } uint32_t HELPER(double_saturate)(CPUARMState *env, int32_t val) { uint32_t res; if (val >= 0x40000000) { res = ~SIGNBIT; env->QF = 1; } else if (val <= (int32_t)0xc0000000) { res = SIGNBIT; env->QF = 1; } else { res = val << 1; } return res; } uint32_t HELPER(add_usaturate)(CPUARMState *env, uint32_t a, uint32_t b) { uint32_t res = a + b; if (res < a) { env->QF = 1; res = ~0; } return res; } uint32_t HELPER(sub_usaturate)(CPUARMState *env, uint32_t a, uint32_t b) { uint32_t res = a - b; if (res > a) { env->QF = 1; res = 0; } return res; } /* Signed saturation. */ static inline uint32_t do_ssat(CPUARMState *env, int32_t val, int shift) { int32_t top; uint32_t mask; top = val >> shift; mask = (1u << shift) - 1; if (top > 0) { env->QF = 1; return mask; } else if (top < -1) { env->QF = 1; return ~mask; } return val; } /* Unsigned saturation. */ static inline uint32_t do_usat(CPUARMState *env, int32_t val, int shift) { uint32_t max; max = (1u << shift) - 1; if (val < 0) { env->QF = 1; return 0; } else if (val > max) { env->QF = 1; return max; } return val; } /* Signed saturate. */ uint32_t HELPER(ssat)(CPUARMState *env, uint32_t x, uint32_t shift) { return do_ssat(env, x, shift); } /* Dual halfword signed saturate. */ uint32_t HELPER(ssat16)(CPUARMState *env, uint32_t x, uint32_t shift) { uint32_t res; res = (uint16_t)do_ssat(env, (int16_t)x, shift); res |= do_ssat(env, ((int32_t)x) >> 16, shift) << 16; return res; } /* Unsigned saturate. */ uint32_t HELPER(usat)(CPUARMState *env, uint32_t x, uint32_t shift) { return do_usat(env, x, shift); } /* Dual halfword unsigned saturate. */ uint32_t HELPER(usat16)(CPUARMState *env, uint32_t x, uint32_t shift) { uint32_t res; res = (uint16_t)do_usat(env, (int16_t)x, shift); res |= do_usat(env, ((int32_t)x) >> 16, shift) << 16; return res; } void HELPER(setend)(CPUARMState *env) { env->uncached_cpsr ^= CPSR_E; } /* Function checks whether WFx (WFI/WFE) instructions are set up to be trapped. * The function returns the target EL (1-3) if the instruction is to be trapped; * otherwise it returns 0 indicating it is not trapped. */ static inline int check_wfx_trap(CPUARMState *env, bool is_wfe) { int cur_el = arm_current_el(env); uint64_t mask; /* If we are currently in EL0 then we need to check if SCTLR is set up for * WFx instructions being trapped to EL1. These trap bits don't exist in v7. */ if (cur_el < 1 && arm_feature(env, ARM_FEATURE_V8)) { int target_el; mask = is_wfe ? SCTLR_nTWE : SCTLR_nTWI; if (arm_is_secure_below_el3(env) && !arm_el_is_aa64(env, 3)) { /* Secure EL0 and Secure PL1 is at EL3 */ target_el = 3; } else { target_el = 1; } if (!(env->cp15.sctlr_el[target_el] & mask)) { return target_el; } } /* We are not trapping to EL1; trap to EL2 if HCR_EL2 requires it * No need for ARM_FEATURE check as if HCR_EL2 doesn't exist the * bits will be zero indicating no trap. */ if (cur_el < 2 && !arm_is_secure(env)) { mask = (is_wfe) ? HCR_TWE : HCR_TWI; if (env->cp15.hcr_el2 & mask) { return 2; } } /* We are not trapping to EL1 or EL2; trap to EL3 if SCR_EL3 requires it */ if (cur_el < 3) { mask = (is_wfe) ? SCR_TWE : SCR_TWI; if (env->cp15.scr_el3 & mask) { return 3; } } return 0; } void HELPER(wfi)(CPUARMState *env) { CPUState *cs = CPU(arm_env_get_cpu(env)); int target_el = check_wfx_trap(env, false); if (cpu_has_work(cs)) { /* Don't bother to go into our "low power state" if * we would