/* * RISC-V Control and Status Registers. * * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu * Copyright (c) 2017-2018 SiFive, Inc. * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2 or later, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program. If not, see . */ #include "qemu/osdep.h" #include "qemu/log.h" #include "cpu.h" #include "exec/exec-all.h" /* CSR function table */ static riscv_csr_operations csr_ops[]; /* CSR function table constants */ enum { CSR_TABLE_SIZE = 0x1000 }; /* CSR function table public API */ void riscv_get_csr_ops(int csrno, riscv_csr_operations *ops) { *ops = csr_ops[csrno & (CSR_TABLE_SIZE - 1)]; } void riscv_set_csr_ops(int csrno, riscv_csr_operations *ops) { csr_ops[csrno & (CSR_TABLE_SIZE - 1)] = *ops; } /* Predicates */ static int fs(CPURISCVState *env, int csrno) { #if !defined(CONFIG_USER_ONLY) /* loose check condition for fcsr in vector extension */ if ((csrno == CSR_FCSR) && (env->misa & RVV)) { return 0; } if (!env->debugger && !(env->mstatus & MSTATUS_FS)) { return -1; } #endif return 0; } static int vs(CPURISCVState *env, int csrno) { if (env->misa & RVV) { return 0; } return -1; } static int ctr(CPURISCVState *env, int csrno) { #if !defined(CONFIG_USER_ONLY) #endif return 0; } #if !defined(CONFIG_USER_ONLY) static int any(CPURISCVState *env, int csrno) { return 0; } static int smode(CPURISCVState *env, int csrno) { return -!riscv_has_ext(env, RVS); } static int hmode(CPURISCVState *env, int csrno) { if (riscv_has_ext(env, RVS) && riscv_has_ext(env, RVH)) { /* Hypervisor extension is supported */ if ((env->priv == PRV_S && !riscv_cpu_virt_enabled(env)) || env->priv == PRV_M) { return 0; } } return -1; } static int pmp(CPURISCVState *env, int csrno) { return -!riscv_feature(env, RISCV_FEATURE_PMP); } #endif /* User Floating-Point CSRs */ static int read_fflags(CPURISCVState *env, int csrno, target_ulong *val) { #if !defined(CONFIG_USER_ONLY) if (!env->debugger && !(env->mstatus & MSTATUS_FS)) { return -1; } #endif *val = riscv_cpu_get_fflags(env); return 0; } static int write_fflags(CPURISCVState *env, int csrno, target_ulong val) { #if !defined(CONFIG_USER_ONLY) if (!env->debugger && !(env->mstatus & MSTATUS_FS)) { return -1; } env->mstatus |= MSTATUS_FS; #endif riscv_cpu_set_fflags(env, val & (FSR_AEXC >> FSR_AEXC_SHIFT)); return 0; } static int read_frm(CPURISCVState *env, int csrno, target_ulong *val) { #if !defined(CONFIG_USER_ONLY) if (!env->debugger && !(env->mstatus & MSTATUS_FS)) { return -1; } #endif *val = env->frm; return 0; } static int write_frm(CPURISCVState *env, int csrno, target_ulong val) { #if !defined(CONFIG_USER_ONLY) if (!env->debugger && !(env->mstatus & MSTATUS_FS)) { return -1; } env->mstatus |= MSTATUS_FS; #endif env->frm = val & (FSR_RD >> FSR_RD_SHIFT); return 0; } static int read_fcsr(CPURISCVState *env, int csrno, target_ulong *val) { #if !defined(CONFIG_USER_ONLY) if (!env->debugger && !(env->mstatus & MSTATUS_FS)) { return -1; } #endif *val = (riscv_cpu_get_fflags(env) << FSR_AEXC_SHIFT) | (env->frm << FSR_RD_SHIFT); if (vs(env, csrno) >= 0) { *val |= (env->vxrm << FSR_VXRM_SHIFT) | (env->vxsat << FSR_VXSAT_SHIFT); } return 0; } static int write_fcsr(CPURISCVState *env, int csrno, target_ulong val) { #if !defined(CONFIG_USER_ONLY) if (!env->debugger && !(env->mstatus & MSTATUS_FS)) { return -1; } env->mstatus |= MSTATUS_FS; #endif env->frm = (val & FSR_RD) >> FSR_RD_SHIFT; if (vs(env, csrno) >= 0) { env->vxrm = (val & FSR_VXRM) >> FSR_VXRM_SHIFT; env->vxsat = (val & FSR_VXSAT) >> FSR_VXSAT_SHIFT; } riscv_cpu_set_fflags(env, (val & FSR_AEXC) >> FSR_AEXC_SHIFT); return 0; } static int read_vtype(CPURISCVState *env, int csrno, target_ulong *val) { *val = env->vtype; return 0; } static int read_vl(CPURISCVState *env, int csrno, target_ulong *val) { *val = env->vl; return 0; } static int read_vxrm(CPURISCVState *env, int csrno, target_ulong *val) { *val = env->vxrm; return 0; } static int