/* * M68K helper routines * * Copyright (c) 2007 CodeSourcery * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include "qemu/osdep.h" #include "cpu.h" #include "exec/helper-proto.h" #include "exec/exec-all.h" #include "exec/cpu_ldst.h" #if defined(CONFIG_USER_ONLY) void m68k_cpu_do_interrupt(CPUState *cs) { cs->exception_index = -1; } static inline void do_interrupt_m68k_hardirq(CPUM68KState *env) { } #else extern int semihosting_enabled; /* Try to fill the TLB and return an exception if error. If retaddr is NULL, it means that the function was called in C code (i.e. not from generated code or from helper.c) */ void tlb_fill(CPUState *cs, target_ulong addr, MMUAccessType access_type, int mmu_idx, uintptr_t retaddr) { int ret; ret = m68k_cpu_handle_mmu_fault(cs, addr, access_type, mmu_idx); if (unlikely(ret)) { if (retaddr) { /* now we have a real cpu fault */ cpu_restore_state(cs, retaddr); } cpu_loop_exit(cs); } } static void do_rte(CPUM68KState *env) { uint32_t sp; uint32_t fmt; sp = env->aregs[7]; fmt = cpu_ldl_kernel(env, sp); env->pc = cpu_ldl_kernel(env, sp + 4); sp |= (fmt >> 28) & 3; env->aregs[7] = sp + 8; helper_set_sr(env, fmt); } static void do_interrupt_all(CPUM68KState *env, int is_hw) { CPUState *cs = CPU(m68k_env_get_cpu(env)); uint32_t sp; uint32_t fmt; uint32_t retaddr; uint32_t vector; fmt = 0; retaddr = env->pc; if (!is_hw) { switch (cs->exception_index) { case EXCP_RTE: /* Return from an exception. */ do_rte(env); return; case EXCP_HALT_INSN: cs->halted = 1; cs->exception_index = EXCP_HLT; cpu_loop_exit(cs); return; } if (cs->exception_index >= EXCP_TRAP0 && cs->exception_index <= EXCP_TRAP15) { /* Move the PC after the trap instruction. */ retaddr += 2; } } vector = cs->exception_index << 2; fmt |= 0x40000000; fmt |= vector << 16; fmt |= env->sr; fmt |= cpu_m68k_get_ccr(env); env->sr |= SR_S; if (is_hw) { env->sr = (env->sr & ~SR_I) | (env->pending_level << SR_I_SHIFT); env->sr &= ~SR_M; } m68k_switch_sp(env); sp = env->aregs[7]; fmt |= (sp & 3) << 28; /* ??? This could cause MMU faults. */ sp &= ~3; sp -= 4; cpu_stl_kernel(env, sp, retaddr); sp -= 4; cpu_stl_kernel(env, sp, fmt); env->aregs[7] = sp; /* Jump to vector. */ env->pc = cpu_ldl_kernel(env, env->vbr + vector); } void m68k_cpu_do_interrupt(CPUState *cs) { M68kCPU *cpu = M68K_CPU(cs->uc, cs); CPUM68KState *env = &cpu->env; do_interrupt_all(env, 0); } static inline void do_interrupt_m68k_hardirq(CPUM68KState *env) { do_interrupt_all(env, 1); } #endif bool m68k_cpu_exec_interrupt(CPUState *cs, int interrupt_request) { M68kCPU *cpu = M68K_CPU(cs->uc, cs); CPUM68KState *env = &cpu->env; if (interrupt_request & CPU_INTERRUPT_HARD && ((env->sr & SR_I) >> SR_I_SHIFT) < env->pending_level) { /* Real hardware gets the interrupt vector via an IACK cycle at this point. Current emulated hardware doesn't rely on this, so we provide/save the vector when the interrupt is first signalled. */ cs->exception_index = env->pending_vector; do_interrupt_m68k_hardirq(env); return true; } return false; } static void raise_exception_ra(CPUM68KState *env, int tt, uintptr_t raddr) { CPUState *cs = CPU(m68k_env_get_cpu(env)); cs->exception_index = tt; cpu_loop_exit_restore(cs, raddr); } static