just wake up immediately. */ return; } if (target_el) { env->pc -= 4; raise_exception(env, EXCP_UDEF, syn_wfx(1, 0xe, 0), target_el); } cs->exception_index = EXCP_HLT; cs->halted = 1; cpu_loop_exit(cs); } void HELPER(wfe)(CPUARMState *env) { /* This is a hint instruction that is semantically different * from YIELD even though we currently implement it identically. * Don't actually halt the CPU, just yield back to top * level loop. This is not going into a "low power state" * (ie halting until some event occurs), so we never take * a configurable trap to a different exception level. */ HELPER(yield)(env); } void HELPER(yield)(CPUARMState *env) { ARMCPU *cpu = arm_env_get_cpu(env); CPUState *cs = CPU(cpu); /* When running in MTTCG we don't generate jumps to the yield and * WFE helpers as it won't affect the scheduling of other vCPUs. * If we wanted to more completely model WFE/SEV so we don't busy * spin unnecessarily we would need to do something more involved. */ g_assert(!cs->uc->parallel_cpus); /* This is a non-trappable hint instruction that generally indicates * that the guest is currently busy-looping. Yield control back to the * top level loop so that a more deserving VCPU has a chance to run. */ cs->exception_index = EXCP_YIELD; cpu_loop_exit(cs); } /* Raise an internal-to-QEMU exception. This is limited to only * those EXCP values which are special cases for QEMU to interrupt * execution and not to be used for exceptions which are passed to * the guest (those must all have syndrome information and thus should * use exception_with_syndrome). */ void HELPER(exception_internal)(CPUARMState *env, uint32_t excp) { CPUState *cs = CPU(arm_env_get_cpu(env)); assert(excp_is_internal(excp)); cs->exception_index = excp; cpu_loop_exit(cs); } /* Raise an exception with the specified syndrome register value */ void HELPER(exception_with_syndrome)(CPUARMState *env, uint32_t excp, uint32_t syndrome, uint32_t target_el) { raise_exception(env, excp, syndrome, target_el); } uint32_t HELPER(cpsr_read)(CPUARMState *env) { return cpsr_read(env) & ~(CPSR_EXEC | CPSR_RESERVED); } void HELPER(cpsr_write)(CPUARMState *env, uint32_t val, uint32_t mask) { cpsr_write(env, val, mask, CPSRWriteByInstr); } /* Write the CPSR for a 32-bit exception return */ void HELPER(cpsr_write_eret)(CPUARMState *env, uint32_t val) { cpsr_write(env, val, CPSR_ERET_MASK, CPSRWriteExceptionReturn); /* Generated code has already stored the new PC value, but * without masking out its low bits, because which bits need * masking depends on whether we're returning to Thumb or ARM * state. Do the masking now. */ env->regs[15] &= (env->thumb ? ~1 : ~3); arm_call_el_change_hook(arm_env_get_cpu(env)); } /* Access to user mode registers from privileged modes. */ uint32_t HELPER(get_user_reg)(CPUARMState *env, uint32_t regno) { uint32_t val; if (regno == 13) { val = env->banked_r13[BANK_USRSYS]; } else if (regno == 14) { val = env->banked_r14[BANK_USRSYS]; } else if (regno >= 8 && (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) { val = env->usr_regs[regno - 8]; } else { val = env->regs[regno]; } return val; } void HELPER(set_user_reg)(CPUARMState *env, uint32_t regno, uint32_t val) { if (regno == 13) { env->banked_r13[BANK_USRSYS] = val; } else if (regno == 14) { env->banked_r14[BANK_USRSYS] = val; } else if (regno >= 8 && (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) { env->usr_regs[regno - 8] = val; } else { env->regs[regno] = val; } } void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val) { if ((env->uncached_cpsr & CPSR_M) == mode) { env->regs[13] = val; } else { env->banked_r13[bank_number(mode)] = val; } } uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode) { if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_SYS) { /* SRS instruction is UNPREDICTABLE from System mode; we UNDEF. * Other UNPREDICTABLE and UNDEF cases were caught at translate time. */ raise_exception(env, EXCP_UDEF, syn_uncategorized(), exception_target_el(env)); } if ((env->uncached_cpsr & CPSR_M) == mode) { return env->regs[13]; } else { return env->banked_r13[bank_number(mode)]; } } static void msr_mrs_banked_exc_checks(CPUARMState *env, uint32_t tgtmode, uint32_t regno) { /* Raise an exception if the requested access is one of the UNPREDICTABLE * cases; otherwise return. This broadly corresponds to the pseudocode * BankedRegisterAccessValid() and SPSRAccessValid(), * except that we have already handled some cases at translate time. */ int curmode = env->uncached_cpsr & CPSR_M; if (curmode == tgtmode) { goto undef; } if (tgtmode == ARM_CPU_MODE_USR) { switch (regno) { case 8 ... 12: if (curmode != ARM_CPU_MODE_FIQ) { goto undef; } break; case 13: if (curmode == ARM_CPU_MODE_SYS) { goto undef; } break; case 14: if (curmode == ARM_CPU_MODE_HYP || curmode == ARM_CPU_MODE_SYS) { goto undef; } break; default: break; } } if (tgtmode == ARM_CPU_MODE_HYP) { switch (regno) { case 17: /* ELR_Hyp */ if (curmode != ARM_CPU_MODE_HYP && curmode != ARM_CPU_MODE_MON) { goto undef; } break; default: if (curmode != ARM_CPU_MODE_MON) { goto undef; } break; } } return; undef: raise_exception(env, EXCP_UDEF, syn_uncategorized(), exception_target_el(env)); } void HELPER(msr_banked)(CPUARMState *env, uint32_t value, uint32_t tgtmode, uint32_t regno) { msr_mrs_banked_exc_checks(env, tgtmode, regno); switch (regno) { case 16: /* SPSRs */ env->banked_spsr[bank_number(tgtmode)] = value; break; case 17: /* ELR_Hyp */ env->elr_el[2] = value; break; case 13: env->banked_r13[bank_number(tgtmode)] = value; break; case 14: env->banked_r14[bank_number(tgtmode)] = value; break; case 8: case 9: case 10: case 11: case 12: switch (tgtmode) { case ARM_CPU_MODE_USR: env->usr_regs[regno - 8] = value; break; case ARM_CPU_MODE_FIQ: env->fiq_regs[regno - 8] = value; break; default: g_assert_not_reached(); } break; default: g_assert_not_reached(); } } uint32_t HELPER(mrs_banked)(CPUARMState *env, uint32_t tgtmode, uint32_t regno) { msr_mrs_banked_exc_checks(env, tgtmode, regno); switch (regno) { case 16: /* SPSRs */ return env->banked_spsr[bank_number(tgtmode)]; case 17: /* ELR_Hyp */ return env->elr_el[2]; case 13: return env->banked_r13[bank_number(tgtmode)]; case 14: return env->banked_r14[bank_number(tgtmode)]; case 8: case 9: case 10: case 11: case 12: switch (tgtmode) { case ARM_CPU_MODE_USR: return env->usr_regs[regno - 8]; case ARM_CPU_MODE_FIQ: return env->fiq_regs[regno - 8]; default: g_assert_not_reached(); } default: g_assert_not_reached(); } } void HELPER(access_check_cp_reg)(CPUARMState *env, void *rip, uint32_t syndrome, uint32_t isread) { const ARMCPRegInfo *ri = rip; int target_el; if (arm_feature(env, ARM_FEATURE_XSCALE) && ri->cp < 14 && extract32(env->cp15.c15_cpar, ri->cp, 1) == 