write_vxrm(CPURISCVState *env, int csrno, target_ulong val) { env->vxrm = val; return 0; } static int read_vxsat(CPURISCVState *env, int csrno, target_ulong *val) { *val = env->vxsat; return 0; } static int write_vxsat(CPURISCVState *env, int csrno, target_ulong val) { env->vxsat = val; return 0; } static int read_vstart(CPURISCVState *env, int csrno, target_ulong *val) { *val = env->vstart; return 0; } static int write_vstart(CPURISCVState *env, int csrno, target_ulong val) { env->vstart = val; return 0; } /* User Timers and Counters */ static int read_instret(CPURISCVState *env, int csrno, target_ulong *val) { // Unicorn if'd out #if 0 #if !defined(CONFIG_USER_ONLY) if (use_icount) { *val = cpu_get_icount(); } else { *val = cpu_get_host_ticks(); } #else *val = cpu_get_host_ticks(); #endif #endif return 0; } #if defined(TARGET_RISCV32) static int read_instreth(CPURISCVState *env, int csrno, target_ulong *val) { // Unicorn: If'd out #if 0 #if !defined(CONFIG_USER_ONLY) if (use_icount) { *val = cpu_get_icount() >> 32; } else { *val = cpu_get_host_ticks() >> 32; } #else *val = cpu_get_host_ticks() >> 32; #endif #endif return 0; } #endif /* TARGET_RISCV32 */ #if defined(CONFIG_USER_ONLY) static int read_time(CPURISCVState *env, int csrno, target_ulong *val) { // Unicorn: commented out //*val = cpu_get_host_ticks(); return 0; } #if defined(TARGET_RISCV32) static int read_timeh(CPURISCVState *env, int csrno, target_ulong *val) { // Unicorn commented out //*val = cpu_get_host_ticks() >> 32; return 0; } #endif #else /* CONFIG_USER_ONLY */ static int read_time(CPURISCVState *env, int csrno, target_ulong *val) { uint64_t delta = riscv_cpu_virt_enabled(env) ? env->htimedelta : 0; if (!env->rdtime_fn) { return -1; } *val = env->rdtime_fn() + delta; return 0; } #if defined(TARGET_RISCV32) static int read_timeh(CPURISCVState *env, int csrno, target_ulong *val) { uint64_t delta = riscv_cpu_virt_enabled(env) ? env->htimedelta : 0; if (!env->rdtime_fn) { return -1; } *val = (env->rdtime_fn() + delta) >> 32; return 0; } #endif /* Machine constants */ #define M_MODE_INTERRUPTS (MIP_MSIP | MIP_MTIP | MIP_MEIP) #define S_MODE_INTERRUPTS (MIP_SSIP | MIP_STIP | MIP_SEIP) #define VS_MODE_INTERRUPTS (MIP_VSSIP | MIP_VSTIP | MIP_VSEIP) static const target_ulong delegable_ints = S_MODE_INTERRUPTS | VS_MODE_INTERRUPTS; static const target_ulong all_ints = M_MODE_INTERRUPTS | S_MODE_INTERRUPTS | VS_MODE_INTERRUPTS; static const target_ulong delegable_excps = (1ULL << (RISCV_EXCP_INST_ADDR_MIS)) | (1ULL << (RISCV_EXCP_INST_ACCESS_FAULT)) | (1ULL << (RISCV_EXCP_ILLEGAL_INST)) | (1ULL << (RISCV_EXCP_BREAKPOINT)) | (1ULL << (RISCV_EXCP_LOAD_ADDR_MIS)) | (1ULL << (RISCV_EXCP_LOAD_ACCESS_FAULT)) | (1ULL << (RISCV_EXCP_STORE_AMO_ADDR_MIS)) | (1ULL << (RISCV_EXCP_STORE_AMO_ACCESS_FAULT)) | (1ULL << (RISCV_EXCP_U_ECALL)) | (1ULL << (RISCV_EXCP_S_ECALL)) | (1ULL << (RISCV_EXCP_VS_ECALL)) | (1ULL << (RISCV_EXCP_M_ECALL)) | (1ULL << (RISCV_EXCP_INST_PAGE_FAULT)) | (1ULL << (RISCV_EXCP_LOAD_PAGE_FAULT)) | (1ULL << (RISCV_EXCP_STORE_PAGE_FAULT)) | (1ULL << (RISCV_EXCP_INST_GUEST_PAGE_FAULT)) | (1ULL << (RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT)) | (1ULL << (RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT)); static const target_ulong sstatus_v1_10_mask = SSTATUS_SIE | SSTATUS_SPIE | SSTATUS_UIE | SSTATUS_UPIE | SSTATUS_SPP | SSTATUS_FS | SSTATUS_XS | SSTATUS_SUM | SSTATUS_MXR | SSTATUS_SD; static const target_ulong sip_writable_mask = SIP_SSIP | MIP_USIP | MIP_UEIP; static const target_ulong hip_writable_mask = MIP_VSSIP | MIP_VSTIP | MIP_VSEIP; static const target_ulong vsip_writable_mask = MIP_VSSIP; #if defined(TARGET_RISCV32) static const char valid_vm_1_10[16] = { [VM_1_10_MBARE] = 1, [VM_1_10_SV32] = 1 }; #elif defined(TARGET_RISCV64) static const char valid_vm_1_10[16] = { [VM_1_10_MBARE] = 1, [VM_1_10_SV39] = 1, [VM_1_10_SV48] = 1, [VM_1_10_SV57] = 1 }; #endif /* CONFIG_USER_ONLY */ /* Machine