void raise_exception(CPUM68KState *env, int tt) { raise_exception_ra(env, tt, 0); } void HELPER(raise_exception)(CPUM68KState *env, uint32_t tt) { raise_exception(env, tt); } void HELPER(divuw)(CPUM68KState *env, int destr, uint32_t den) { uint32_t num = env->dregs[destr]; uint32_t quot, rem; if (den == 0) { raise_exception_ra(env, EXCP_DIV0, GETPC()); } quot = num / den; rem = num % den; env->cc_c = 0; /* always cleared, even if overflow */ if (quot > 0xffff) { env->cc_v = -1; /* real 68040 keeps N and unset Z on overflow, * whereas documentation says "undefined" */ env->cc_z = 1; return; } env->dregs[destr] = deposit32(quot, 16, 16, rem); env->cc_z = (int16_t)quot; env->cc_n = (int16_t)quot; env->cc_v = 0; } void HELPER(divsw)(CPUM68KState *env, int destr, int32_t den) { int32_t num = env->dregs[destr]; uint32_t quot, rem; if (den == 0) { raise_exception_ra(env, EXCP_DIV0, GETPC()); } quot = num / den; rem = num % den; env->cc_c = 0; /* always cleared, even if overflow */ if (quot != (int16_t)quot) { env->cc_v = -1; /* nothing else is modified */ /* real 68040 keeps N and unset Z on overflow, * whereas documentation says "undefined" */ env->cc_z = 1; return; } env->dregs[destr] = deposit32(quot, 16, 16, rem); env->cc_z = (int16_t)quot; env->cc_n = (int16_t)quot; env->cc_v = 0; } void HELPER(divul)(CPUM68KState *env, int numr, int regr, uint32_t den) { uint32_t num = env->dregs[numr]; uint32_t quot, rem; if (den == 0) { raise_exception_ra(env, EXCP_DIV0, GETPC()); } quot = num / den; rem = num % den; env->cc_c = 0; env->cc_z = quot; env->cc_n = quot; env->cc_v = 0; if (m68k_feature(env, M68K_FEATURE_CF_ISA_A)) { if (numr == regr) { env->dregs[numr] = quot; } else { env->dregs[regr] = rem; } } else { env->dregs[regr] = rem; env->dregs[numr] = quot; } } void HELPER(divsl)(CPUM68KState *env, int numr, int regr, int32_t den) { int32_t num = env->dregs[numr]; int32_t quot, rem; if (den == 0) { raise_exception_ra(env, EXCP_DIV0, GETPC()); } quot = num / den; rem = num % den; env->cc_c = 0; env->cc_z = quot; env->cc_n = quot; env->cc_v = 0; if (m68k_feature(env, M68K_FEATURE_CF_ISA_A)) { if (numr == regr) { env->dregs[numr] = quot; } else { env->dregs[regr] = rem; } } else { env->dregs[regr] = rem; env->dregs[numr] = quot; } } void HELPER(divull)(CPUM68KState *env, int numr, int regr, uint32_t den) { uint64_t num = deposit64(env->dregs[numr], 32, 32, env->dregs[regr]); uint64_t quot; uint32_t rem; if (den == 0) { raise_exception_ra(env, EXCP_DIV0, GETPC()); } quot = num / den; rem = num % den; env->cc_c = 0; /* always cleared, even if overflow */ if (quot > 0xffffffffULL) { env->cc_v = -1; /* real 68040 keeps N and unset Z on overflow, * whereas documentation says "undefined" */ env->cc_z = 1; return; } env->cc_z = quot; env->cc_n = quot; env->cc_v = 0; /* * If Dq and Dr are the same, the quotient is returned. * therefore we set Dq last. */ env->dregs[regr] = rem; env->dregs[numr] = quot; } void HELPER(divsll)(CPUM68KState *env, int numr, int regr, int32_t den) { int64_t num = deposit64(env->dregs[numr], 32, 32, env->dregs[regr]); int64_t quot; int32_t rem; if (den == 0) { raise_exception_ra(env, EXCP_DIV0, GETPC()); } quot = num / den; rem = num % den; env->cc_c = 0; /* always cleared, even if overflow */ if (quot != (int32_t)quot) { env->cc_v = -1; /* real 68040 keeps N and unset Z on overflow, * whereas documentation says "undefined" */ env->cc_z = 1; return; } env->cc_z = quot; env->cc_n = quot; env->cc_v = 0; /* * If Dq and Dr are the same, the quotient is returned. * therefore we set Dq last. */ env->dregs[regr] = rem; env->dregs[numr] = quot; } void HELPER(cas2w)(CPUM68KState *env, uint32_t regs, uint32_t a1, uint32_t a2) { uint32_t Dc1 = extract32(regs, 9, 3); uint32_t Dc2 = extract32(regs, 6, 3); uint32_t Du1 = extract32(regs, 3, 3); uint32_t Du2 = extract32(regs, 0, 3); int16_t c1 = env->dregs[Dc1]; int16_t c2 = env->dregs[Dc2]; int16_t u1 = env->dregs[Du1]; int16_t u2 = env->dregs[Du2]; int16_t l1, l2; uintptr_t ra = GETPC(); if (env->uc->parallel_cpus) { /* Tell the main loop we need to serialize this insn. */ cpu_loop_exit_atomic(ENV_GET_CPU(env), ra); } else { /* We're executing in a serial context -- no need to be atomic. */ l1 = cpu_lduw_data_ra(env, a1, ra); l2 = cpu_lduw_data_ra(env, a2, ra); if (l1 == c1 && l2 == c2) { cpu_stw_data_ra(env, a1, u1, ra); cpu_stw_data_ra(env, a2, u2, ra); } } if (c1 != l1) { env->cc_n = l1; env->cc_v = c1; } else { env->cc_n = l2; env->cc_v = c2; } env->cc_op = CC_OP_CMPW; env->dregs[Dc1] = deposit32(env->dregs[Dc1], 0, 16, l1); env->dregs[Dc2] = deposit32(env->dregs[Dc2], 0, 16, l2); } void HELPER(cas2l)(CPUM68KState *env, uint32_t regs, uint32_t a1, uint32_t a2) { uint32_t Dc1 = extract32(regs, 9, 3); uint32_t Dc2 = extract32(regs, 6, 3); uint32_t Du1 = extract32(regs, 3, 3); uint32_t Du2 = extract32(regs, 0, 3); uint32_t c1 = env->dregs[Dc1]; uint32_t c2 = env->dregs[Dc2]; uint32_t u1 = env->dregs[Du1]; uint32_t u2 = env->dregs[Du2]; uint32_t l1, l2; uintptr_t ra = GETPC(); #if defined(CONFIG_ATOMIC64) && !defined(CONFIG_USER_ONLY) int mmu_idx = cpu_mmu_index(env, 0); TCGMemOpIdx oi; #endif if (env->uc->parallel_cpus) { /* We're executing in a parallel context -- must be atomic. */ #ifdef CONFIG_ATOMIC64 uint64_t c, u, l; if ((a1 & 7) == 0 && a2 == a1 + 4) { c = deposit64(c2, 32, 32, c1); u = deposit64(u2, 32, 32, u1); #ifdef CONFIG_USER_ONLY l = helper_atomic_cmpxchgq_be(env, a1, c, u); #else oi = make_memop_idx(MO_BEQ, mmu_idx); l = helper_atomic_cmpxchgq_be_mmu(env, a1, c, u, oi, ra); #endif l1 = l >> 32; l2 = l; } else if ((a2 & 7) == 0 && a1 == a2 + 4) { c = deposit64(c1, 32, 32, c2); u = deposit64(u1, 32, 32, u2); #ifdef CONFIG_USER_ONLY l = helper_atomic_cmpxchgq_be(env, a2, c, u); #else oi = make_memop_idx(MO_BEQ, mmu_idx); l = helper_atomic_cmpxchgq_be_mmu(env, a2, c, u, oi, ra); #endif l2 = l >> 32; l1 = l; } else #endif { /* Tell the main loop we need to serialize this insn. */ cpu_loop_exit_atomic(ENV_GET_CPU(env), ra); } } else { /* We're executing in a serial context -- no need to be atomic. */ l1 = cpu_ldl_data_ra(env, a1, ra); l2 = cpu_ldl_data_ra(env, a2, ra); if (l1 == c1 && l2 == c2) { cpu_stl_data_ra(env, a1, u1, ra); cpu_stl_data_ra(env, a2, u2, ra); } } if (c1 != l1) { env->cc_n = l1; env->cc_v = c1; } else { env->cc_n = l2; env->cc_v = c2; } env->cc_op = CC_OP_CMPL; env->dregs[Dc1] = l1; env->dregs[Dc2] = l2; }