0) { raise_exception(env, EXCP_UDEF, syndrome, exception_target_el(env)); } if (!ri->accessfn) { return; } switch (ri->accessfn(env, ri, isread)) { case CP_ACCESS_OK: return; case CP_ACCESS_TRAP: target_el = exception_target_el(env); break; case CP_ACCESS_TRAP_EL2: /* Requesting a trap to EL2 when we're in EL3 or S-EL0/1 is * a bug in the access function. */ assert(!arm_is_secure(env) && arm_current_el(env) != 3); target_el = 2; break; case CP_ACCESS_TRAP_EL3: target_el = 3; break; case CP_ACCESS_TRAP_UNCATEGORIZED: target_el = exception_target_el(env); syndrome = syn_uncategorized(); break; case CP_ACCESS_TRAP_UNCATEGORIZED_EL2: target_el = 2; syndrome = syn_uncategorized(); break; case CP_ACCESS_TRAP_UNCATEGORIZED_EL3: target_el = 3; syndrome = syn_uncategorized(); break; case CP_ACCESS_TRAP_FP_EL2: target_el = 2; /* Since we are an implementation that takes exceptions on a trapped * conditional insn only if the insn has passed its condition code * check, we take the IMPDEF choice to always report CV=1 COND=0xe * (which is also the required value for AArch64 traps). */ syndrome = syn_fp_access_trap(1, 0xe, false); break; case CP_ACCESS_TRAP_FP_EL3: target_el = 3; syndrome = syn_fp_access_trap(1, 0xe, false); break; default: g_assert_not_reached(); } raise_exception(env, EXCP_UDEF, syndrome, target_el); } void HELPER(set_cp_reg)(CPUARMState *env, void *rip, uint32_t value) { const ARMCPRegInfo *ri = rip; ri->writefn(env, ri, value); } uint32_t HELPER(get_cp_reg)(CPUARMState *env, void *rip) { const ARMCPRegInfo *ri = rip; return ri->readfn(env, ri); } void HELPER(set_cp_reg64)(CPUARMState *env, void *rip, uint64_t value) { const ARMCPRegInfo *ri = rip; ri->writefn(env, ri, value); } uint64_t HELPER(get_cp_reg64)(CPUARMState *env, void *rip) { const ARMCPRegInfo *ri = rip; return ri->readfn(env, ri); } void HELPER(msr_i_pstate)(CPUARMState *env, uint32_t op, uint32_t imm) { /* MSR_i to update PSTATE. This is OK from EL0 only if UMA is set. * Note that SPSel is never OK from EL0; we rely on handle_msr_i() * to catch that case at translate time. */ if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) { uint32_t syndrome = syn_aa64_sysregtrap(0, extract32(op, 0, 3), extract32(op, 3, 3), 4, imm, 0x1f, 0); raise_exception(env, EXCP_UDEF, syndrome, exception_target_el(env)); } switch (op) { case 0x05: /* SPSel */ update_spsel(env, imm); break; case 0x1e: /* DAIFSet */ env->daif |= (imm << 6) & PSTATE_DAIF; break; case 0x1f: /* DAIFClear */ env->daif &= ~((imm << 6) & PSTATE_DAIF); break; default: g_assert_not_reached(); } } void HELPER(clear_pstate_ss)(CPUARMState *env) { env->pstate &= ~PSTATE_SS; } void HELPER(pre_hvc)(CPUARMState *env) { ARMCPU *cpu = arm_env_get_cpu(env); int cur_el = arm_current_el(env); /* FIXME: Use actual secure state. */ bool secure = false; bool undef; if (arm_is_psci_call(cpu, EXCP_HVC)) { /* If PSCI is enabled and this looks like a valid PSCI call then * that overrides the architecturally mandated HVC behaviour. */ return; } if (!arm_feature(env, ARM_FEATURE_EL2)) { /* If EL2 doesn't exist, HVC always UNDEFs */ undef = true; } else if (arm_feature(env, ARM_FEATURE_EL3)) { /* EL3.HCE has priority over EL2.HCD. */ undef = !