Information Registers */ static int read_zero(CPURISCVState *env, int csrno, target_ulong *val) { return *val = 0; } static int read_mhartid(CPURISCVState *env, int csrno, target_ulong *val) { *val = env->mhartid; return 0; } /* Machine Trap Setup */ static int read_mstatus(CPURISCVState *env, int csrno, target_ulong *val) { *val = env->mstatus; return 0; } static int validate_vm(CPURISCVState *env, target_ulong vm) { return valid_vm_1_10[vm & 0xf]; } static int write_mstatus(CPURISCVState *env, int csrno, target_ulong val) { target_ulong mstatus = env->mstatus; target_ulong mask = 0; /* flush tlb on mstatus fields that affect VM */ if ((val ^ mstatus) & (MSTATUS_MXR | MSTATUS_MPP | MSTATUS_MPV | MSTATUS_MPRV | MSTATUS_SUM)) { tlb_flush(env_cpu(env)); } mask = MSTATUS_SIE | MSTATUS_SPIE | MSTATUS_MIE | MSTATUS_MPIE | MSTATUS_SPP | MSTATUS_FS | MSTATUS_MPRV | MSTATUS_SUM | MSTATUS_MPP | MSTATUS_MXR | MSTATUS_TVM | MSTATUS_TSR | MSTATUS_TW; #if defined(TARGET_RISCV64) /* * RV32: MPV and GVA are not in mstatus. The current plan is to * add them to mstatush. For now, we just don't support it. */ mask |= MSTATUS_MPV | MSTATUS_GVA; #endif mstatus = (mstatus & ~mask) | (val & mask); int dirty = ((mstatus & MSTATUS_FS) == MSTATUS_FS) | ((mstatus & MSTATUS_XS) == MSTATUS_XS); mstatus = set_field(mstatus, MSTATUS_SD, dirty); env->mstatus = mstatus; return 0; } #ifdef TARGET_RISCV32 static int read_mstatush(CPURISCVState *env, int csrno, target_ulong *val) { *val = env->mstatush; return 0; } static int write_mstatush(CPURISCVState *env, int csrno, target_ulong val) { if ((val ^ env->mstatush) & (MSTATUS_MPV)) { tlb_flush(env_cpu(env)); } val &= MSTATUS_MPV | MSTATUS_GVA; env->mstatush = val; return 0; } #endif static int read_misa(CPURISCVState *env, int csrno, target_ulong *val) { *val = env->misa; return 0; } static int write_misa(CPURISCVState *env, int csrno, target_ulong val) { if (!riscv_feature(env, RISCV_FEATURE_MISA)) { /* drop write to misa */ return 0; } /* 'I' or 'E' must be present */ if (!(val & (RVI | RVE))) { /* It is not, drop write to misa */ return 0; } /* 'E' excludes all other extensions */ if (val & RVE) { /* when we support 'E' we can do "val = RVE;" however * for now we just drop writes if 'E' is present. */ return 0; } /* Mask extensions that are not supported by this hart */ val &= env->misa_mask; /* Mask extensions that are not supported by QEMU */ val &= (RVI | RVE | RVM | RVA | RVF | RVD | RVC | RVS | RVU); /* 'D' depends on 'F', so clear 'D' if 'F' is not present */ if ((val & RVD) && !(val & RVF)) { val &= ~RVD; } /* Suppress 'C' if next instruction is not aligned * TODO: this should check next_pc */ if ((val & RVC) && (GETPC() & ~3) != 0) { val &= ~RVC; } /* misa.MXL writes are not supported by QEMU */ val = (env->misa & MISA_MXL) | (val & ~MISA_MXL); /* flush translation cache */ if (val != env->misa) { tb_flush(env_cpu(env)); } env->misa = val; return 0; } static int read_medeleg(CPURISCVState *env, int csrno, target_ulong *val) { *val = env->medeleg; return 0; } static int write_medeleg(CPURISCVState *env, int csrno, target_ulong val) { env->medeleg = (env->medeleg & ~delegable_excps) | (val & delegable_excps); return 0; } static int read_mideleg(CPURISCVState *env, int csrno, target_ulong *val) { *val = env->mideleg; return 0; } static int write_mideleg(CPURISCVState *env, int csrno, target_ulong val) { env->mideleg = (env->mideleg & ~delegable_ints) | (val & delegable_ints); if (riscv_has_ext(env, RVH)) { env->mideleg |= VS_MODE_INTERRUPTS; } return 0; } static int read_mie(CPURISCVState *env, int csrno, target_ulong *val) { *val = env->mie; return 0; } static int write_mie(CPURISCVState *env, int csrno, target_ulong val) { env->mie = (env->mie & ~all_ints) | (val & all_ints); return 0; } static int read_mtvec(CPURISCVState *env, int csrno, target_ulong *val) { *val = env->mtvec; return 0; } static int write_mtvec(CPURISCVState *env, int csrno, target_ulong val) { /* bits [1:0] encode mode; 0 = direct, 1 = vectored, 2 >= reserved */ if ((val & 3) < 2) { env->mtvec = val; } else { qemu_log_mask(LOG_UNIMP, "CSR_MTVEC: reserved mode not supported\n"); } return 0; } static int read_mcounteren(CPURISCVState *env, int csrno, target_ulong *val) { *val = env->mcounteren; return 0; } static int write_mcounteren(CPURISCVState *env, int csrno, target_ulong val) { env->mcounteren = val; return 0; } /* This regiser is replaced with CSR_MCOUNTINHIBIT in 1.11.0 */ static int read_mscounteren(CPURISCVState *env, int csrno, target_ulong *val) { if (env->priv_ver < PRIV_VERSION_1_11_0) { return -1; } *val = env->mcounteren; return 0; } /* This regiser is replaced with CSR_MCOUNTINHIBIT in 1.11.0 */ static int write_mscounteren(CPURISCVState *env, int csrno, target_ulong val) { if (env->priv_ver < PRIV_VERSION_1_11_0) { return -1; } env->mcounteren = val; return 0; } /* Machine Trap Handling */ static int read_mscratch(CPURISCVState *env, int csrno, target_ulong *val) { *val = env->mscratch; return 0; } static int write_mscratch(CPURISCVState *env, int csrno, target_ulong val) { env->mscratch = val; return 0; } static int read_mepc(CPURISCVState *env, int csrno, target_ulong *val) { *val = env->mepc; return 0; } static int write_mepc(CPURISCVState *env, int csrno, target_ulong val) { env->mepc = val; return 0; } static int read_mcause(CPURISCVState *env, int csrno, target_ulong *val) { *val = env->mcause; return 0; } static int write_mcause(CPURISCVState *env, int csrno, target_ulong val) { env->mcause = val; return 0; } static int read_mbadaddr(CPURISCVState *env, int csrno, target_ulong *val) { *val = env->mbadaddr; return 0; } static int write_mbadaddr(CPURISCVState *env, int csrno, target_ulong val) { env->mbadaddr = val; return 0; } static int rmw_mip(CPURISCVState *env, int csrno, target_ulong *ret_value, target_ulong new_value, target_ulong write_mask) { RISCVCPU *cpu = env_archcpu(env); /* Allow software control of delegable interrupts not claimed by hardware */ target_ulong mask = write_mask & delegable_ints & ~env->miclaim; uint32_t old_mip; if (mask) { // Unicorn: commented out //qemu_mutex_lock_iothread(); old_mip = riscv_cpu_update_mip(cpu, mask, (new_value & mask)); //qemu_mutex_unlock_iothread(); } else { old_mip = atomic_read(&env->mip); } if (ret_value) { *ret_value = old_mip; } return 0; } /* Supervisor Trap Setup */ static int read_sstatus(CPURISCVState *env, int csrno, target_ulong *val) { target_ulong mask = (sstatus_v1_10_mask); *val = env->mstatus & mask; return 0; } static int write_sstatus(CPURISCVState *env, int csrno, target_ulong val) { target_ulong mask = (sstatus_v1_10_mask); target_ulong newval = (env->mstatus & ~mask) | (val & mask); return write_mstatus(env, CSR_MSTATUS, newval); } static int read_sie(CPURISCVState *env, int csrno, target_ulong *val) { if (riscv_cpu_virt_enabled(env)) { /* Tell the guest the VS bits, shifted to the S bit locations */ *val = (env->mie & env->mideleg & VS_MODE_INTERRUPTS) >> 1; } else { *val = env->mie & env->mideleg; } return 0; } static int write_sie(CPURISCVState *env, int csrno, target_ulong val) { target_ulong newval; if (riscv_cpu_virt_enabled(env)) { /* Shift the guests S bits to VS */ newval = (env->mie & ~VS_MODE_INTERRUPTS) | ((val << 1) & VS_MODE_INTERRUPTS); } else { newval = (env->mie & ~S_MODE_INTERRUPTS) | (val & S_MODE_INTERRUPTS); } return write_mie(env, CSR_MIE, newval); } static int read_stvec(CPURISCVState *env, int csrno, target_ulong *val) { *val = env->stvec; return 0; } static int write_stvec(CPURISCVState *env, int csrno, target_ulong val) { /* bits [1:0] encode mode; 0 = direct, 1 = vectored, 2 >= reserved */ if ((val & 3) < 2) { env->stvec = val; } else { qemu_log_mask(LOG_UNIMP, "CSR_STVEC: reserved mode not supported\n"); } return 0; } static int read_scounteren(CPURISCVState *env, int csrno, target_ulong *val) { *val = env->scounteren; return 0; } static