(env->cp15.scr_el3 & SCR_HCE); } else { undef = env->cp15.hcr_el2 & HCR_HCD; } /* In ARMv7 and ARMv8/AArch32, HVC is undef in secure state. * For ARMv8/AArch64, HVC is allowed in EL3. * Note that we've already trapped HVC from EL0 at translation * time. */ if (secure && (!is_a64(env) || cur_el == 1)) { undef = true; } if (undef) { raise_exception(env, EXCP_UDEF, syn_uncategorized(), exception_target_el(env)); } } void HELPER(pre_smc)(CPUARMState *env, uint32_t syndrome) { ARMCPU *cpu = arm_env_get_cpu(env); int cur_el = arm_current_el(env); bool secure = arm_is_secure(env); bool smd = env->cp15.scr_el3 & SCR_SMD; /* On ARMv8 with EL3 AArch64, SMD applies to both S and NS state. * On ARMv8 with EL3 AArch32, or ARMv7 with the Virtualization * extensions, SMD only applies to NS state. * On ARMv7 without the Virtualization extensions, the SMD bit * doesn't exist, but we forbid the guest to set it to 1 in scr_write(), * so we need not special case this here. */ bool undef = arm_feature(env, ARM_FEATURE_AARCH64) ? smd : smd && !secure; if (arm_is_psci_call(cpu, EXCP_SMC)) { /* If PSCI is enabled and this looks like a valid PSCI call then * that overrides the architecturally mandated SMC behaviour. */ return; } if (!arm_feature(env, ARM_FEATURE_EL3)) { /* If we have no EL3 then SMC always UNDEFs */ undef = true; } else if (!secure && cur_el == 1 && (env->cp15.hcr_el2 & HCR_TSC)) { /* In NS EL1, HCR controlled routing to EL2 has priority over SMD. */ raise_exception(env, EXCP_HYP_TRAP, syndrome, 2); } if (undef) { raise_exception(env, EXCP_UDEF, syn_uncategorized(), exception_target_el(env)); } } static int el_from_spsr(uint32_t spsr) { /* Return the exception level that this SPSR is requesting a return to, * or -1 if it is invalid (an illegal return) */ if (spsr & PSTATE_nRW) { switch (spsr & CPSR_M) { case ARM_CPU_MODE_USR: return 0; case ARM_CPU_MODE_HYP: return 2; case ARM_CPU_MODE_FIQ: case ARM_CPU_MODE_IRQ: case ARM_CPU_MODE_SVC: case ARM_CPU_MODE_ABT: case ARM_CPU_MODE_UND: case ARM_CPU_MODE_SYS: return 1; case ARM_CPU_MODE_MON: /* Returning to Mon from AArch64 is never possible, * so this is an illegal return. */ default: return -1; } } else { if (extract32(spsr, 1, 1)) { /* Return with reserved M[1] bit set */ return -1; } if (extract32(spsr, 0, 4) == 1) { /* return to EL0 with M[0] bit set */ return -1; } return extract32(spsr, 2, 2); } } void HELPER(exception_return)(CPUARMState *env) { int cur_el = arm_current_el(env); unsigned int spsr_idx = aarch64_banked_spsr_index(cur_el); uint32_t spsr = env->banked_spsr[spsr_idx]; int new_el; bool return_to_aa64 = (spsr & PSTATE_nRW) == 0; aarch64_save_sp(env, cur_el); env->exclusive_addr = -1; /* We must squash the PSTATE.SS bit to zero unless both of the * following hold: * 1. debug exceptions are currently disabled * 2. singlestep will be active in the EL we return to * We check 1 here and 2 after we've done the pstate/cpsr write() to * transition to the EL we're going to. */ if (arm_generate_debug_exceptions(env)) { spsr &= ~PSTATE_SS; } new_el = el_from_spsr(spsr); if (new_el == -1) { goto illegal_return; } if (new_el > cur_el || (new_el == 2 && !arm_feature(env, ARM_FEATURE_EL2))) { /* Disallow return to an EL which is unimplemented or higher * than the current one. */ goto illegal_return; } if (new_el != 0 && arm_el_is_aa64(env, new_el) != return_to_aa64) { /* Return to an EL which is configured for a different register width */ goto illegal_return; } if (new_el == 2 && arm_is_secure_below_el3(env)) { /* Return to the non-existent secure-EL2 */ goto illegal_return; } if (new_el == 1 && (env->cp15.hcr_el2 & HCR_TGE) && !arm_is_secure_below_el3(env)) { goto illegal_return; } if (!return_to_aa64) { env->aarch64 = 0; /* We do a raw CPSR write because aarch64_sync_64_to_32() * will sort the register banks out for us, and we've already * caught all the bad-mode cases in el_from_spsr(). */ cpsr_write(env, spsr, ~0, CPSRWriteRaw); if (!arm_singlestep_active(env)) { env->uncached_cpsr &= ~PSTATE_SS; } aarch64_sync_64_to_32(env); if (spsr & CPSR_T) { env->regs[15] = env->elr_el[cur_el] & ~0x1; } else { env->regs[15] = env->elr_el[cur_el] & ~0x3; } qemu_log_mask(CPU_LOG_INT, "Exception return from AArch64 EL%d to " "AArch32 EL%d PC 0x%" PRIx32 "\n", cur_el, new_el, env->regs[15]); } else { env->aarch64 = 1; pstate_write(env, spsr); if (!arm_singlestep_active(env)) { env->pstate &= ~PSTATE_SS; } aarch64_restore_sp(env, new_el); env->pc = env->elr_el[cur_el]; qemu_log_mask(CPU_LOG_INT, "Exception return from AArch64 EL%d to " "AArch64 EL%d PC 0x%" PRIx64 "\n", cur_el, new_el, env->pc); } arm_call_el_change_hook(arm_env_get_cpu(env)); return; illegal_return: /* Illegal return events of various kinds have architecturally * mandated behaviour: * restore NZCV and DAIF from SPSR_ELx * set PSTATE.IL * restore PC from ELR_ELx * no change to exception level, execution state or stack pointer */ env->pstate |= PSTATE_IL; env->pc = env->elr_el[cur_el]; spsr &= PSTATE_NZCV | PSTATE_DAIF; spsr |= pstate_read(env) & ~(PSTATE_NZCV | PSTATE_DAIF); pstate_write(env, spsr); if (!arm_singlestep_active(env)) { env->pstate &= ~PSTATE_SS; } qemu_log_mask(LOG_GUEST_ERROR, "Illegal exception return at EL%d: " "resuming execution at 0x%" PRIx64 "\n", cur_el, env->pc); } /* Return true if the linked breakpoint entry lbn passes its checks */ static bool linked_bp_matches(ARMCPU *cpu, int lbn) { CPUARMState *env = &cpu->env; uint64_t bcr = env->cp15.dbgbcr[lbn]; int brps = extract32(cpu->dbgdidr, 24, 4); int ctx_cmps = extract32(cpu->dbgdidr, 20, 4); int bt; uint32_t contextidr; /* Links to unimplemented or non-context aware breakpoints are * CONSTRAINED UNPREDICTABLE: either behave as if disabled, or * as if linked to an UNKNOWN context-aware breakpoint (in which * case DBGWCR_EL1.LBN must indicate that breakpoint). * We choose the former. */ if (lbn > brps || lbn < (brps - ctx_cmps)) { return false; } bcr = env->cp15.dbgbcr[lbn]; if (extract64(bcr, 0, 1) == 0) { /* Linked breakpoint disabled : generate no events */ return false; } bt = extract64(bcr, 20, 4); /* We match the whole register even if this is AArch32 using the * short descriptor format (in which case it holds both PROCID and ASID), * since we don't implement the optional v7 context ID masking. */ contextidr = extract64(env->cp15.contextidr_el[1], 0, 32); switch (bt) { case 3: /* linked context ID match */ if (arm_current_el(env) > 1) { /* Context matches never fire in EL2 or (AArch64) EL3 */ return false; } return (contextidr == extract64(env->cp15.dbgbvr[lbn], 0, 32)); case 5: /* linked address mismatch (reserved in AArch64) */ case 9: /* linked VMID match (reserved if no EL2) */ case 11: /* linked context ID and VMID match (reserved if no EL2) */ default: /* Links to Unlinked context breakpoints must generate no * events; we choose to do the same for reserved values too. */ return false; } return false; } static bool bp_wp_matches(ARMCPU *cpu, int n, bool is_wp) { CPUARMState *env = &cpu->env; uint64_t cr; int pac, hmc, ssc, wt, lbn; /* TODO: check against CPU security state when we implement TrustZone */ bool is_secure = false; if (is_wp) { if (!env->cpu_watchpoint[n] || !(env->cpu_watchpoint[n]->flags & BP_WATCHPOINT_HIT)) { return false; } cr = env->cp15.dbgwcr[n]; } else { uint64_t pc = is_a64(env) ? env->pc : env->regs[15]; if (!env->cpu_breakpoint[n] || env->cpu_breakpoint[n]->pc != pc) { return false; } cr = env->cp15.dbgbcr[n]; } /* The WATCHPOINT_HIT flag guarantees us that the watchpoint is * enabled and that the address and access type match; for breakpoints * we know the address matched; check the remaining fields, including * linked breakpoints. We rely on WCR and BCR having the same layout * for the LBN, SSC, HMC, PAC/PMC and is-linked fields. * Note that some combinations of {PAC, HMC, SSC} are reserved and * must act either like some valid combination or as if the watchpoint * were disabled. We choose the former, and use this together with * the fact that EL3 must always be Secure and EL2 must always be * Non-Secure to simplify the code slightly compared to the full * table in the ARM ARM. */ pac = extract64(cr, 1, 2); hmc = extract64(cr, 13, 1); ssc = extract64(cr, 14, 2); switch (ssc) { case 0: break; case 1: case 3: if (is_secure) { return false; } break; case 2: if (!is_secure) { return false; } break; } /* TODO: this is not strictly correct because the LDRT/STRT/LDT/STT * "unprivileged access" instructions should match watchpoints as if * they were accesses done at EL0, even if the CPU is at EL1 or higher. * Implementing this would require reworking the core watchpoint code * to plumb the mmu_idx through to this point. Luckily Linux does not * rely on this behaviour currently. * For breakpoints we do want to use the current CPU state. */ switch (arm_current_el(env)) { case 3: case 2: if (!hmc) { return false; } break; case 1: if (extract32(pac, 0, 1) == 0) { return false; } break; case 0: if (extract32(pac, 1, 1) == 0) { return false; } break; default: g_assert_not_reached(); } wt = extract64(cr, 20, 1); lbn = extract64(cr, 16, 4); if (wt && !linked_bp_matches(cpu, lbn)) { return false; } return true; } static bool check_watchpoints(ARMCPU *cpu) { CPUARMState *env = &cpu->env; int n; /* If watchpoints are disabled globally or we can't take debug * exceptions here then watchpoint firings are ignored. */ if (extract32(env->cp15.mdscr_el1, 15, 1) == 0 || !arm_generate_debug_exceptions(env)) { return false; } for (n = 0; n < ARRAY_SIZE(env->cpu_watchpoint); n++) { if (bp_wp_matches(cpu, n, true)) { return true; } } return false; } static bool check_breakpoints(ARMCPU *cpu) { CPUARMState *env = &cpu->env; int n; /* If breakpoints are disabled globally or we can't take debug * exceptions here then breakpoint firings are ignored. */ if (extract32(env->cp15.mdscr_el1, 15, 1) == 0 || !arm_generate_debug_exceptions(env)) { return false; } for (n = 0; n < ARRAY_SIZE(env->cpu_breakpoint); n++) { if (bp_wp_matches(cpu, n, false)) { return true; } } return false; } void HELPER(check_breakpoints)(CPUARMState *env) { ARMCPU *cpu = arm_env_get_cpu(env); if (check_breakpoints(cpu)) { HELPER(exception_internal(env, EXCP_DEBUG)); } } bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp) { /* Called by core code when a CPU watchpoint fires; need to check if this * is also an architectural