int write_scounteren(CPURISCVState *env, int csrno, target_ulong val) { env->scounteren = val; return 0; } /* Supervisor Trap Handling */ static int read_sscratch(CPURISCVState *env, int csrno, target_ulong *val) { *val = env->sscratch; return 0; } static int write_sscratch(CPURISCVState *env, int csrno, target_ulong val) { env->sscratch = val; return 0; } static int read_sepc(CPURISCVState *env, int csrno, target_ulong *val) { *val = env->sepc; return 0; } static int write_sepc(CPURISCVState *env, int csrno, target_ulong val) { env->sepc = val; return 0; } static int read_scause(CPURISCVState *env, int csrno, target_ulong *val) { *val = env->scause; return 0; } static int write_scause(CPURISCVState *env, int csrno, target_ulong val) { env->scause = val; return 0; } static int read_sbadaddr(CPURISCVState *env, int csrno, target_ulong *val) { *val = env->sbadaddr; return 0; } static int write_sbadaddr(CPURISCVState *env, int csrno, target_ulong val) { env->sbadaddr = val; return 0; } static int rmw_sip(CPURISCVState *env, int csrno, target_ulong *ret_value, target_ulong new_value, target_ulong write_mask) { int ret; if (riscv_cpu_virt_enabled(env)) { /* Shift the new values to line up with the VS bits */ ret = rmw_mip(env, CSR_MSTATUS, ret_value, new_value << 1, (write_mask & sip_writable_mask) << 1 & env->mideleg); ret &= vsip_writable_mask; ret >>= 1; } else { ret = rmw_mip(env, CSR_MSTATUS, ret_value, new_value, write_mask & env->mideleg & sip_writable_mask); } *ret_value &= env->mideleg; return ret; } /* Supervisor Protection and Translation */ static int read_satp(CPURISCVState *env, int csrno, target_ulong *val) { if (!riscv_feature(env, RISCV_FEATURE_MMU)) { *val = 0; return 0; } if (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_TVM)) { return -1; } else { *val = env->satp; } return 0; } static int write_satp(CPURISCVState *env, int csrno, target_ulong val) { if (!riscv_feature(env, RISCV_FEATURE_MMU)) { return 0; } if (validate_vm(env, get_field(val, SATP_MODE)) && ((val ^ env->satp) & (SATP_MODE | SATP_ASID | SATP_PPN))) { if (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_TVM)) { return -1; } else { if((val ^ env->satp) & SATP_ASID) { tlb_flush(env_cpu(env)); } env->satp = val; } } return 0; } /* Hypervisor Extensions */ static int read_hstatus(CPURISCVState *env, int csrno, target_ulong *val) { *val = env->hstatus; #ifdef TARGET_RISCV64 /* We only support 64-bit VSXL */ *val = set_field(*val, HSTATUS_VSXL, 2); #endif /* We only support little endian */ *val = set_field(*val, HSTATUS_VSBE, 0); return 0; } static int write_hstatus(CPURISCVState *env, int csrno, target_ulong val) { env->hstatus = val; #ifdef TARGET_RISCV64 if (get_field(val, HSTATUS_VSXL) != 2) { qemu_log_mask(LOG_UNIMP, "QEMU does not support mixed HSXLEN options."); } #endif if (get_field(val, HSTATUS_VSBE) != 0) { qemu_log_mask(LOG_UNIMP, "QEMU does not support big endian guests."); } return 0; } static int read_hedeleg(CPURISCVState *env, int csrno, target_ulong *val) { *val = env->hedeleg; return 0; } static int write_hedeleg(CPURISCVState *env, int csrno, target_ulong val) { env->hedeleg = val; return 0; } static int read_hideleg(CPURISCVState *env, int csrno, target_ulong *val) { *val = env->hideleg; return 0; } static int write_hideleg(CPURISCVState *env, int csrno, target_ulong val) { env->hideleg = val; return 0; } static int rmw_hip(CPURISCVState *env, int csrno, target_ulong *ret_value, target_ulong new_value, target_ulong write_mask) { int ret = rmw_mip(env, 0, ret_value, new_value, write_mask & hip_writable_mask); return ret; } static int read_hie(CPURISCVState *env, int csrno, target_ulong *val) { *val = env->mie & VS_MODE_INTERRUPTS; return 0; } static int write_hie(CPURISCVState *env, int csrno, target_ulong val) { target_ulong newval = (env->mie & ~VS_MODE_INTERRUPTS) | (val & VS_MODE_INTERRUPTS); return write_mie(env, CSR_MIE, newval); } static int read_hcounteren(CPURISCVState *env, int csrno, target_ulong *val) { *val = env->hcounteren; return 0; } static int write_hcounteren(CPURISCVState *env, int csrno, target_ulong val) { env->hcounteren = val; return 0; } static int read_htval(CPURISCVState *env, int csrno, target_ulong *val) { *val = env->htval; return 0; } static int write_htval(CPURISCVState *env, int csrno, target_ulong val) { env->htval = val; return 0; } static int read_htinst(CPURISCVState *env, int csrno, target_ulong *val) { *val = env->htinst; return 0; } static int write_htinst(CPURISCVState *env, int csrno, target_ulong val) { return 0; } static int read_hgatp(CPURISCVState *env, int csrno, target_ulong *val) { *val = env->hgatp; return 0; } static int write_hgatp(CPURISCVState *env, int csrno, target_ulong val) { env->hgatp = val; return 0; } static int read_htimedelta(CPURISCVState *env, int csrno, target_ulong *val) { if (!env->rdtime_fn) { return -1; } #if defined(TARGET_RISCV32) *val = env->htimedelta & 0xffffffff; #else *val = env->htimedelta; #endif return 0; } static int write_htimedelta(CPURISCVState *env, int csrno, target_ulong val) { if (!env->rdtime_fn) { return -1; } #if defined(TARGET_RISCV32) env->htimedelta = deposit64(env->htimedelta, 0, 32, (uint64_t)val); #else env->htimedelta = val; #endif return 0; } #if defined(TARGET_RISCV32) static int read_htimedeltah(CPURISCVState *env, int csrno, target_ulong *val) { if (!env->rdtime_fn) { return -1; } *val = env->htimedelta >> 32; return 0; } static int write_htimedeltah(CPURISCVState *env, int csrno, target_ulong val) { if (!env->rdtime_fn) { return -1; } env->htimedelta = deposit64(env->htimedelta, 32, 32, (uint64_t)val); return 0; } #endif /* Virtual CSR Registers */ static int read_vsstatus(CPURISCVState *env, int csrno, target_ulong *val) { *val = env->vsstatus; return 0; } static int write_vsstatus(CPURISCVState *env, int csrno, target_ulong val) { env->vsstatus = val; return 0; } static int rmw_vsip(CPURISCVState *env, int csrno, target_ulong *ret_value, target_ulong new_value, target_ulong write_mask) { int ret = rmw_mip(env, 0, ret_value, new_value, write_mask & env->mideleg & vsip_writable_mask); return ret; } static int read_vsie(CPURISCVState *env, int csrno, target_ulong *val) { *val = env->mie & env->mideleg & VS_MODE_INTERRUPTS; return 0; } static int write_vsie(CPURISCVState *env, int csrno, target_ulong val) { target_ulong newval = (env->mie & ~env->mideleg) | (val & env->mideleg & MIP_VSSIP); return write_mie(env, CSR_MIE, newval); } static int read_vstvec(CPURISCVState *env, int csrno, target_ulong *val) { *val = env->vstvec; return 0; } static int write_vstvec(CPURISCVState *env, int csrno, target_ulong val) { env->vstvec = val; return 0; } static int read_vsscratch(CPURISCVState *env, int csrno, target_ulong *val) { *val = env->vsscratch; return 0; } static int write_vsscratch(CPURISCVState *env, int csrno, target_ulong val) { env->vsscratch = val; return 0; } static int read_vsepc(CPURISCVState *env, int csrno, target_ulong *val) { *val = env->vsepc; return 0; } static int write_vsepc(CPURISCVState *env, int csrno, target_ulong val) { env->vsepc = val; return 0; } static int read_vscause(CPURISCVState *env, int csrno, target_ulong *val) { *val = env->vscause; return 0; } static int write_vscause(CPURISCVState *env, int csrno, target_ulong val) { env->vscause = val; return 0; } static int read_vstval(CPURISCVState *env, int csrno, target_ulong *val) { *val = env->vstval; return 0; } static int write_vstval(CPURISCVState *env, int csrno, target_ulong val) { env->vstval = val; return 0; } static int read_vsatp(CPURISCVState *env, int csrno, target_ulong *val) { *val = env->vsatp; return 0; } static int write_vsatp(CPURISCVState *env, int csrno, target_ulong val) { env->vsatp = val; return 0; } static int read_mtval2(CPURISCVState *env, int csrno, target_ulong *val) { *val = env->mtval2; return 0; } static int write_mtval2(CPURISCVState *env, int