watchpoint match. */ ARMCPU *cpu = ARM_CPU(cs->uc, cs); return check_watchpoints(cpu); } vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len) { ARMCPU *cpu = ARM_CPU(cs->uc, cs); CPUARMState *env = &cpu->env; /* In BE32 system mode, target memory is stored byteswapped (on a * little-endian host system), and by the time we reach here (via an * opcode helper) the addresses of subword accesses have been adjusted * to account for that, which means that watchpoints will not match. * Undo the adjustment here. */ if (arm_sctlr_b(env)) { if (len == 1) { addr ^= 3; } else if (len == 2) { addr ^= 2; } } return addr; } void arm_debug_excp_handler(CPUState *cs) { /* Called by core code when a watchpoint or breakpoint fires; * need to check which one and raise the appropriate exception. */ ARMCPU *cpu = ARM_CPU(cs->uc, cs); CPUARMState *env = &cpu->env; CPUWatchpoint *wp_hit = cs->watchpoint_hit; if (wp_hit) { if (wp_hit->flags & BP_CPU) { bool wnr = (wp_hit->flags & BP_WATCHPOINT_HIT_WRITE) != 0; bool same_el = arm_debug_target_el(env) == arm_current_el(env); cs->watchpoint_hit = NULL; if (extended_addresses_enabled(env)) { env->exception.fsr = (1 << 9) | 0x22; } else { env->exception.fsr = 0x2; } env->exception.vaddress = wp_hit->hitaddr; raise_exception(env, EXCP_DATA_ABORT, syn_watchpoint(same_el, 0, wnr), arm_debug_target_el(env)); } } else { uint64_t pc = is_a64(env) ? env->pc : env->regs[15]; bool same_el = (arm_debug_target_el(env) == arm_current_el(env)); /* (1) GDB breakpoints should be handled first. * (2) Do not raise a CPU exception if no CPU breakpoint has fired, * since singlestep is also done by generating a debug internal * exception. */ if (cpu_breakpoint_test(cs, pc, BP_GDB) || !cpu_breakpoint_test(cs, pc, BP_CPU)) { return; } if (extended_addresses_enabled(env)) { env->exception.fsr = (1 << 9) | 0x22; } else { env->exception.fsr = 0x2; } /* FAR is UNKNOWN, so doesn't need setting */ raise_exception(env, EXCP_PREFETCH_ABORT, syn_breakpoint(same_el), arm_debug_target_el(env)); } } /* ??? Flag setting arithmetic is awkward because we need to do comparisons. The only way to do that in TCG is a conditional branch, which clobbers all our temporaries. For now implement these as helper functions. */ /* Similarly for variable shift instructions. */ uint32_t HELPER(shl_cc)(CPUARMState *env, uint32_t x, uint32_t i) { int shift = i & 0xff; if (shift >= 32) { if (shift == 32) env->CF = x & 1; else env->CF = 0; return 0; } else if (shift != 0) { env->CF = (x >> (32 - shift)) & 1; return x << shift; } return x; } uint32_t HELPER(shr_cc)(CPUARMState *env, uint32_t x, uint32_t i) { int shift = i & 0xff; if (shift >= 32) { if (shift == 32) env->CF = (x >> 31) & 1; else env->CF = 0; return 0; } else if (shift != 0) { env->CF = (x >> (shift - 1)) & 1; return x >> shift; } return x; } uint32_t HELPER(sar_cc)(CPUARMState *env, uint32_t x, uint32_t i) { int shift = i & 0xff; if (shift >= 32) { env->CF = (x >> 31) & 1; return (int32_t)x >> 31; } else if (shift != 0) { env->CF = (x >> (shift - 1)) & 1; return (int32_t)x >> shift; } return x; } uint32_t HELPER(ror_cc)(CPUARMState *env, uint32_t x, uint32_t i) { int shift1, shift; shift1 = i & 0xff; shift = shift1 & 0x1f; if (shift == 0) { if (shift1 != 0) env->CF = (x >> 31) & 1; return x; } else { env->CF = (x >> (shift - 1)) & 1; return ((uint32_t)x >> shift) | (x << (32 - shift)); } }