csrno, target_ulong val) { env->mtval2 = val; return 0; } static int read_mtinst(CPURISCVState *env, int csrno, target_ulong *val) { *val = env->mtinst; return 0; } static int write_mtinst(CPURISCVState *env, int csrno, target_ulong val) { env->mtinst = val; return 0; } /* Physical Memory Protection */ static int read_pmpcfg(CPURISCVState *env, int csrno, target_ulong *val) { *val = pmpcfg_csr_read(env, csrno - CSR_PMPCFG0); return 0; } static int write_pmpcfg(CPURISCVState *env, int csrno, target_ulong val) { pmpcfg_csr_write(env, csrno - CSR_PMPCFG0, val); return 0; } static int read_pmpaddr(CPURISCVState *env, int csrno, target_ulong *val) { *val = pmpaddr_csr_read(env, csrno - CSR_PMPADDR0); return 0; } static int write_pmpaddr(CPURISCVState *env, int csrno, target_ulong val) { pmpaddr_csr_write(env, csrno - CSR_PMPADDR0, val); return 0; } #endif /* * riscv_csrrw - read and/or update control and status register * * csrr <-> riscv_csrrw(env, csrno, ret_value, 0, 0); * csrrw <-> riscv_csrrw(env, csrno, ret_value, value, -1); * csrrs <-> riscv_csrrw(env, csrno, ret_value, -1, value); * csrrc <-> riscv_csrrw(env, csrno, ret_value, 0, value); */ int riscv_csrrw(CPURISCVState *env, int csrno, target_ulong *ret_value, target_ulong new_value, target_ulong write_mask) { int ret; target_ulong old_value; RISCVCPU *cpu = env_archcpu(env); /* check privileges and return -1 if check fails */ #if !defined(CONFIG_USER_ONLY) int effective_priv = env->priv; int read_only = get_field(csrno, 0xC00) == 3; if (riscv_has_ext(env, RVH) && env->priv == PRV_S && !riscv_cpu_virt_enabled(env)) { /* * We are in S mode without virtualisation, therefore we are in HS Mode. * Add 1 to the effective privledge level to allow us to access the * Hypervisor CSRs. */ effective_priv++; } if ((write_mask && read_only) || (!env->debugger && (effective_priv < get_field(csrno, 0x300)))) { return -1; } #endif /* ensure the CSR extension is enabled. */ if (!cpu->cfg.ext_icsr) { return -1; } /* check predicate */ if (!csr_ops[csrno].predicate || csr_ops[csrno].predicate(env, csrno) < 0) { return -1; } /* execute combined read/write operation if it exists */ if (csr_ops[csrno].op) { return csr_ops[csrno].op(env, csrno, ret_value, new_value, write_mask); } /* if no accessor exists then return failure */ if (!csr_ops[csrno].read) { return -1; } /* read old value */ ret = csr_ops[csrno].read(env, csrno, &old_value); if (ret < 0) { return ret; } /* write value if writable and write mask set, otherwise drop writes */ if (write_mask) { new_value = (old_value & ~write_mask) | (new_value & write_mask); if (csr_ops[csrno].write) { ret = csr_ops[csrno].write(env, csrno, new_value); if (ret < 0) { return ret; } } } /* return old value */ if (ret_value) { *ret_value = old_value; } return 0; } /* * Debugger support. If not in user mode, set env->debugger before the * riscv_csrrw call and clear it after the call. */ int riscv_csrrw_debug(CPURISCVState *env, int csrno, target_ulong *ret_value, target_ulong new_value, target_ulong write_mask) { int ret; #if !defined(CONFIG_USER_ONLY) env->debugger = true; #endif ret = riscv_csrrw(env, csrno, ret_value, new_value, write_mask); #if !defined(CONFIG_USER_ONLY) env->debugger = false; #endif return ret; } /* Control and Status Register function table */ static riscv_csr_operations csr_ops[CSR_TABLE_SIZE] = { /* User Floating-Point CSRs */ [CSR_FFLAGS] = { fs, read_fflags, write_fflags }, [CSR_FRM] = { fs, read_frm, write_frm }, [CSR_FCSR] = { fs, read_fcsr, write_fcsr }, /* Vector CSRs */ [CSR_VSTART] = { vs, read_vstart, write_vstart }, [CSR_VXSAT] = { vs, read_vxsat, write_vxsat }, [CSR_VXRM] = { vs, read_vxrm, write_vxrm }, [CSR_VL] = { vs, read_vl }, [CSR_VTYPE] = { vs, read_vtype }, /* User Timers and Counters */ [CSR_CYCLE] = { ctr, read_instret }, [CSR_INSTRET] = { ctr, read_instret }, #if defined(TARGET_RISCV32) [CSR_CYCLEH] = { ctr, read_instreth }, [CSR_INSTRETH] = { ctr, read_instreth }, #endif /* In privileged mode, the monitor will have to emulate TIME CSRs only if * rdtime callback is not provided by machine/platform emulation */ [CSR_TIME] = { ctr, read_time }, #if defined(TARGET_RISCV32) [CSR_TIMEH] = { ctr, read_timeh }, #endif #if !defined(CONFIG_USER_ONLY) /* Machine Timers and Counters */ [CSR_MCYCLE] = { any, read_instret }, [CSR_MINSTRET] = { any, read_instret }, #if defined(TARGET_RISCV32) [CSR_MCYCLEH] = { any, read_instreth }, [CSR_MINSTRETH] = { any, read_instreth }, #endif /* Machine Information Registers */ [CSR_MVENDORID] = { any, read_zero }, [CSR_MARCHID] = { any, read_zero }, [CSR_MIMPID] = { any, read_zero }, [CSR_MHARTID] = { any, read_mhartid }, /* Machine Trap Setup */ [CSR_MSTATUS] = { any, read_mstatus, write_mstatus }, [CSR_MISA] = { any, read_misa, write_misa }, [CSR_MIDELEG] = { any, read_mideleg, write_mideleg }, [CSR_MEDELEG] = { any, read_medeleg, write_medeleg }, [CSR_MIE] = { any, read_mie, write_mie }, [CSR_MTVEC] = { any, read_mtvec, write_mtvec }, [CSR_MCOUNTEREN] = { any, read_mcounteren, write_mcounteren }, #if defined(TARGET_RISCV32) [CSR_MSTATUSH] = { any, read_mstatush, write_mstatush }, #endif [CSR_MSCOUNTEREN] = { any, read_mscounteren, write_mscounteren }, /* Machine Trap Handling */ [CSR_MSCRATCH] = { any, read_mscratch, write_mscratch }, [CSR_MEPC] = { any, read_mepc, write_mepc }, [CSR_MCAUSE] = { any, read_mcause, write_mcause }, [CSR_MBADADDR] = { any, read_mbadaddr, write_mbadaddr }, [CSR_MIP] = { any, NULL, NULL, rmw_mip }, /* Supervisor Trap Setup */ [CSR_SSTATUS] = { smode, read_sstatus, write_sstatus }, [CSR_SIE] = { smode, read_sie, write_sie }, [CSR_STVEC] = { smode, read_stvec, write_stvec }, [CSR_SCOUNTEREN] = { smode, read_scounteren, write_scounteren }, /* Supervisor Trap Handling */ [CSR_SSCRATCH] = { smode, read_sscratch, write_sscratch }, [CSR_SEPC] = { smode, read_sepc, write_sepc }, [CSR_SCAUSE] = { smode, read_scause, write_scause }, [CSR_SBADADDR] = { smode, read_sbadaddr, write_sbadaddr }, [CSR_SIP] = { smode, NULL, NULL, rmw_sip }, /* Supervisor Protection and Translation */ [CSR_SATP] = { smode, read_satp, write_satp }, [CSR_HSTATUS] = { hmode, read_hstatus, write_hstatus }, [CSR_HEDELEG] = { hmode, read_hedeleg, write_hedeleg }, [CSR_HIDELEG] = { hmode, read_hideleg, write_hideleg }, [CSR_HIP] = { hmode, NULL, NULL, rmw_hip }, [CSR_HIE] = { hmode, read_hie, write_hie }, [CSR_HCOUNTEREN] = { hmode, read_hcounteren, write_hcounteren }, [CSR_HTVAL] = { hmode, read_htval, write_htval }, [CSR_HTINST] = { hmode, read_htinst, write_htinst }, [CSR_HGATP] = { hmode, read_hgatp, write_hgatp }, [CSR_HTIMEDELTA] = { hmode, read_htimedelta, write_htimedelta }, #if defined(TARGET_RISCV32) [CSR_HTIMEDELTAH] = { hmode, read_htimedeltah, write_htimedeltah}, #endif [CSR_VSSTATUS] = { hmode, read_vsstatus, write_vsstatus }, [CSR_VSIP] = { hmode, NULL, NULL, rmw_vsip }, [CSR_VSIE] = { hmode, read_vsie, write_vsie }, [CSR_VSTVEC] = { hmode, read_vstvec, write_vstvec }, [CSR_VSSCRATCH] = { hmode, read_vsscratch, write_vsscratch }, [CSR_VSEPC] = { hmode, read_vsepc, write_vsepc }, [CSR_VSCAUSE] = { hmode, read_vscause, write_vscause }, [CSR_VSTVAL] = { hmode, read_vstval, write_vstval }, [CSR_VSATP] = { hmode, read_vsatp, write_vsatp }, [CSR_MTVAL2] = { hmode, read_mtval2, write_mtval2 }, [CSR_MTINST] = { hmode, read_mtinst, write_mtinst }, /* Physical Memory Protection */ [CSR_PMPCFG0 ... CSR_PMPCFG3] = { pmp, read_pmpcfg, write_pmpcfg }, [CSR_PMPADDR0 ... CSR_PMPADDR15] = { pmp, read_pmpaddr, write_pmpaddr }, /* Performance Counters */ [CSR_HPMCOUNTER3 ... CSR_HPMCOUNTER31] = { ctr, read_zero }, [CSR_MHPMCOUNTER3 ... CSR_MHPMCOUNTER31] = { any, read_zero }, [CSR_MHPMEVENT3 ... CSR_MHPMEVENT31] = { any, read_zero }, #if defined(TARGET_RISCV32) [CSR_HPMCOUNTER3H ... CSR_HPMCOUNTER31H] = { ctr, read_zero }, [CSR_MHPMCOUNTER3H ... CSR_MHPMCOUNTER31H] = { any, read_zero }, #endif #endif /* !CONFIG_USER_ONLY */ };